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Abstract
Feature dimension reduction in the community detection is an important research
topic in complex networks and has attracted many research efforts in recent years.
However, most of existing algorithms developed for this purpose take advantage of
classical mechanisms, which may be long experimental, time-consuming, and
ineffective for complex networks. To this purpose, a novel deep sparse autoencoder for
community detection, named DSACD, is proposed in this paper. In DSACD, a similarity
matrix is constructed to reveal the indirect connections between nodes and a deep
sparse automatic encoder based on unsupervised learning is designed to reduce the
dimension and extract the feature structure of complex networks. During the process
of back propagation, L-BFGS avoid the calculation of Hessian matrix which can increase
the calculation speed. The performance of DSACD is validated on synthetic and
real-world networks. Experimental results demonstrate the effectiveness of DSACD and
the systematic comparisons with four algorithms confirm a significant improvement in
terms of three index Fsame, NMI, and modularity Q. Finally, these achieved received
signal strength indication (RSSI) data set can be aggregated into 64 correct
communities, which further confirms its usability in indoor location systems.
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1 Introduction
Community detection has a great significance to the study of complicated systems and
our daily life; meanwhile, it is also one of the important methods for understanding many
network structures in the real world. In the network, community structure implies some
nodes in the network that are closely connected with each other, but sparsely connected
with other nodes. Community detection divides nodes into a module in the graph, so that
the inner side numbers of the module is larger than the edge numbers between modules
with the topological structure of graphs as the source of information [1, 2].
At present, a variety of community detection algorithms have been proposed explore

the community structure of complex networks.
The community mining method LPA [3] based on label propagation was proposed in

2007. It counts the labels of adjacent nodes of each node, and the highest frequency label
is used as the new label of the node. The LPA is still a classic algorithm because it can
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process large networks for its linear running time to network size, and the propagation of
labels also avoids predefine the community number. In addition, the LPA allows a vertex
to carry multiple labels [4] .The LPA is particularly suitable for large social networks with
complex and overlapping communities [5]. There are many improved LPA that appears,
such as a new LPA parallelization scheme from a different perspective [5], the local affinity
propagation (LAP) algorithm with near-linear time, and space complexities [6].
Classical clustering algorithms such as K-means are basic methods to solve the com-

munity discovery problem [7]. The speed of classical algorithms is fast enough, but their
accuracy and stability need to be improved. When a similarity matrix is generated, only
neighbor nodes are taken into account, and the related nodes are not included in the
scope of consideration. The large scale of social networks poses challenges from the view-
point of clustering methods. The high-dimensional similarity matrix in the network will
aggravate the decline of accuracy.
Deep learning is about learning multiple levels of representation and abstraction that

help to make sense of data such as images, sound, and text. Deep learning has shown
how hierarchies of features can be learned in an unsupervised manner directly from data.
The idea is to learn the representation of data at different levels or aspects through a
computational model with multi-layer networks [8–10].
The application of deep learning algorithm has developed rapidly, such as driverless,

biological information, and community detection, which displays excellent adaptability
and practicability.
Chi-Hua Chen [11] proposed a deep learningmodel with generalization performance to

obtain probability density function from the cumulative distribution function-based real
data, which can be produced to improve further analyses with game theory or queueing
theory. He [12] also proposed a cell probe-based method to analyze the cellular network
signals and trained regression models for vehicle speed estimation, which is effective for
cellular floating vehicle data.
In 2017, Shang et al. proposed the community detection algorithm based on deep sparse

autoencoder (CoDDA) algorithm [13] that reduced the dimension of the network simi-
larity matrix by establishing a deep sparse autoencoder. The lower dimension matrix with
more obvious community structure was obtained. Finally, the K-means algorithm was
used to cluster, and results with higher accuracy were obtained.
A recursive form is common in back propagation (BP) algorithm. The essence of the BP

process is to minimize the reconstruction error, which can be classified as optimization
problem [14–17]. The problem is generally solved by using nonlinear optimization meth-
ods which include gradient descent method [18], nonlinear conjugate gradient method
[19], and quasi-Newton method. Each step of the calculation process of quasi Newton
method only involves the calculation of function value and function gradient value; in this
way, Hessian matrix calculation problem in other gradient descent method is effectively
avoided [20].
Location-based services (LBS) make the wireless content industry develop to be close

with public market application. WiFi is the common positioning signals in location
-based services (LBS) [21, 22], and the signal intensity or spacetime attributes are com-
bined with positioning algorithms to form the position technology [23]. Recently, Wi-Fi
finger-printing positioning method often combines deep learning methods to improve
the accuracy of classical KNN for indoor positioning [24].
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Based on the deep sparse autoencoder and quasi-Newton method, we construct a com-
munity detection architecture, which improves the information loss in high-dimensional
reduction. The proven architecture-DSACD first reduces the dimension of the high-
dimensional matrix and then realizes community discovery by a deep sparse autoencoder.
DSACD also improves the accuracy of K-means algorithm. In the application, the real
community data sets for LBS are trained by the deep sparse autoencoder and optimized
by the quasi-Newton method. The time loss in the process of community discov-
ery is reduced to improve the efficiency of the algorithm; meanwhile, the accuracy is
guaranteed.
The rest of this paper is organized as follows: Section 2 explains the proper nouns and

algorithms appearing. In Section 3, the experimental process are introduced. DSACD
performs confirmatory experiments through multiple experimental sets, including sev-
eral parameter experiments to optimize the algorithm. The results of the experiment
were evaluated by citing several evaluation criteria. Section 4 gives results discussion and
an application. In Section 5, we consider the idea of future development based on these
results.

• We construct a deep sparse autoencoder with L-BFGS method for community
detection to accelerate the process of clustering community structures in large data
set.

• In DSACD, a similarity matrix is constructed to show the indirect connections
between nodes, a deep sparse automatic encoder is constructed with L-BFGS
algorithm based on unsupervised learning to reduce the dimension and extract the
feature structure of the network, and comparison experiments with four algorithms
show a significant improvement in terms of three index Fsame, NMI, and modularity
Q of DSACD.

• We creatively design community detection experiments—a location-based service
networks. The results show that DSACD can divide the partition into 64
communities which can prove its practicability.

2 Preliminaries
The definitions of DSACD studied in this paper are given as follows.

2.1 Matrix preprocessing

LetG = (V ,E) be the graph, where V = v1, v2, ..., vn represents the set of nodes (vertices)
in the graph and E represents the set of edges in the figure. Let N(u) be the neighbor
nodes set of node u. Let matrix A =[aij]n×n be the adjacency matrix of graph G, and the
corresponding elements of the matrix represent whether there are edges between two
points in graph G. For example, aij equals 1 indicates that there exists an eij. If aij equals
0, the indication is that there is no eij.
In the small graph, the adjacency matrix A can directly calculate the community rela-

tionship in the graph using a clustering algorithm such as K-means, and the result is more
accurate (see Section 3). However, the adjacency matrix records only the relationship
between adjacent nodes, and does not express the relationship between the node and its
neighbors, or even more distant nodes. For any two nodes in the community, even if they
are not connected to each other, it is possible to have the same community. Therefore,
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if the adjacency matrix is directly used as the similarity matrix for community partition-
ing, the complete community relationship cannot be reflected. If the adjacency matrix is
directly clustered, the information will be lost.
In this paper, on the premise of definition: the similarity matrix which can express the

non-adjacent information matrix is calculated by transforming the adjacency . Based on
this, the definitions are given as follows.

Definition 1 Let a network graph be G = (V ,E) for ∀v ∈ V. If the number of the shortest
path from the node vi to another node vj is s, then, the node vi can jump to node vj through
s hops. That is, hop is the number of least traversed edges from the node vi to vj.

As shown in the network of Fig. 1, node v1 reaches v2, v3, or v6 after one hop and arrives
at v4 or v5 after two hops. For an instance, from v1 → v2, the number of least traversed
edges is 1, so the hop count is 1; from v1 → v5, the number of least traversed edges is 2,
and the hop count is 2.

Definition 2 In G = (V ,E), the similarity between two points vi and vj is defined as
formula 1:

Sim(i, j) = eτ(1−s), s ≥ 1, τ ∈ (0, 1) (1)

where the hop number from vi to vj, and τ is the attenuation factor. The node similarity
decreases with the increase in the hop threshold s, τ controls the attenuation rate of the sim-
ilarity, and the velocity of the node similarity relationship decays faster with the increase
in τ .

Definition 3 In G = (V ,E), its (similarity matrix) S =[ sij]n×n is calculated by the
node similarity between two points in G where sij = Sim(vi, vj), vi, vj ∈ V.

The similarity matrix obtained by processing the adjacencymatrix by the hop count and
the attenuation factor can better reflect the relationship between the distant nodes in the
high-dimensional matrix, and the results of the community discovery are also improved.

Fig. 1 Small network schematic



Fei et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:91 Page 5 of 25

Fig. 2 Deep sparse autoencoder structure

Obviously, the selection of the hop count threshold and the attenuation factor will have
an important impact on the similarity matrix. The selection of hop count is obtained
from the parameter learning process, which is explained at Section 3.6. Section 3 of this
paper will set up experiments on these two parameters to explore the impact of different
parameters on the results.

2.2 Deep sparse autoencoder

Based on a sparse autoencoder, the structure of deep sparse autoencoder is shown in
Fig. 2.
The output of the previous layer, that is, the code h after dimension reduction, is shown

in Fig. 2, as the input of the next layer. Then, the dimensions are reduced one by one.
Autoencoder [25] is an unsupervised learning artificial neural network that can learn

the efficient encoding of data to express the eigenvalues of the data. The typical usage of
the AE is to reduce dimensionality.

Definition 4 As shown in Figs. 3 and 4, given an unlabeled data set {x(i)}mi=1, the auto-
matic encoder learns the nonlinear code through a two-layer neural network (input layer

Fig. 3 Structure of the automatic encoder
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Fig. 4 Process of the automatic encoder

is not counted) to express the original data, the [25] training process uses the back propa-
gation algorithm, and the sign of the end of the training is that the difference between the
learned nonlinear code and the original data is minimized.

The automatic encoder is composed of two parts: the coder (encode) and the decoder
(decode). The encoding process is from the input layer to the hidden layer. At this time,
the input data are subjected to dimensionality reduction to form a code, which is encoded
as the output of the encoder, and then, the code is used as an input of the decoder
for decoding, and the decoded result has the same dimension as the input data, used
as the output of the decoder. After the output result is obtained, the output result is
compared with the input result, the reconstruction errors are calculated, and then, the
back-propagation algorithm is used to adjust the weight matrix of the automatic encoder.
The reconstruction errors are calculated again and iterated continuously until the num-
ber of iterations or the reconstruction errors are less than the specified range. The output
is equal to or close to the input result. The process of training a neural network using a
back-propagation algorithm is also referred to as the minimization of the reconstruction
error. Finally, the output of the encoder, i.e., the encoding, is taken as the output of the
automatic encoder.
Specific steps are as follows:
Let X be the network graph G similarity matrix with dimension n. As the input matrix,

where xi ∈ (0, 1), X ∈ R(n × n). xi ∈ R(n × 1) represents the ith column vector in X,
W1 ∈ R(d × n) is the weight matrix of the input layer [26], and W2 ∈ R(n × d) is the
weight matrix of the hidden layer [27].
b ∈ R(d × 1) is the offset column vector of the hidden layer [27].
c ∈ R(n × 1) is the offset column vector of the input layer [27].
The output h of the coding layer is obtained by formula 2:

hi = τ(W1xi + b) (2)

where hi ∈ R(d×1) is the encoded ith column vector. τ is the activation function, and the
sigmoid function [28] is chosen as the activation function τ , which is shown by formula 3.

f (z) = 1
1 + e−z (3)

In formula 3, z = WTX.
The matrix h obtained at this time is a matrix after dimensionality reduction.
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The output z of the decoding layer is obtained by formula 4:

zi = τ(W2hi + c) (4)

where zi ∈ R(n × 1) is the decoded ith column vector. τ is the activation function. The
resulting matrix z is the same as the X dimension of the input matrix.
Combining the formula 2 with the formula 4, the reconstruction error is obtained:

error =
n∑

i=1
‖τ(W2τ(W1xi + b) + c) − xi‖22 (5)

When the activation function is sigmoid, the mapping range of the neurons is (0, 1).
When the output is close to 1, it is called active, and when the output is close to 0, it
is called inactive [29]. In a sparse autoencoder, sparseness restrictions are added to the
hidden layer. A sparse restriction means that neurons are suppressed most of the time,
that is, the output is close to 0. A sparse expression has been successfully applied to many
applications, such as target recognition [30, 31], speech recognition [32], and behavior
recognition [33]. The sparsity calculation method is as follows:
First, the average value of the output of the coding layer ρ̂j is calculated and hj(x)

denotes the output value of the neuron for the jth neuron (hj) of the hidden layer when
the input is x [34]. The average value of the neuron output in the hidden layer is:

ρ̂j = 1
m

m∑

i=1
[ hj(xi)] (6)

To achieve sparsity, it is necessary to add a sparsity limit, which is achieved by:

ρ̂j = ρ (7)

where ρ is the sparsity parameter, generally, ρ � 1, such as 0.05. When formula 7 is
satisfied, the activation value of the hidden layer neurons is mostly close to 0.
A sparsity limit is added to the reconstruction error, that is, a penalty term is added to

the reconstruction error, and ρ̂j deviating from ρ is punished. The penalty function is as
follows:

d∑

j=1
ρ log

ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(8)

where d represents the number of hidden layer neurons. This formula is based on
Kullback-Leibler divergence (KL [35]), so it can also be written as formula 9:

d∑

j=1
KL(ρ ‖ ρ̂j) (9)

In summary, formula 8 and formula 9 are combined to obtain the following:

KL(ρ ‖ ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(10)

When ρ̂j = ρ, the penalty function KL(ρ ‖ ρ̂j) is 0. When ρ̂j = ρ is far from ρ, the
function monotonically increases and tends to infinity, as shown in Fig. 5:
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Fig. 5 KL divergence function

Therefore, by minimizing the sparse term penalty factor, that is, formula 10, ρ̂j is closed
to ρ. At this point, the reconstruction error is updated to formula 11:

error =
n∑

i=1
‖τ(W2τ(W1xi + b) + c) − xi‖22 + β

d∑

j=1
KL(ρ ‖ ρ̂j) (11)

where β is the weight of the sparse penalty factor.
The training sparse autoencoder minimizes the reconstruction error by the back-

propagation algorithm, that is, formula 11.

2.3 The deep sparse autoencoder for community detection

Based on the deep sparse autoencoder shown in Fig. 2, the data are preprocessed
first, and the similarity matrix S0 ∈ R(n×n) is obtained by formula 1. The similar-
ity matrix is used as the input of the deep sparse autoencoder, then, the number of
layers T of the deep sparse autoencoder is set and the number of nodes per layer
{d0, d1, d2, · · · , dT | d0 = n, d0 > d1 > d2 > · · · > dT }. The similarity matrix S0 ∈ R(n×n)

is input into the sparse autoencoder with the hidden layer as d1 as the input data of
the first layer. After the first layer of training, the dimensioned matrix S1 ∈ R(n×d1)

is obtained, then, S is input into the second layer of the deep sparse autoencoder, and
then, the dimension is reduced to obtain S2 ∈ R(n×d2), etc., until the last layer. The
low-dimensional feature matrix ST ∈ R(n×dT ) is obtained, and finally, the community is
obtained by K-means clustering. See algorithms 1 and 2 for the detailed process.
Algorithm 1 hop count threshold S, attenuation factor σ , and formula 1 are used to

compute the similar degree matrix sim of A ∈ R(n×n). Algorithm 1 is used to obtain the
similarity matrix by computing the similarity of x with other nodes in V.
Algorithm 2 uses the deep sparse autoencoder with L-BFGS in which the layer number

isT to reduce the dimension for a similar degreematrix, and then, the feature is extracted,
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Algorithm 1
Input: adjacency matrix A of the network graph

k - the number of communities
S - the threshold of hops
σ - attenuation factor
T - the layer number of the deep sparse autoencoder
d (vector) - the number of nodes in each layer

Output: similarity matrix
give an adjacency matrix
perform preprocessing of adjacency matrix based on hops
initialize the number of hops between any two endpoints as 1000
initialize am ∗ m similarity matrix sim
for all x ∈ v do

initialize the status used to store the status of each node as the state of not visit
initialize the queue
initialize hop number set D
initialize each hop number of hop number set (matrix) hop as 1000
flag node x as visiting
initialize the hop number of node x itself as 0
write node x and hop number 0 into the hop number set D
push node x into queue

end for
while queue = 0 do

get node u from queue
for all node v in queue U do

if u is in the (S − 1) hop of node x, and the state of v is unvisited then
let v as the state of visiting
write the hop number of v and x to v into the hop number set D
hops from v to v are 0
hops x to v are equal to hops x to u plus 1
push v into queue

end if
end for
set u as the state of end visit

end while
for all v ∈ V do

if hop(x, y) < 1000 then
Sim(x, y) = exp(σ ∗ (1 − hop(x, y)))

else
Sim(x, y) = 0

end if
end for
get the similarity matrix X based on the hop number
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Algorithm 2
Input: sim matrixes
Output: reduced sim matrixs

S1 := Sim
for t ← 1,T do

choose the back-propagation algorithm (CoDDA/ DSACD)
input the characteristic matrix St
minimum the Reconstruction error of formula 11 by the back-propagation algorithm

get the output ht of hidden layer
St+1 = St

end for

and the low-dimensional characteristic matrix ST ∈ R(n×dT ) is obtained. Algorithm2 is
used to reduce the similarity matrix and obtain the characteristics.
The K-means algorithm is used in ST to obtain the cluster result Coms =

{C1,C2, · · · ,Ck} and then return it.
After the K-means algorithm is used, the communities {C1,C2, · · · ,Ck} are obtained,

and then, the result is returned.
In the proposed algorithm, the inputs include the adjacent matrixA ∈ R(n×n) of theG =

(V ,E), k—the number of communities, S—the hop count threshold, σ—the attenuation
factor, and T—the layer number of deep sparse autoencoder and nodes in every layer
dt = {t = 0, 1, 2, · · · ,T | d0 > d1 > · · · > dT }.

3 Experiments and analyses
3.1 Experimental design

Since this experiment is a test of the community detection algorithm, the ground-truth
communities are selected for verification, so that the accuracy of the algorithm can be
analyzed and verified accurately.
The hardware environment of our experiment is as follows: processor Intel Xeon 2.10

GHz E5-2683 v4, memory 64GB 2400 MHz, operating system Windows Server 2012 R2
standard, IDE: MATLAB 2015 (R2015b).
This experiment used four real data sets: Strike [36], Football [37], LiveJournal [38],

and Orkut [39]. Among them, Strike is a 24-striker relationship table on wood process-
ing projects. The frequency of discussion for strike topics between two people is the
rules, which are added. If the frequency is high (there are specific criteria for evaluation
during the investigation, no detailed explanation will be given here), then, a connection
is established. Football is the timetable for the American Football Cup (FBS) held by
the American College Sports Association (NCAA) in 2006. In the NCAA relationship
network, if two teams played games, the connection is established.
LiveJournal is a free online blogging community where users can add friends. LiveJour-

nal can create groups. When collecting community information, the software classifies
it according to cultural background, entertainment preferences, sports, games, lifestyle,
technology, etc.
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Table 1 Data set information

Data set Number of nodes Number of edges Number of communities Average community size

Strike 24 38 3 8

Football 180 788 12 15

LiveJournal 6368 90599 8 796

com-orkut 8929 138690 12 744

Orkut is a social service network launched by Google. Friend relationship and group of
friends can be constructed.
On the social network, nearly 4 million points and 30 million edges were extracted, and

8 communities with the largest number of nodes were selected to conduct experiments
as data sets. Detailed information on each experimental set is shown in Tables 1 and 2.

3.2 Evaluation index

To determine whether the clustering result is accurate, it is necessary to evaluate the
clustering results Coms = {C1,C2, · · · ,Ck}. The evaluation method selects Fsame [3] and
NMI. Both methods are evaluated according to the real community GroundTruth ={
C′
1,C′

2, · · · ,C′
l
}
, in where l is the true number for communities. Moreover, Q [39, 40]

was used to evaluate the quality of the community.
Evaluation standard Fsame:
The community evaluation standard Fsame is obtained by calculating the intersection

of each real community and each cluster community and averaging these values. The
formula is as follows:

Fsame = 1
2n

⎛

⎝
k∑

i=1
max

j

∣∣∣Ci ∩ C′
j

∣∣∣ +
t∑

j=1
max

i

∣∣∣Ci ∩ C′
j

∣∣∣

⎞

⎠ (12)

where in the graph G, the number of nodes is n.
Evaluation standard NMI:
The NMI is the normalized mutual information. The formula is as follows:

NMI(C,C′) =
−2

∑C
i=1

∑C′
j=1Nij log

(
NijN
Ni·N·j

)

∑C
i=1Ni· log

(
Ni·
N

)
+ ∑C′

j=1N·j log
(
N·j
N

) (13)

whereN ∈ R(n×n) is the confusionmatrix, the rows represent the real community, and the
columns represent the communities found. Nij represents the point of overlap between
the real community Ci and the discovery community C′

j . N·j represents the sum of all
the elements in column j, and Ni represents the sum of all the elements in row i. If the
community is found to be in full agreement with the real community [41], the NMI value
is 1. If the community is found to be completely different from the real community, the
NMI value is 0.

Table 2 Number of layers of deep sparse autoencoder in different data sets

Data set Number of nodes Number of layers

Strike 24-16 2

Football 180-128 2

LiveJournal 6368-4096-2048-1024 4

com-orkut 8929-4096-2048-1024-512 5
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Evaluation standard Q:
ModularityQ is a measure of how well a community is found. The formula is as follows:

Q =
k∑

i=1

⎛

⎝Eini
m

−
(
2Eini + Eouti

2m

)2
⎞

⎠ (14)

where Eini is the inner edges number of the community Ci, Eouti is the outer edge number
of the community Ci, andm is the total edge number in the graph G.

3.3 Analysis experiments

The experiment consists of four parts, which are the volatility exploration experiment
based on the DSACD, the comparison experiment with other algorithms, the parameter
experiment, and the visualization experiment. The volatility exploration experiment is
to show the fluctuation of our algorithm on different data sets, which can explain the
stability for our algorithm on large data set. We compare DSACD with CoDDA and K-
means based on three performance evaluation standards as Fsame, NMI, and modularity
Q. For explaining the result of parameter selection, the parameter experiment is given. At
last, we use the visualization experiment to show the clustering results.

3.4 Volatility exploration analysis

According to Algorithm 1, community discovery was performed on the four data sets, and
the results were evaluated using Fsame, NMI, and Q. However, since the selection of the
center point of the K-means algorithm is random, where the weight matrix of neurons in
the hidden layer and the output layer for the depth sparse autoencoder is also initialized by
random numbers, the proposed algorithm is random. To be able to react to the smoothing
of the data, this paper investigated the fluctuation of the data, and the results are displayed
in Fig. 6.
The variance of each data set is shown in Table 3.

Fig. 6 Clustering results for the Strike dataset (left) and the Football dataset (right)
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Table 3 Fluctuation variance of the proposed algorithm

Strike Football

Evaluation standard Fsame NMI Q Fsame NMI Q

variance (unit: 10−3) 6.93 26.46 3.54 0.98 0.96 0.26

By performing 100 experiments on the Strike data set and the Football data set, Fig. 6
and Table 3 show that the clustering results have volatility. Taking the NMI value as an
example, the small data set [36] has a variance of 26.46, and the larger data set [37] has
a variance of 0.96, showing that multiple experiments are needed in small data sets to
reduce the impact of fluctuations. In addition, the variance will decrease with the increase
in the data set. This result also indicates that the algorithm has higher stability on the
large data set, and the repetition number of the different experimental sets can be flexibly
changed.
Table 4 describes the comparison of parametric experimental cluster results. The table

shows that proved deep sparse autoencoder for community detection can significantly
improve the cluster results and quality.

3.5 Algorithm comparison

In this experiment, the K-means algorithm and the similarity matrix were directly clus-
tered, the CoDDA algorithm and the DSACD were compared, and the NMI value was
used for evaluation. The hop count threshold of the CoDDA algorithm, the attenuation
factor, and the value of the deep sparse autoencoder use the optimal values in Table 5.
The Table 6 shows experimental results.
Note: the number of iterations of the Football and Strike datasets is 100, and the number

of iterations of the LiveJournal dataset is 5.
As Table 6 shows, the DSACD has higher cluster accuracy and cluster quality, among

which the selection of back-propagation algorithm, the CoDDA algorithm, and DSACD
algorithm results achieve higher precision, which is consistent with the results of the
paper [25]. To compare the differences, Table 7 lists several error values for the last itera-
tion of the two back-propagation algorithms. The results show that the CoDDA algorithm
reduced the error to 17 in the process of minimizing the reconstruction error, but the
DSACD finally decreases to 7.9. Both algorithms provide better performance.
Finally, the DSACD is compared with the LPA [3] in Table 8. Then, the DSACD is

significantly better than the LPA.
However, due to the characteristics of deep learning, it requires more time during train-

ing, as shown in Table 9. In large data sets, computing time needs to grow exponentially.

Table 4 The comparison of parametric experimental cluster results

Repeat times Fsame NMI Q

Strike (front) 100 0.71 0.14 – 0.01

Strike (after) 100 0.96 0.92 0.51

Football (front) 100 0.67 0.15 0.66

Football (after) 100 0.94 0.92 0.55

LiveJournal (front) 5 0.61 0.01 0.00

LiveJournal (after) 5 0.88 0.82 0.79

com-orkut (front) 5 0.25 0.10 0.17

com-orkut (after) 5 0.94 0.92 0.85
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Table 5 Parameter comparison before and after in parameter experiments

Repeat times S σ T

Strike (front) 100 1 0.1 1

Strike (after) 100 2 0.7 1

Football (front) 100 1 0.1 1

Football (after) 100 2 1 2

LiveJournal (front) 5 1 0.1 1

LiveJournal (after) 5 6 0.4 4

com-orkut (front) 5 6 0.1 2

com-orkut (after) 5 7 0.2 5

Table 6 The analysis of community detection results

Algorithm Strike NMI Football NMI LiveJournal NMI com-orkut NMI

K-means 0.82 0.67 0.35 0.3

Hop 0.89 0.90 0.66 0.58

CoDDA 0.91 0.93 0.82 0.77

DSACD 0.93 0.93 0.82 0.92

Table 7 Reconstruction error table of CoDDA and DSACD

CoDDA DSACD

· · · · · ·
2.28428e + 01 8.41571e + 00

1.85591e + 01 8.13560e + 00

1.71101e + 01 8.43235e + 00

1.71101e + 01 7.90684e + 00

Table 8 Comparison with other community discovery algorithm cluster results

Algorithm LPA DSACD

Strike Fsame 0.96 0.96
NMI 0.87 0.93
Q 0.55 0.52

Football Fsame 0.26 0.94
NMI 0.87 0.93
Q 0.75 0.56

LiveJournal Fsame 0.49 0.85
NMI 0.76 0.85
Q 0.79 0.80

com-orkut Fsame 0.57 0.94
NMI 0.61 0.92
Q 0.74 0.85

Table 9 Time comparison with other community detection algorithms

Algorithm Strike(s) Football(s) LiveJournal(h) com-orkut(h)

LPA 0.008 0.020 0.01 0.01

CoDDA 0.011 2.561 4.59 6.21

DSACD 0.009 1.091 3.35 5.37
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The weakness of the CoDDA is also shown, and the calculation time is much longer than
the DSACD calculation time. The CoDDA requires up to a week or weeks to calculate
a larger matrix [13]. In addition, although the calculation time of the DSACD is small,
it requires a large amount of memory, and it requires at least 128 G of memory for the
network of tens of thousands of nodes, but the CoDDA can normally be calculated on a
normal configuration computer.

3.6 Parameter analysis

The deep sparse autoencoder for community detection(DSACD) contains three impor-
tant parameters: the hop threshold (S) in the similarity matrix, the attenuation factor (σ ),
and the number of layers in the deep sparse autoencoder (T). These three parameters
have a direct impact on the clustering results. This section sets up experiments to find
the optimal parameters. The experimental procedure is shown as follows. First, a value is
preselected for each parameter. Then, the experiment is performed according to the hop
count threshold, the attenuation factor, and the layers order of the deep sparse autoen-
coder, and each experiment is repeated 5 or 100 times. Then, the optimal results are used
as the peremeters in the next experiments. After the first experiments, the three opti-
mal values obtained are reused as the experimental input values applied to adjust the
obtained parameters. After the end of the second round, the optimal parameters obtained
are output.
Each parameter value is initialized as s=1, sigma=0.1, and T=1. The selection of each

parameter is random during initialization, and the minimum value is selected as the
starting parameter.
The first round of results from the above table is shown in Fig. 7.
Figure 7 shows that the proved deep sparse autoencoder for community detection has

a better clustering effect than the K-means clustering algorithm, but the significance of

Fig. 7 The first-round experimental results of the parameter experiment
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deep learning in the Strike and Football datasets does not seem obvious. The clustering
results of the proved deep sparse autoencoder for community detection and the clustering
results of the similarity matrix are similar, and the gap is not obvious in the parameter
experiment of the attenuation threshold or the layer number. However, after a round of
experiments on big data sets, the advantages are already evident.
The second-round results are shown in Fig. 8.
After the second-round parameter experiment, we find that the similarity matrix clus-

tering result of the Strike dataset is the best. The proved deep sparse autoencoder for
community detection does not improve the clustering result in the process of deep learn-
ing, but decreases the result, as shown in Fig. 8c). Therefore, in small datasets, the
similarity matrix is utilized to process the adjacency matrix of the graph.
As shown in the Football dataset, the proved DSACD slightly improves the cluster-

ing results in the process of deep learning, and the highest value is obtained by the
proved deep sparse autoencoder for community detection. The second round of results is
significantly better than the first round of clustering quality.
Meanwhile, as shown in the LiveJournal dataset, the accuracy of the proved DSACD is

significantly improved on the big data set. After deep learning, the NMI value is increased
from 0.7111 to 0.8171, and the degree of improvement is approximately 13%. On the other
hand, the NMI top value gradually increases during the course of parameter experiment
and reflects the necessity and superiority of deep learning.
In Table 5, the parameter value of S, σ , and T before and after experiments are tested

in four data sets. In Strike and Football, the average value of every parameter are detem-
ined with the repeat experimental times are 100, but in LiveJournal, the detemined
average value of every parameter only needs 5 repeat experimental times. The repeat
experimental times are for comparing with the CoDDA in the same parameter standard.

Fig. 8 The second-round experimental results of the parameter experiment
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Fig. 9 Comparison of the actual results of the strike dataset and different cluster results

4 Result and discussion
4.1 Visualization results

This experiment is based on the real dataset (Ground-Truth), K-means algorithm, the
hop-based clustering method (hop), CoDDA, and the DSACD, which are visual com-
parison. Intuitively, the cluster information between different communities is observed
and evaluated. Figures 9 and 10 show the results. The same color represents the same
community, and different colors represent different communities.

Fig. 10 Comparison of the true results of the football dataset and different clustering results
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As seen from Fig. 9, the cluster results of the K-means algorithm are not accurate,
and the green communities are basically clustered into yellow communities, which obvi-
ously does not conform to the real situation. Both the hop-based and the deep sparse
autoencoder-based algorithms (DSACD) cluster accurate results, which are in good
agreement with the real-world results [38], indicating the accuracy of the algorithm.
Furthermore, because the hop-based algorithm (hop) and the deep sparse autoencoder
algorithm (DSACD) are consistent, it shows that the algorithm has little meaning in deep
learning of small data sets. The parameters are not properly selected or even lost informa-
tion. In the data set, the hop count threshold and the attenuation factor should be focused
on improving the cluster effect.
As Fig. 10 shows, the K-means algorithm cannot be accurately clustered in the 180-

node dataset. Note that the K-means algorithm can be used in small maps but cannot be
clustered in a slightly complex network because the adjacency matrix still carries much
information that leads to unclear community boundaries. After adding the similarity
matrix processing, the nearby nodes are connected, so the clustering quality is signifi-
cantly improved. For the dataset, because the community structure is very obvious, the
similarity matrix can obtain good clustering results, and the community structure is ini-
tially calculated but will still be confused in the community with close distance. After deep
learning, the community clustering with obvious community structure is almost all suc-
cessful, and there are still fewer nodes with cluster failure for clusters without community
structure.
According to Fig. 11, there are 8 communities in the LiveJournal dataset, and a mon-

ster community appears for the K-means algorithm clustering. The hop-based processing
[13] can successfully cluster nodes with obvious community structure, but for two com-
munities with higher similarity, that is, the situation with numerous edges between
communities cannot be correctly handled, and the connection between two communi-
ties with a close relationship can easily be clustered into a third community. As shown in

Fig. 11 The comparison of real results about LiveJournal datasets and different cluster results



Fei et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:91 Page 19 of 25

Fig. 12, the yellow community section should be green. In addition, for nodes with fewer
neighbors, the green node group on the left side of the figure should be pink, but there
is no successful cluster. After learning the network features, the left green node group
and the pink node group are successfully merged in the DSACD diagram. The clustering
accuracy is further improved for the green node community, and finally, the community
with the obvious community structure is clustered.
The experiments in Section 3.5, which has compared the time and results of DSACD

and CODDA. To visualize the results of the two algorithms, the LiveJournal dataset is
extracted, and the results of the two algorithms are visually compared. For the deep sparse
autoencoder for community detection, except for the four communities with a high cou-
pling degree in the upper right and upper left, the other four communities are clustered
accurately. The same situation appears in the CoDDA. Four communities are obviously
clustered successfully. At the same time, somemistakes emerge in the course of clustering
such as one community clustered into two communities and two communities clustered
into one. Compared comprehensively, the effect of the two algorithms is close.
The clustering method based on the K-means algorithm is random, especially in small

datasets because the boundary between two communities is not easy to judge. The clus-
tering results will change due to the selection of initial points, especially the time selected
of the influential points will directly affect the clustering results. For small data sets, the
results need to be averaged many times, and the final results will converge at a certain
value. With the increase in datasets, the size of community groups also expands, and the
proportion of nodes in the border area relative to the entire map also decreases, so the
clustering results tend to be stable.
In the community detection algorithm based on the deep sparse autoencoder and L-

BFGS, parameters need to be selected. Among these parameters, the hop threshold of the
small-scale network is smaller. Because the size of the community is small, the influence
of the relationship between nodes is smaller. The appropriate hop threshold can be taken
from 2 to 3, and the calculation requires less time. For a large-scale network, the threshold
of hops will increase correspondingly. At this time, the community structure is obvious,
and the scale is large, and the relationship between nodes is complex, so the correspond-
ing influence will increase. The threshold of hops can be taken from 6 to 8. At the same

Fig. 12 Comparison of the CoDDA and the DSACD about the LiveJournal dataset



Fei et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:91 Page 20 of 25

time, large-scale datasets need to be reduced several times to improve the accuracy of the
community feature extraction. However, regardless of any parameter, it should not be too
large or too small; otherwise, it will lead to data redundancy or missing data. This situa-
tion also demonstrates the necessity of the parameter experiment and also illustrates the
necessity of conducting a parametric experiment.
When compared with other algorithms or with itself, the DSACD has higher accuracy.

The similarity matrix plays a dominant role in small data sets. On the large dataset, a fur-
ther dimension reduction operation based on the deep sparse autoencoder is needed for
feature extraction. In the process of training, the CoDDA or the DSACD can be used for
back-propagation. The CoDDA has the characteristics that it does not need to calculate
the Hessian matrix and saves memory, but it takes a long time. The DSACD is charac-
terized by more accurate calculation, but it requires more memory. In large data sets, the
program may crash due to insufficient memory. It is necessary to determine in advance
whether the hardware configuration meets the requirements. The accuracy of the two
algorithms is slightly higher than the accuracy of the CoDDA algorithm.
Through the visualization software [42], the results of the K-means clustering can

hardly be separated from the community, resulting in the emergence of a giant community
that is the monster community. After calculating the similarity matrix, the community
structure appears. Finally, dimension reduction by the deep sparse automatic encoder
can separate the similar communities more accurately and further improve the clustering
accuracy.

4.2 Application on the indoor positioning system

In this section, an application test with the benchmarking data of our indoor positioning
systems is designed. Figure 13 depicts a public place in our library, in which the total area
is 100m2 and area measurement is 64m2. Four APs are installed in four corners, and 64
points are set in the place. There are 9379 records of RSSI collected by smartphone—MI
note2. Our DSACD can be used to gather 64 communities, and then, the distance between
every points and each AP can be obtained by the log-distance path loss model [43]. For-
mula 15 is a logarithmic distance ranging model for indoor wireless signal transmission.

RSSI(d)dB = RSSI(d0) − 10β lg
(

d
d0

)
+ ε (15)

In formula 15, RSSI(d0) represents the signal intensity when distance is between AP and
signal source, and ε is a random variable that obeys normal distribution (ε;N(0, σdB2)).
β represents the path loss factor, and the indoor environment is usually set to 3 or 4.
Suppose the distance between the two APs and the signal source is d1 and d2, and the

signal intensity difference among them is �dB.

RSSI(d1) = RSSI(d0) − 10β lg
(
d1
d0

)
+ ε1 (16)

RSSI(d1) + �dB = RSSI(d0) − 10β lg
(
d2
d0

)
+ ε2 (17)

Since two APs are in the same localization area, let ε1 = ε2. Formula 16 is subtracted
from formula 17, and the result is as follows:
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Fig. 13 The test scenario in our library

�dB = 10β lg
(
d2
d1

)
(18)

Convert formula 18 to formula 19:

d2 = 10
�dB
10β d1 (19)

As shown in formula 19, �dB describes the distance relationship between the two APs.
As shown in formula 20, FingerPrinti represents the signal intensity between the ith AP
andm signal source.MinFingerPrinti represents the weakest signal intensity between the
ith AP and jth signal source.

FingerPrinti = {RSSI0,RSSI1, · · · ,RSSIi, · · · ,RSSIm} (20)

MinFingerPrinti = min(FingerPrinti) (21)

The difference between FingerPrinti andMinFingerPrinti

FingerPrint′i = {
RSSI ′0,RSSI ′1, · · · , 0, · · · ,RSSI ′m

}
(22)
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According to formulas 19 and 22, formula 23 is as follows:

FingerPrint′′i =
{
10

RSSI′0
10β d1, 10

RSSI′1
10β d1, · · · , d1, · · · , 10

RSSI′m
10β d1

}
(23)

The form of formula 23 after normalization is as follows:

FingerPrint′′′i =
{
10

RSSI′0
10β , 10

RSSI′1
10β , · · · , 1, · · · , 10 RSSI′m

10β

}
(24)

Formula 24 represents the distance fingerprint of ith AP, and these distance fingerprints
constitute the “distance fingerprint map” of the location area.
The geometric meaning of fingerprint is the distance between the reference point and

AP. Fingerprint localization model is divided into two stages: offline and online. During
the offline stage, the localization area is divided into different clusters by DSACD, using
the technique proposed in this article and the binary classification for APs by K-means
algorithm in each subarea to select available APs. During the online stage, subareas where
the object points exist are selected using NN algorithm. Then, the coordinate of the target
point is calculated.
The DSACD are used in offline stage. The selected 64 test points as shown in Fig. 13,

while the fingerprint database are divided 64 subareas with 64 reference points as the
centroids. The operation process is as follows: the collected signals in the whole region
are transformed into fingerprints, and then, the fingerprints are as inputs of DSACD to
realize regional classification. These effective fingerprint components are extracted from
all the fingerprints in the subregion, then the fingerprint is transformed into distance
fingerprint according to the fingerprint transformation model, and finally, the fingerprint
database of the subregion is formed.
Figure 14 indicates the average errors of the distance between every point and each AP.

The average distance error between 64 points and 4 AP shows normal distribution that is
according with the laws of nature; meanwhile, a loop occurs at every eight points that is
according with the law of collection. It is shown in Fig. 13 that every column has 8 points.
In addition, the 64 average errors show that nodes with distance error less than 0.5 from
AP1 account for 26.6% of the total number of nodes, nodes with distance error between
1.5 and 2 from AP1 account for 15.63% of the total number of nodes, nodes with distance
error less than 0.5 from AP2 account for 21.88%, nodes with distance error between 1.5
and 2 from AP2 account for 10.94%, nodes with distance error less than 0.5 from AP3
account for 21.88%, nodes with distance error between 1.5 and 2 from AP3 account for
15.63%, nodes with distance error less than 0.5 fromAP4 account for 10%, and nodes with
distance error between 1.5 and 2 from AP4 account for 21.88%. For the 4 APs, nodes with
higher distance error accuracy are reaching 21.88% which are from AP2/AP3, nodes with
lower distance error are reaching 21.88% which is from AP4. During the process of mea-
suring, there is voltage signal interference near AP4, whose reasonableness is confirmed
by the calculation results.
In the collection environment, factors that have strong impacts for measured data are

the temperature, angle, humidity, and crowd density. Sixty-four communities are gathered
by DSACD, and then, the log-distance path loss model is used in every community to
obtain the distance between every point and each AP. The achieved average errors can
satisfy the necessary of location, which has a certain reference significance for the real-
time of future research intelligent navigation positioning.
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Fig. 14 The average errors of location test points
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5 Conclusion
This paper proved a novel deep sparse autoencoder-based community detection
(DSACD) and compares it with K-means, Hop, CoDDA, and LPA algorithm. Experiments
show that for complex network graphs, dimensionality reduction by similarity matrix and
deep sparse autoencoder can significantly improve clustering results.
Several issues persist and require further research. The similarity matrix calculation

increases with the matrix size, which lead to a large memory consumption and high
requirements for experimental equipment. Too many temporary variables in the back-
propagation algorithm will also consume memory. Decomposition strategy for large
matrix in similarity calculation should be expected in future studies.
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