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Abstract
The performance of a new (Beaulieu-Xie) fading model is analyzed using bounds. This
recently proposed fading model can be used to describe both line-of-sight and
non-line-of-sight components of a fading channel having different diversity orders. We
consider the outage probability and error rate performance of maximal ratio
combining, equal-gain combining, and selection combining over arbitrarily correlated
Beaulieu-Xie fading channels. Closed-form expressions for upper and lower bounds to
the outage probability and error rate are obtained, and it is shown that these bounds
are asymptotically tight in the high signal-to-noise ratio regime. The analytical results
are verified via Monte Carlo simulations. It is shown that the Beaulieu-Xie fading model
can be more useful than the Ricean and Nakagami-m fading models in characterizing
environments with both line-of-sight and multiple reflected specular components.

Keywords: 6G, Bounds, Correlation, Diversity, Fading channels, Outage probability,
Level crossing rate, mmWave, Random access channels, THz

1 Introduction
Numerous models have been developed to characterize wireless communication systems.
The Ricean fading model has been largely employed to characterize wireless systems
with the presence of both a line-of-sight (LOS) signal and multi-path (non-LOS) signals.
However, the Ricean fading model has a disadvantage in terms of its inadaptability to fad-
ing variations in the environment and its restriction to a diversity order of one [1]. The
Nakagami-m fading model, which can be derived from the central chi-distribution, was
proposed to characterize wireless systems over different fading variations. This is enabled
by its flexible fading parameterm. It has been shown that the Nakagami-m fadingmodel is
practical when characterizing systems withmulti-path signals. However, it is only suitable
for systems with multi-path (non-LOS) signals [2–4].
A new fading model [1], which we and others refer to as the Beaulieu-Xie (BX) fading

model [6–9], was recently proposed to overcome the limitations of both the Ricean and
Nakagami-m fading models. This model, derived from the non-central chi-distribution
in an identical manner in which the central chi-distribution was transformed to the
Nakagami-m fadingmodel, has a fading parameterm, LOS power λ2, and non-LOS power
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�. More importantly, it has the ability to characterize wireless systems with multiple
LOS and non-LOS components. The normalization that leads to the BX fading model
is carried out by scaling the random variable (RV), R, which is distributed according to
non-central chi distribution by a factor

√
2m
�

to have another RV, Z which is distributed

according to the BX distribution, such that R = Z
√

2m
�
. In doing this, the non-centrality

parameter λ in the non-central chi distribution is also scaled by the factor
√

2m
�

so that
its relationship with the parameter λ in the BX distribution, which for clarity we refer to
as λ∗, becomes λ = λ∗

√
2m
�

[1]. This normalization process ensures that the effect of the
anomaly of unbounded fading power found in the non-central chi-distribution is elim-
inated. It is important to comment that the κ − μ (or generalized Ricean) distribution,
unlike the BX fading model, does not have a proper normalization. In fact, the BX fad-
ing model is a normalized form of the κ − μ (or generalized Ricean) model [1], as will be
shown in Section 3. This leads to the κ −μmodel having an unbounded fading power just
as it is found in the non-central chi-distribution. This major flaw is evident in its second
moment (also known as the instantaneous power) which is dependent on the degrees of
freedom. Hence, the κ − μ (or generalized Ricean) distribution violates the principle of
physical fading channels and should not be used to describe a fading environment.
The flexibility presented by the BX fading model, by way of its three parameters, makes

it of interest in representations of practical fading for future femtocell, millimeter-wave
(mmWave), and terahertz (THz) communication systems, as well as 6G short-range ran-
dom access channels, where multiple components are present due to signal reflections
[1]. In addition, the BX fading model exhibits a seamless relationship to other fading
models, such as the Ricean, Nakagami-m, and Rayleigh fading models. The relation-
ship between the BX, Ricean, Nakagami-m, and Rayleigh distribution is feasible because
these four fading models all have bounded fading powers which is evident in their sec-
ond moment. In the absence of LOS components, the BX fading model becomes the
Nakagami-m fading model just as the Ricean fading model becomes the Rayleigh fading
model. Also, when the fading parameterm is equal to 1, the BX fading model becomes the
Ricean fading model just as the Nakagami-m fading model becomes the Rayleigh fading
model.
The merits of the BX fading model and its improved ability to characterize channels for

emerging wireless communication systems can be demonstrated using the experimen-
tal data obtained from cross-polarized LOS measurements of 28-GHz outdoor mmWave
channels published in [5]. It can be shown via the goodness-of-fit of the fading mod-
els, quantified by the Kolmogorov-Smirnov (KS) test, that the BX fading model shows
an improved fit in comparison to the fit for the Ricean fading model. Despite its theo-
retical and practical importance, to the best of the authors’ knowledge, there has been
no performance analysis of wireless systems on BX channels reported beyond the works
in [6–11].
Although the performance of correlated κ − μ (or generalized Ricean) fading channels

[12] have been analyzed in [13], it is not meaningful to study arbitrary correlation of such
a fading model as it does not satisfy the power constraint. This is evident in its parameter
κ (and the K-factor in the generalized Ricean model) in that changes in the degrees of
freedom, according to the severity of fading, must be compensated for by adjusting the
non-LOS parameter. This is done to keep the total power of the scattering component
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invariant [1]. In contrast, adjusting the fading parameter, m, in BX fading does not affect
the power in the scatter component [1].
Given the merits of the BX fading model for future femtocell, mmWave, and THz com-

munication systems, as well as 6G short-range random access channels, it is important to
recognize the assumption of independent fading in implementing spatial diversity. Such
an assumption requires that there be sufficient spacing between the channels and this
may often not be the case [14]. A separation of 30 to 50 wavelengths between channels is
typically required to obtain correlation coefficients between 0 and 0.33 [15, 16]. With this
in mind, we consider the effects of correlation in this work for BX fading channels with
maximal ratio combining (MRC), equal-gain combining (EGC), and selective combining
(SC). The analysis targets performance bounds to evaluate the performance—in recogni-
tion of the fact that intractable integrals/infinite series arise in the pursuit of closed-form
expressions. A recently developed bounding technique [17] is applied here. The key idea
of this bounding technique is to handle correlated fading amplitude involving BX RVs
by transforming the original problem into a new problem involving correlated Gaussian
RVs, whose joint probability density function (pdf) can lead to tractable upper and lower
bounds of the joint pdf near the origin. This technique enables two main contributions.
First, asymptotically tight error rate and outage probability (OP) bounds (at high SNR) are
derived in closed-form for diversity receptions over arbitrarily correlated BX channels.
These tight bounds are obtained by bounding the pdf of the associated nonzero-mean
Gaussian RVs. Second, we show that the diversity receptions over arbitrarily correlated
BX fading channels outperform those of Nakagami-m fading channels, given that this
latter model lacks the ability to characterize LOS components. Ultimately, the analytical
results are verified by Monte Carlo simulations and are compared to those in literature.
The remainder of the paper is organized as follows. In Section 2, we summarize the

analytical methods of this work. In Section 3, we discuss the physicality (and justification)
of the BX fading model. In Section 4, we introduce the system model for linear diversity
receptions in BX fading. We discuss the merits of the BX fading model and the employed
bound analysis. In Section 5, we show the relationship between the power correlation and
Gaussian correlation coefficient, and in Section 6, we derive bounds on the pdf of the
channel coefficient. In Sections 8 and 9, we analyze and discuss the asymptotically tight
bounds on the OP and error rate for MRC, SC, and EGC schemes. Section 10 presents
numerical results, and Section 11 gives some concluding remarks.

2 Method
This paper analyses performance bounds on the OP and error rate for diversity reception
over arbitrarily correlated BX fading. The work considers MRC, EGC, and SC tech-
niques, with expressions for the upper and lowers bound in closed form. The closed-form
expressions are obtained by transforming the original problem involving correlated fading
amplitude RVs to a new problem involving correlated Guassian RVs, whose joint pdf leads
to amenable bounds close to the origin. The results obtained analytically are confirmed
by Monte Carlo simulations in MATLAB with different parameters and are compared to
those in literature. The effect of correlation on system performance is also illustrated.

3 Physicality and justification of the BX fadingmodel
The performance analyses put forward in this work are motivated by the BX fading
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model’s ability to characterize wireless systems with multiple LOS and non-LOS compo-
nents while satisfying the physical constraint of power conservation. It will be shown in
this section that the BX fadingmodel’s ability to handle this power constraint comes about
from its normalization—and this sets it apart from the existing κ − μ fading model and
the equivalent generalized Ricean fading model. We consider here various distributions
for the fading models. For the κ − μ fading model, the pdf is defined for a RV of G by

fG
(
g
) = 2μ (1 + κ)

μ+1
2

ĝκ
μ−1
2 exp (μκ)

(
g
ĝ

)μ

× exp
[
−μ (1 + κ)

(
g
ĝ

)2
]
Iμ−1

[
2μ
√

κ (1 + κ)
g
ĝ

]
(1)

where μ is the positive-valued fading parameter, ĝ is the square-root of the second
moment defined as ĝ =

√
E
[
G2], and κ is the ratio of total power for the LOS and non-

LOS components. With such definitions, d sets the total power for the LOS components
at d2 and σ sets the total power for the non-LOS components at 2nσ 2, given n as the
number of Gaussian RVs [12]. For the generalized Ricean fading model, the pdf is defined
for a RV of F by transforming (1) with substitutions of s2 for d2, n for μ, and

√
2nσ 2 + s2

for d̂. This gives a pdf of

fF
(
f
) = f

n
2

σ 2s
n−2
2

exp
(

− f 2 + s2

2σ 2

)
× I n

2−1

(
fs
σ 2

)
(2)

where s sets the total power for the LOS components at s2. With such definitions,
K = s2/2nσ 2 is the K-factor and E

[
F2] = 2nσ 2 + s2 is the second-order moment. Ulti-

mately, the above definitions for κ , K, and E
[
F2] all depend upon n, and this leads to

two shortcomings for the κ − μ and generalized Ricean distributions: (i) the power of
the non-LOS components has to be adjusted to keep the total power invariant and (ii)
the fading powers of both distributions are unbounded. Nonetheless, these shortcomings
can be overcome by normalization—and this is done by the BX fading model. The BX
RV, Z, can be obtained by normalizing the generalized Ricean distribution in (2) such that
F = Zσ

√
2m/� and s = λσ

√
2m/�. This produces a pdf for the BX fading model in the

form of

fZ(z) = exp
(−m

�

(
z2 + λ2

))
zm
( 2m

�

)

λm−1 Im−1

(
2m
�

λz
)

(3)

where m is the fading parameter. With such definitions, K = λ2/� is the K-factor given
λ2 as the LOS power and � as the non-LOS power. For this pdf of the BX fading model,
m controls the shape, � controls the spread, and λ impacts the location and height of the
mode [1, 6].
The physicality and manifestation of the BX fading model can be seen by the fact that

its distribution becomes an impulse at
√

λ2 + � as the fading parameter, m, approaches
infinity just like the Nakagami-m distribution tends to an impulse at

√
�. To see this, we

define the generalized Ricean RV as

F =
√√√√

n∑
i=1

V 2
i (4)
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where Vi is a Gaussian distributed RV with meanmi and variance σ 2 and n is the number
of Gaussian RVs. We obtain the BX RV, Z, via normalization such that

Z =

√
n∑

i=1
V 2
i

σ
√ n

�

=
√

�

σ

√√√√√
n∑

i=1
V 2
i

n
(5)

while noting that n = 2m. When m and thus n approach infinity, we are left with the BX
RV’s limit of

Zlim = lim
n→∞

√
�

σ

√√√√√
n∑

i=1
V 2
i

n
. (6)

This limit can be simplified using the Chebyshev’s law of large numbers [18] to

lim
n→∞

√√√√√
n∑

i=1
V 2
i

n
= lim

n→∞

√√√√1
n

n∑
i=1

E
[
V 2
i
]
. (7)

We note here that s in (2) is defined as s =
√

n∑
i=1

m2
i , which allows (7) to be cast as

lim
n→∞

√
σ 2 + s2

n
. (8)

We also note that the parameter λ in (3) is scaled by σ

√
2m
�
, which gives λ = s

σ

√
2m
�

.

Applying this scaling to (8) and inserting the result into (6) gives

Zlim = lim
n→∞

√
�

σ

√
σ 2 + σ 2λ2

n
=
√

λ2 + �. (9)

We see from this last expression that the limiting RV of Zlim is a constant at
√

λ2 + �.
Thus, the distribution of Z takes the form of an impulse at z = √

λ2 + � asm approaches
infinity—which cannot be said of the κ−μ or generalized Ricean distributions. Moreover,
the location of the impulse for the BX distribution, like the Nakagami-m distribution,
corresponds to the square-root of the second-order moment (or instantaneous power) of
its distribution and this quantity is bounded.

4 Systemmodel
We consider linear diversity receptions with N branches operating over the channels
described by the BX fading model. The received signal is

y = zx + n (10)

where x is the transmitted signal, n is a random vector denoting additive Gaussian white
noise (AWGN), and z is the fading channel vector, i.e., the real fading channel amplitudes.
In addition, z = [z1, . . . , zN ]T = [√γ̄1Z1, . . . ,

√
γ̄NZN

]T , where [·]T represents the trans-
pose, γ̄n is the average received SNR of the nth branch, Zn is the fading amplitude of the
nth branch, and z is distributed according to (3).
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The respective output SNRs for MRC, EGC, and SC diversity receptions are

γMRC =
N∑

n=1
γ̄nZ2

n (11a)

γEGC = 1
N

( N∑
n=1

√
γ̄nZn

)2

(11b)

γSC = max
(
γ̄1Z2

1, · · · , γ̄nZ2
n
)
. (11c)

We assume that the BX RV is associated with the nth branch as

Zn =
√√√√ 2m∑

i=1
X2
n,i; ∀n = 1, . . .N (12)

where Xn,i, ∀i = 1, . . . 2m are Gaussian RVs with mean μ and variance
( 1
2m
)
. Here, m is

a half-integer representing the fading parameter that controls the shape of the pdf in the
fading model. The nth component of z can be obtained by generating anN×2mmatrix of
Gaussian RVs,B, whose entries are bn,i and whosemth column is denoted as bm, such that
B = [b1, . . . ,b2m]. We obtain the vector b = [

bT1 , . . . ,bT2m
]T = [

b1,1, b2,1, . . . , bn,2m
]T .

We can, therefore, express the fading amplitude over the nth branch as

zn =
√√√√ 2m∑

i=1
b2n,i; ∀n = 1, . . .N (13)

such that b2n,i = γ̄nX2
n,i.

The pdf of b is expressed as

fb(b) = 1√
(2π)2mN |Rb|

× exp
(

−1
2
(
b − μb

)TR−1
b
(
b − μb

))
(14)

where μb is the 2mN × 1 mean vector and Rb is the 2mN × 2mN covariance matrix
of b. The variances of the LOS and non-LOS components are defined as σ 2

L,n = ∣∣μb,n
∣∣2

and σ 2
NL,n = E

[∣∣bn − μb,n
∣∣2], respectively, where |·| denotes magnitude and E [·] denotes

expectation. TheK-factor for the BX fading channel is therefore defined asK = σ 2
L,n

σ 2
NL,n

. The
determinant of the covariance matrix Rb is expressed in terms of the correlation matrix

Cb by |Rb| =
( N∏
n=1

γ̄ 2m
n

)
|Cb|

(2m)2mN [17]. This new fading model has the diversity ordermN which
is the same as that of the Nakagami-m fading model, for the same value of m, but the
former predicts improved performance for channels possessing LOS components [1].

5 Relationship between the power correlation and Gaussian correlation
coefficient

As shown in [16], the correlation coefficient between RVs Xn,i and Xj,k with mean μ and
variance 1

2m is obtained by employing the Cholesky decomposition. It can be shown that
Xn,i = ρ(n,i)(j,k)Xj,k +

√
1 − ρ2

(n,i)(j,k)W , where ρ(n,i)(j,k) is the correlation coefficient and

W is a Gaussian RV with zero mean and variance 1
2m , which is independent of Xj,k . This
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leads to a relationship between the power correlation coefficient, ρz2n1 z2n2 , and correlation
coefficient of the Gaussian RVs, ρ(n,i)(j,k), according to

ρz2n1 z
2
n2

= D − (2m)2T2

(2 + 2m)U − (2m)2T2 (15)

where

D =
2m∑
i=1

2m∑
k=1

(
3U2ρ2

(n,i)(j,k) + T2
(
1 − ρ2

(n,i)(j,k)

))
,

T = 1
2m + μ2, and U = 1

2m . A special case can be obtained when μ = 0 such that

ρz2n1 z
2
n2

= 1
2m

2m∑
i=1

2m∑
k=1

ρ2
(n,i)(j,k) (16)

which is the same as the one obtained for the Nakagami-m fading model in [17], as
expected.

6 Bounds to the pdf
Here, we show that the pdf of b is bounded in the region bTb ≤ r2, which is a 2mN-
dimensional sphere with radius r. A Rayleigh quotient is applied, such that Ry

(
R−1
b ,b

)
=

bTR−1
b b

bTb , where Rb is a positive definite matrix. The numerical range of Ry is obtained as

λmin ≤ bTR−1
b b

bTb ≤ λmax, such that λi are the eigenvalues of R−1
b and λi ≥ 0, where [19]

λmin is the smallest eigenvalue of R−1
b , and λmax is the largest eigenvalue of R−1

b . Thus,
considering the region bTb ≤ r2, we take λmin = 0 to give

0 ≤ bTR−1
b b ≤ λmaxbTb. (17)

We expand the exponential component with the knowledge thatR−1
b

T = R−1
b ; this gives

(b − μb)
TR−1

b (b − μb) = bTR−1
b b + μb

TR−1
b μb + 2

∣∣∣μb
TR−1

b b
∣∣∣ . (18)

We employ the 2-norm of the matrix as ‖b‖ = √
bTb = r, such that (18) becomes

− 2
∥∥∥μb

TR−1
b

∥∥∥ r + μb
TR−1

b μb
T

≤ (b − μb
)TR−1

b
(
b − μb

)

≤ λmaxr2 + 2
∥∥∥μb

TR−1
b

∥∥∥ r + μb
TR−1

b μb
T . (19)

The upper and lower bounds of fb(b) near the origin are then obtained as

fb (0) exp
(

−1
2

(
λmaxr2 + 2

∥∥∥μb
TR−1

b

∥∥∥ r
))

≤ fb (b) ≤ fb (0) exp
(∥∥∥μb

TR−1
b

∥∥∥ r
)
. (20)

7 Performance bounds to outage probability
The OP and error rate of diversity combining schemes are two important performance
metrics that can be used to quantify the effects of correlated fading. We analyze the per-
formance of this new fading model here with arbitrary channel correlation by computing
the bounds according to [17]. Here, we set an SNR threshold, γth, below which we declare
occurrences of outage.
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7.1 Outage probability bounds for MRC

We express the OP for MRC with respect to a signal threshold, γth, as

PMRC
o (γth) = Pr {γMRC ≤ γth} . (21)

Substituting (12) into (11a) and then substituting the result into (21) leads to

PMRC
o (γth) = Pr

{ N∑
n=1

2m∑
i=1

b2n,i ≤ γth

}

=
∫

γMRC≤γth

fb (b)db. (22)

It should be noted that the above integral is a 2mN-fold integral, but for notational
simplicity, it is expressed with just one integral sign.

7.1.1 Asymptotic outage probability approximation for MRC

The asymptotic OP approximation is obtained by substituting fb (b) ≈ fb (0) into (22),
where

fb(0) = 1√
(2π)2 mN |Rb|

exp
(

−1
2
μTR−1

b μb

)

and simplifying to give

PMRC
o,∞ (γth) = fb (0)

∫

γMRC≤γth

db (23)

where γMRC =
N∑

n=1

2m∑
i=1

b2n,i. The integral in (23) is the volume of a 2mN dimensional sphere

with a radius of r = √
γth. Ultimately, Eq. (23) can be expressed as

PMRC
o,∞ (γth) = fb (0)

(
2√γth

)2 mN+1
πmN	 (mN + 1)

(2 mN + 1) !
. (24)

7.1.2 Lower bound outage probability for MRC

The lower bound to the OP is obtained by replacing fb (0) with the lower bound of the
pdf obtained in (20) into (23). Substituting the result into (23) gives

PMRC
o,LM (γth) = OLM

∫

γMRC≤γth

db (25)

where

OLM = fb × (0) exp
(

−1
2

(
λmaxγth + 2

∥∥∥μb
TR−1

b

∥∥∥√
γth
))

.

Eq. 25 can be further simplified to

PMRC
o,LB (γth) = OLM ×

[(
2√γth

)(2mN+1)
πmN	 (mN + 1)

(2mN + 1) !

]
. (26)

7.1.3 Upper bound outage probability for MRC

The upper bound to the OP is obtained by replacing fb (0) with the upper bound of the
pdf obtained in (20) and by substituting the result into (23). This gives

PMRC
o,UB (γth) = OUM

∫

γMRC≤γth

db (27)
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where OUM = fb (0) exp
(∥∥∥μb

TR−1
b

∥∥∥√
γth
)
. Eq. 27 is further simplified to

PMRC
o,UB (γth) = OUM ×

[(
2√γth

)(2 mN+1)
πmN	 (mN + 1)

(2 mN + 1) !

]
. (28)

We compare the results obtained in (24), (26), and (28), observing that OLM ≤ fb(b) ≤
OUM, which is the same as (20). It is seen that the difference between the bounds lies in the
exponential component of the equations. An increase to the average SNR per branch leads
to the lower and upper bounds of the OP converging to the asymptotic approximation.

7.2 Outage probability bounds for EGC

We express the OP for EGC with respect to a signal threshold, γth, as

PEGC
o (γth) = Pr {γEGC ≤ γth} . (29)

Substituting (12) into (11b) and then substituting the result into (29) gives

PEGC
o (γth) = Pr

⎧
⎪⎨
⎪⎩

1
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2

≤ γth

⎫
⎪⎬
⎪⎭

=
∫

γEGC≤γth

fb (b)db. (30)

7.2.1 Asymptotic outage probability approximation for EGC

The asymptotic OP approximation is obtained by substituting fb (b) ≈ fb (0) in (30) and
simplifying to give

PEGC
o,∞ (γth) = fb (0)

∫

γEGC≤γth

db (31)

where γEGC = 1
N

(
N∑

n=1

√
2m∑
i=1

b2n,i

)2

. The integral in (31) is obtained as [17]

∫

γEGC≤γth

db =
(

2mπm

	 (m + 1)

)N
	N (2m)

(2mN)
(Nγth)

mN. (32)

This result in (32) is substituted into (31) to give the asymptotic OP approximation as

PEGC
o,∞ (γth) = fb (0)

(
2mπm

	 (m + 1)

)N
	N (2m)

(2 mN)
(Nγth)

mN. (33)

7.2.2 Lower bound outage probability for EGC

We compare the integral region for EGC to that of MRC. These integral regions can be
expressed as

IREGC (r) 
=
{
1
N

N∑
n=1

2m∑
i=1

b2n,i ≤ r2
}

and

IRMRC (r) 
=
{ N∑
n=1

2m∑
i=1

b2n,i ≤ r2
}
.
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Note that
N∑

n=1

2m∑
i=1

b2n,i ≤ Nr2 can be derived from 1
N

N∑
n=1

2m∑
i=1

b2n,i ≤ r2. Thus, the integral

region IREGC (r) lies within IRMRC
(√

Nr
)
. We then obtain a bound on the pdf for EGC

by substituting r with
√
Nr in (20) as

fb (0) exp
(

−1
2

(
λmaxNr2 + 2

∥∥∥μb
TR−1

b

∥∥∥
√
Nr
))

≤ fb (b) ≤ fb (0) exp
(∥∥∥μb

TR−1
b

∥∥∥
√
Nr
)

(34)

where r = √
γth. Substituting the lower bound of the result obtained in (34) into (31), the

lower bound OP for EGC is obtained as

PEGC
o,LB (γth) = OLE ×

∫

γEGC≤γth

db (35)

where

OLE = fb (0) × exp
(

−1
2

(
λmaxNγth + 2

∥∥∥μb
TR−1

b

∥∥∥
√
Nγth

))
.

This result can be expressed as

PEGC
o,LB (γth) = OLE ×

(
2mπm

	 (m + 1)

)N
	N (2m)

(2 mN)
(Nγth)

mN. (36)

7.2.3 Upper bound outage probability for EGC

The upper bound to the OP of EGC is obtained by replacing fb (0) in (31) by the upper
bound of the pdf in (34), which gives

PEGC
o,UB (γth) = OUE ×

∫

γEGC≤γth

db (37)

where OUE = fb (0) exp
(∥∥∥μb

TR−1
b

∥∥∥√
Nγth

)
. This result can be expressed as

PEGC
o,UB (γth) = OUE ×

(
2mπm

	 (m + 1)

)N
	N (2m)

(2 mN)
(Nγth)

mN. (38)

We compare the results obtained in (33), (36), and (38), observing that OLE ≤ fb(b) ≤
OUE is the same as (34). It is seen again that the difference between the bounds lies
in the exponential components of the equations. An increase to the average SNR per
branch leads to the lower and upper bounds of the OP converging to the asymptotic
approximation, as was found previously.

7.3 Outage probability bounds for SC

We express the OP for SC with respect to a signal threshold, γth, as

PSCo (γth) = Pr {γSC ≤ γth} . (39)

Substituting (12) into (11c) gives

PSCo (γth) = Pr
{
max
n

{ 2m∑
i=1

b2n,i

}
≤ γth

}

=
∫

γSC≤γth

fb (b)db. (40)
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7.3.1 Asymptotic outage probability approximation for SC

The asymptotic OP approximation is obtained by substituting fb (b) ≈ fb (0) into (40) and
simplifying to give

PSCo,∞ (γth) = fb (0)
N∏

n=1

∫

2m∑
i=1

b2n,i≤γth

dbn (41)

where dbn = �N
n=1dbn,i. The integral in (41) is the 2m-dimensional volume of a ball with

a radius of r = √
γth. Ultimately, Eq. (41) can be expressed as

PSCo,∞ (γth) = fb (0) ×
[(

2√γth
)(2m+1)

πm	 (m + 1)
(2m + 1) !

]N
. (42)

7.3.2 Lower bound outage probability for SC

We compare the integral region for SC to that of MRC. These integral regions can be
expressed as

IRSC (r) 
=
{
max
n

{ 2m∑
i=1

b2n,i

}
≤ r2

}

and

IRMRC (r) 
=
{ N∑
n=1

2m∑
i=1

b2n,i ≤ r2
}

where r is the radius. We can therefore bound the 2m-dimensional ball in (41) by the

hypersphere in (23). In addition, we note that
N∑

n=1

2m∑
i=1

b2n,i ≤ Nr can be derived from

max
n

{2m∑
i=1

b2n,i

}
≤ r; therefore, IRSC (r) lies within IRMRC

(√
Nr
)
. Equation 34 is therefore

an applicable bound to SC. Substituting the lower bound of the result obtained in (34)
into (41) gives

PSCo,LB (γth) = OLS

∫

γSC≤γth

db (43)

where

OLS = fb (0) × exp
(

−1
2

(
λmaxNγth + 2

∥∥∥μb
TR−1

b

∥∥∥
√
Nγth

))
.

Equation 43 can be further simplified to

PSCo,LB (γth) = OLS ×
[(

2√γth
)(2m+1)

πm	 (m + 1)
(2m + 1) !

]N
. (44)

7.3.3 Upper bound outage probability for SC

The upper bound to the OP is obtained by replacing fb (0) in (40) with the upper bound
of the pdf obtained in (34). This gives

PSCo,UB (γth) = OUS

∫

γSC≤γth

db (45)



Olutayo et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:97 Page 12 of 26

where OUS = fb (0) exp
(∥∥∥μb

TR−1
b

∥∥∥√
Nγth

)
. Equation 45 is further simplified to

PSCo,UB (γth) = OUS ×
[(

2√γth
)(2m+1)

πm	 (m + 1)
(2m + 1) !

]N
. (46)

We compare the results obtained in (42), (44), and (46), observing that OLS ≤ fb(b) ≤
OUS is the same as (34). It is once again seen that the difference between the bounds
lies in the exponential components of the equations. An increase to the average SNR
per branch leads to the lower and upper bounds of the OP converging to the asymptotic
approximation, as seen previously.

8 Performance bounds to error rate
8.1 Error rate bounds for MRC

We can express the error rate for MRC as

PMRC
e = E

⎡
⎣pQ

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠
⎤
⎦

= p
∞∫

−∞
Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠fb (b) db (47)

where the Gaussian Q-function is defined as [20, 21]

Q (x) = 1√
2π

∞∫

x

exp
(−t2

x

)
dt.

For the special case of coherent binary phase shift keying (BPSK), we have p = 1 and
q = 2.

8.1.1 Asymptotic error rate approximation for MRC

The asymptotic error rate approximation is obtained by substituting fb (b) ≈ fb (0) into
(47) to give

PMRC
e,∞ = pfb (0)

∞∫

−∞
Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db (48)

where the integral in (48) is obtained as [17, 22, 23]

∞∫

−∞
Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db = 2mN−1πmN

qmN√
π

	
(
mN + 1

2
)

	 (mN + 1)
. (49)

Substituting (49) into (48) gives the asymptotic error rate bound as

PMRC
e,∞ = pfb (0)

2mN−1πmN

qmN√
π

	
(
mN + 1

2
)

	 (mN + 1)
. (50)
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8.1.2 Lower error rate bound for MRC

The lower bound to the error rate is obtained by changing the integral region in (48)
according to

PMRC
e = p

∫

RMRC≤R2th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠× fb (b) db (51)

where RMRC =
N∑

n=1

2m∑
i=1

b2n,i. Substituting fb (b) with the lower bound of the pdf in (20) into

(51), where r = Rth, and applying some simplifications, we have

PMRC
e,LB = p × ELM × G (Rth) (52)

where

ELM = fb (0) × exp
(

−1
2

(
λmaxRth

2 + 2
∥∥∥μb

TR−1
b

∥∥∥Rth
))

(53)

and

G (Rth) = πmN

	 (mN + 1)

[
Rth

2 mNQ
(√qRth

)+ 2mN−1

qmN√
π

γ

(
mN + 1

2
,
q
2
Rth

2
)]

(54)

where γ (α, x) =
x∫
0
e−ttα−1dt is the incomplete gamma function [17, 24].

8.1.3 Upper error rate bound for MRC

We obtain the upper bound to the error rate by splitting the integral region in (48)
according to

PMRC
e,UB = p ×

∫

RMRC≤R2th

fb (b)Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db

+ p
∫

RMRC>R2th

fb (b)Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db. (55)

We consider the upper bound of the pdf obtained in (20) such that (55) can be expressed
as [25]

PMRC
e,UB = p × EUM ×

∫

RMRC≤R2th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db

+ pfb
(
μb
) ∫

RMRC>R2th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db (56)

where the first integral in (56) can be simplified as in (54), fb (b) is substituted with the
upper bound in (20) where EUM = fb (0) exp

(∥∥∥μb
TR−1

b

∥∥∥Rth
)
, and fb (b) is substituted

with fb
(
μb
)
obtained as

fb(b) = 1√
(2π)2 mN |Rb|

,
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which is the largest value of fb (b) in the second part of (55). The second integral in (56)
is obtained as

H(Rth) =
∫

RSC>R2th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠ db

{
πmN2mN−1	

(
mN + 1

2
)

	 (mN + 1)
√

πqmN − πmN

	 (mN + 1)

×
[
Rth

2mNQ
(√qRth

)+ 2mN−1
√

πqmN γ

(
mN + 1

2
,
q
2
R2
th

)]}
. (57)

8.2 Error rate bounds for EGC

We can express the error rate for EGC as

PEGC
e = E

⎡
⎢⎢⎣pQ

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠

⎤
⎥⎥⎦

= p
∞∫

−∞
Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠fb (b) db. (58)

8.2.1 Asymptotic error rate approximation of EGC

The asymptotic error rate approximation is obtained by substituting fb (b) ≈ fb (0) in (58)
to give

PEGC
e,∞ = p × fb (0) ×

∞∫

−∞
Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db (59)

where we obtain the integral in (59) according to [11 Eq. (61)]. This is simplified to give

PEGC
e,∞ = pfb (0) × Y (Rth) (60)

where

Y (Rth) =
(

2mπm

	 (m + 1)

)N (
	N (2m)

	 (2mN)

)
×
(
NmN2mN−2
√

πmNqmN	

(
mN + 1

2

))
. (61)

8.2.2 Lower Error Rate Bound for EGC

The lower bound to the error rate is obtained by changing the integral bound in (59) as

PEGC
e = p ×

∫

REGC≤R2th

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠× fb (b) db (62)

where REGC =
√√√√ q

N

(
N∑

n=1

√
2m∑
i=1

b2n,i

)2

. Substituting fb (b) with the lower bound of the pdf

in (34) into (62), where r = Rth, and simplifying gives

PEGC
e,LB = pfb (0) × ELE × W (Rth) (63)

where

ELE = fb (0) exp
(

−1
2

(
λmaxNRth

2+2
∥∥∥μb

TR−1
b

∥∥∥
√
NRth

))
(64)
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and

W (Rth) =
(

2mπm

	 (m + 1)

)N
×
(

	N (2m)

	 (2 mN)

)
×
[(

2mN−2NmN
√

πmNqmN γ

(
mN + 1

2
,
q
2
Rth

2
)

+Q
(√qRth

) Rth
2 mNNmN

2 mN

)]
. (65)

8.2.3 Upper error rate bound for EGC

The upper error rate bound is obtained by splitting the integral region in (58) according to

PEGC
e,UB = p

∫

REGC≤R2th

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠× fb (b) db

+ p
∫

REGC>R2th

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠× fb (b) db. (66)

We substitute fb (b) with the upper bound of the pdf in (20), for the first part, and fb (b)

with fb
(
μb
)
, which is the largest value of fb (b) for the second part. This gives

PEGC
e,UB = p × EUE ×

∫

REGC≤R2th

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db

+ pfb (μb) ×
∫

REGC>Rth2

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db

︸ ︷︷ ︸
I(μb)

(67)

where EUE = fb (μb) (0) exp
(∥∥∥μb

TR−1
b

∥∥∥√
NRth

)
. The first integral above is simplified as

in (54), and the second integral is simplified as

I
(
μb
) =

∞∫

−∞
Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ db −

∫

REGC≤R2th

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠db.

(68)

After some mathematical manipulation, Eq. (68) is further simplified to give

∫

REGC≤R2th

Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ db ≥

∫

REGC≤R2th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠ db, (69)

and then

=
∞∫

−∞
Q

⎛
⎜⎜⎝

√√√√√ q
N

⎛
⎝

N∑
n=1

√√√√ 2m∑
i=1

b2n,i

⎞
⎠

2
⎞
⎟⎟⎠ db −

∫

REGC≤R2th

Q

⎛
⎝
√√√√q

N∑
n=1

2m∑
i=1

b2n,i

⎞
⎠db. (70)
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Ultimately, Eq. (68) can be expressed as

Z(Rth) = Y (Rth) − πmN

	 (mN + 1)
×
[
R2mN
th Q

(√qRth
)+ 2mN−1

√
πqmN γ

(
mN + 1

2
,
q
2
R2
th

)]
.

(71)

Substituting (65) and (71) into (67) gives the upper error rate bound for EGC.

8.3 Error rate bounds for SC

We can express the error rate for SC as

PSCe = E

⎡
⎣pQ

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠
⎤
⎦

= p
∞∫

−∞
Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠fb (b) db. (72)

8.3.1 Asymptotic error rate approximation for SC

The asymptotic error rate approximation is obtained by substituting fb (b) ≈ fb (0) into
(72) to give

PSCe = pfb (0)
∞∫

−∞
Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠db (73)

which can be simplified to [17, 26]

PSCe,∞ = pfb (0)
2mN−1πmN	

(
mN + 1

2
)

qmN√
π	N (m + 1)

. (74)

8.3.2 Lower error rate bound for SC

The lower bound of the error rate is obtained by changing the integral region in (72)
according to

PSCe = p
∫

RSC≤R2th

Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠× fb (b) db (75)

where RSC = max
n

{2m∑
i=1

b2n,i

}
. Substituting fb (b) with the lower bound of the pdf in (34)

into (75), where r = Rth, and simplifying gives

PSCe,LB = p × ELS × S (Rth) (76)

where

ELS = fb (0) exp
(

−1
2

(
λmaxNRth

2+2
∥∥∥μb

TR−1
b

∥∥∥
√
NRth

))
(77)

and

S (Rth) = πmN

	N (m + 1)

(
Rth

2mNQ
(√qRth

)+ 2mN−1

qmN√
π

γ

(
2mN + 1

2
,
q
2
Rth

2
))

. (78)
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8.3.3 Upper error rate bound for SC

The upper error rate bound is obtained by splitting the integral region in (72) according to

PSCe,UB = p
∫

RSC≤R2th

Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠ fb (b) db

+ p
∫

RSC>R2th

Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠ fb (b) db. (79)

We consider the upper bound of the pdf obtained in (34) such that (79) can be expressed
as

PSCe,UB = p × EUB
∫

RSC≤R2th

Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠ db

+ pfb
(
μb
) ∫

RSC>R2th

Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠ db (80)

where the first integral is simplified as in (78) and EUB = fb (0) exp
(∥∥∥μb

TR−1
b

∥∥∥√
NRth

)
.

The second integral is obtained as

Fig. 1 OP curves for the asymptotic approximation, lower bound, and upper bound for MRC, SC, and EGC
over correlated BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structure is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.35;

√
0.35, 1

]
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V (Rth) =
∫

RSC>R2th

Q

⎛
⎝
√√√√qmax

n

{ 2m∑
i=1

b2n,i

}⎞
⎠ db =

{
πmN2mN−1

qmN√
π

	
(
mN + 1

2
)

	N (m + 1)

− πmN

	N (m + 1)

[
R2mN
th Q

(√qRth
)+ 2mN−1

qmN√
π

γ

(
mN + 1

2
,
q
2
R2
th

)]}
. (81)

The upper error rate bound for SC is obtained by substituting (78) and (81) into (80).

9 Discussion on the tightness of the bounds
9.1 Tightness of the outage probability bound

We consider the exponential component of the lower bounds of the OP for MRC, EGC,
and SC, in (26), (36), and (44), respectively, and also that of the upper bound shown in (28),
(38), and (46), respectively. Comparing the asymptotic approximations, the lower and the
upper bounds of each of the diversity combining schemes, it is seen that the difference
lies in the exponential components of each of the expressions. We note that an increase to
the average SNR per branch by a factor P results in an increase in the covariance matrix
Rb and eventually a decrease in R−1

b by the same factor. This leads to a decrease in the
value of λmax (which is the largest eigenvalue of R−1

b ) by that same factor, i.e.,λmax
P . With

this in mind, we can express the limit of the ratio of lower bound OP to the upper bound
OP as P tends to infinity as

Fig. 2 OP curves for the asymptotic approximation, lower bound, and upper bound for MRC over correlated
and independent BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structure is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.35;

√
0.35, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for correlation and independence,

respectively
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lim
P→∞

Po,LB (γth)

Po,UB (γth)
=

exp
(

− 1
2

(
λmaxγth

P + 2
∥∥∥∥

μT
b R

−1
b

P

∥∥∥∥
√

γth

))

exp
(∥∥∥∥

μT
b R

−1
b

P

∥∥∥∥
√

γth

) . (82)

Equation 82 shows that the lower and upper bounds of the OP converge to the asymp-
totic approximation as the SNR approaches infinity. This property is highly desirable.

9.2 Tightness of the error rate bound

Given the definition of the incomplete gamma function

	 (s) = lim
x→∞ γ (s, x) (83)

and the Chernoff bound of the Q-function [20, 27]

Q (x) ≤ e−
x2
2 , x > 0 (84)

we apply these definitions to G(Rth), H(Rth), W (Rth), Z(Rth), S(Rth), and V (Rth) in (54),
(49), (65), (71), (78), and (81), respectively, to show the tightness of the bit-error rate (BER)
bounds, according to

Fig. 3 OP curves for the asymptotic approximation, lower bound, and upper bound for SC over correlated
and independent BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structure is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.35;

√
0.35, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for the correlated and independent

cases, respectively
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lim
Rth→∞G(Rth) = 2mN−1πmN

qmN√
π

	
(
mN + 1

2
)

	 (mN + 1)
(85)

lim
Rth→∞H(Rth) = 0 (86)

lim
Rth→∞W (Rth) = Y (Rth) (87)

lim
Rth→∞Z(Rth) = Y (Rth) − πmN− 1

2

	 (mN + 1)
×
[
2mN−1

qmN 	

(
mN + 1

2

)]
(88)

lim
Rth→∞ S(Rth) = 2mN−1πmN

qmN√
π

	
(
mN + 1

2
)

	N (m + 1)
(89)

lim
Rth→∞V (Rth) = 0. (90)

We then consider the exponential component, where we see that an increase in the
average SNR per branch by a factor P results in an increase in the covariance matrix Rb.

Fig. 4 OP curves for the asymptotic approximation, lower bound, and upper bound for EGC over correlated
and independent BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structure is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.8;

√
0.8, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for correlated and independent cases,

respectively
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Fig. 5 BER curves for the asymptotic approximation, lower bound, and upper bound for MRC, SC, and EGC,
over correlated BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structure is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.4;

√
0.4, 1

]

Fig. 6 BER curves for the asymptotic approximation, lower bound, and upper bound for MRC, SC, and EGC,
over correlated BX fading channels. The number of branches is N = 3, the fading parameter ism = 1.5, and
the correlation structure is Cb = [C1, 03×3, 03×3; 03×3,C2, 03×3; 03×3, 03×3,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.4,

√
0.2;

√
0.4, 1,

√
0.4;

√
0.2,

√
0.4, 1

]
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This leads to a decrease in R−1
b and eventually a decrease in λmax by the same factor P.

Thus, we find the limit to be

lim
P→∞

Pe,LB
Pe,UB

=
exp

(
− 1

2

(
λmaxR2th

P + 2
∥∥∥∥

μT
b R

−1
b

P

∥∥∥∥Rth

))

exp
(∥∥∥∥

μT
b R

−1
b

P

∥∥∥∥Rth

) . (91)

Expressing Rth in terms of P, i.e., Rth = √
P, gives

lim
P→∞

Pe,LB
Pe,UB

=
exp

(
− 1

2

(
λmaxR2th

P + 2
∥∥∥∥

μT
b R

−1
b

P

∥∥∥∥
√
P
))

exp
(∥∥∥∥

μT
b R

−1
b

P

∥∥∥∥
√
P
) . (92)

This property is highly desirable.

10 Numerical results
Figure 1 shows a comparison of OP curves forMRC, SC, and EGC for a 2-branch diversity
system over correlated BX fading channels with coherent BPSK modulation and a fading
parameter of m = 1.5. Correlation structure of the form Cb = [C1, 02×2, 02×2; 02×2,C2;
02×2, 02×2, 02×2,C3] , where C1 = C2 = C3 =

[
1,

√
0.35;

√
0.35, 1

]
, is considered. The

lower and upper bounds converge to the asymptotic approximation and simulated OPs
at high SNR. It is observed that the OPs of MRC and EGC are close to each other unlike

Fig. 7 BER curves for the asymptotic approximation, lower bound, and upper bound for MRC, over correlated
and independent BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structures is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.4;

√
0.4, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for correlated and independent cases,

respectively
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MRC and SC. This is largely due to the factor contributed by the integral in (23), (31),
and (41).
Figures 2, 3, and 4 show a comparison of OP curves of MRC, SC, and EGC, respectively,

for a 2-branch diversity system over correlated and independent BX fading channels with
coherent BPSK modulation and a fading parameter of m = 1.5. Correlation structure of
the form Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3], where C1 = C2 = C3 =[
1,

√
0.35;

√
0.35, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1], is considered for correlation and

independence, respectively. The independent channels outperform the correlated chan-
nels, as expected. The effect of correlation is seen on the rate of convergence exhibited by
the three combining techniques.
Figure 5 shows a comparison of BER curves for MRC, SC, and EGC for a 2-branch

diversity system over correlated BX fading channels with coherent BPSK modulation and
a fading parameter ofm = 1.5 with a correlation matrix of the formCb = [C1, 02×2, 02×2;
02×2,C2, 02×2; 02×2, 02×2,C3], where C1 = C2 = C3 =

[
1,

√
0.4;

√
0.4, 1

]
. The lower and

upper bounds again converge to the asymptotic approximation at high SNR. It is seen that
the BERs for MRC and EGC are close to each other, differing by at most 3 dB.
Figure 6 shows a comparison of BER curves for MRC, SC, and EGC for a 3-branch

diversity system over correlated BX fading channels with coherent BPSK modula-
tion and a fading parameter of m = 1.5 with a correlation matrix of the form
Cb = [C1, 03×3, 03×3; 03×3,C2, 03×3; 03×3, 03×3,C3], where C1 = C2 = C3 =[
1,

√
0.4,

√
0.2;

√
0.4, 1,

√
0.4;

√
0.2,

√
0.4, 1

]
. The bounds are seen to be tight at high SNR.

Fig. 8 BER curves for the asymptotic approximation, lower bound, and upper bound for SC, over correlated
and independent BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structures is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.4;

√
0.4, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for correlated and independent cases,

respectively



Olutayo et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:97 Page 24 of 26

It is observed that the BERs for MRC and EGC are again close to each other, differing by
at most 3 dB in SNR.
Figures 7, 8, and 9 show a comparison of BER curves for MRC, SC, and EGC, for

a 2-branch diversity system over correlated and independent BX fading channels with
coherent BPSK modulation and a fading parameter of m = 1.5 with a correlation matrix
of the form Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3], where [C1 = C2 =
C3 =

[
1,

√
0.4;

√
0.4, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] for correlated and independent

cases. The performance improves when the channels are independent. The effect of the
correlation matrix is also seen in the rate of convergence of the bounds, i.e., the higher
the determinant of Cb (signifying greater independence between channels), the faster the
rate of convergence.
Our general results can be formulated into the special case of the Nakagami-m fading

model, with μ = 0, the results of which are shown in [17]. The relationship between
the power correlation coefficients and associated Gaussian correlation coefficients when
μ = 0 is obtained in Section 3. We also compare the bound on the pdf of the channel
coefficient obtained in (20) when μ = 0 to the result obtained in [17], such that (20)
becomes

fb (0) exp
(

−1
2
λmaxr

)
≤ fb (b) ≤ fb (0) . (93)

This leads to the following insights.

Fig. 9 BER curves for the asymptotic approximation, lower bound, and upper bound for EGC, over correlated
and independent BX fading channels. The number of branches is N = 2, the fading parameter ism = 1.5, and
the correlation structures is Cb = [C1, 02×2, 02×2; 02×2,C2, 02×2; 02×2, 02×2,C3

]
, where

C1 = C2 = C3 =
[
1,

√
0.4;

√
0.4, 1

]
and C1 = C2 = C3 = [1, 0; 0, 1] are for correlated and independent cases,

respectively
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• The asymptotic approximation and the upper bound of the outage probabilities and
error rates are the same for the combining schemes under consideration, which agree
with the conclusions in [17].

• The results here differ from the results in [17] in that this analysis for the new fading
channel include multiple LOS and non-LOS components and can be suitable for
environments without LOS components when μ = 0.

• The expressions for the pdf bounds in (83) are the same as the pdf bound obtained in
[17].

• Our results bring about meaningful comparison between the BX and
abovementioned fading models.

11 Conclusion
In this work, we derived asymptotically tight lower and upper bounds for the OP and
BER of correlated BX fading channels. The effects of certain channel characteristics (e.g.,
presence of LOS components, diversity combining techniques, and channel correlation)
were observed on the performance of the communication system. The special case of our
results in the absence of LOS components agrees with those obtained for the Nakagami-m
fading model in [17], which confirms the accuracy and reproducibility of our work. Ulti-
mately, our results show the accuracy of the BX fading model in characterizing wireless
communication environments with both LOS and non-LOS components.
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