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network service quality parameter as an independent predictor, obtained by passive
monitoring of live traffic data, captured by a passive probe on the mobile network
Gn interface, and related to detailed records of the Transport Control Protocol. In
parallel with in-service measuring the selected network parameter, we conducted
simultaneous subjective tests of the quality of experience acceptability to users,
specifically for web browsing service. Particularly, it was found that the model
provided correct acceptability classification in 84.5% of cases, while reducing the
chosen independent predictor for 100 ms implied increasing the chance of the
service acceptability by factor of 1.65. Based on the obtained results, it comes out
that the applied logistic regression model provides satisfactory estimation of the web
browsing service quality experience acceptability.
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1 Introduction
Web browsing is among dominant cellular network applications and is expected to
grow by 39% annually over the coming 6 years [1]. Growing users’ demand for reliable
data delivery comes along with their expectation for adequate Quality-of-Experience
(QoE), too, making the latter the most important user decision criterion in selecting a
specific service provider. Consequently, network operators are kin to ensure the best
possible QoE level, for which the conditio sine qua non is their ability to reliably and
accurately assess the achieved customer satisfaction with their services, such as web
browsing.

The majority of existing QoE estimation models are based on the mean opinion
score (MOS) testing, but MOS-based monitoring of web browsing QoE in particular
requires fairly complex metrics [2—4].
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Therefore, it has become crucial to relate the subjective QoE to measurable technical
service quality parameter(s), which can be in-service monitored in the operator envir-
onment, so enabling objective and real-time QoE estimation [3].

Moreover, as network operators are mostly interested in testing users’ acceptability of
provided web services [5-7], i.e., the “binary measure to locate the threshold of mini-
mum acceptable quality that fulfills user quality expectations and needs for certain ap-
plication or system” [7], consequently, in recent years, a number of QoE models based
on acceptability have been proposed, especially for video signal delivery [8—10], as well
as for interactive data services [11].

Specifically, the ITU-T Recommendation G.1030 provides some experimental results
regarding the users’ perception in relation to web browsing response time, as well as
some guidelines for QoE estimation [2]. The according experiments were conducted to
evaluate the suitability of the developed network emulator system for the QoE estima-
tion [3] and to validate the ITU-T Recommendation G.1030. The obtained results show
logarithmic dependency between the QoE and the page load time for a simple web
page.

Furthermore, in contrast to the studies which are mostly based on direct user feed-
back [2-4], the QOoE is sometimes estimated from passive network tests [12, 13]. Specif-
ically, the relationship between the QoE and the Quality-of-Service (QoS) for web
browsing services was analyzed based on HyperText Transfer Protocol (HTTP)/Trans-
mission Control Protocol (TCP) traces collected in the network, where cancelation rate
of HTTP requests was used for QoE estimation, but without any validation of the
achieved results by simultaneous real-life subjective QoE testing.

Moreover, though in some studies subjective user ratings are combined with
network-level information, experimental findings coming out of the recorded TCP and
HTTP traces and web browsing service QoE are reported only by graphical means and
are not backed by any analytical model [14].

Therefore, in this paper, we address the aforementioned challenges by developing the
QoE acceptability predictive model for web browsing service over mobile network,
where the model is based on network parameters, in-service measurable by passive
monitoring of live traffic data, and practically implementable by mobile operators.

As linear regression is not appropriate for modeling acceptability-based QoE, where
the outcome variable—the acceptability is binary, logistic regression is the method of
our choice. To our best knowledge, so far, no attempt has been made to assess accept-
ability of the mobile web browsing service by means of the logistic regression.

With this regard, in the previous work [15], the extent of the relationship be-
tween the in-service measured live traffic data parameters and the web browsing
user QoE in the mobile network was analyzed by using the Spearman’s rank-order
correlation. Taking into account both strength and direction of the relationship, it
came out that the parameters Average-Time-to-Get-1"-Data and Average-Time-to-
Connect-TCP exhibited the strongest relationship with the web browsing QoE eval-
uated by means of the ordinary 5-point Likert scale (with ratings: excellent, good,
fair, poor, bad).

Therefore, in this paper, we followed that indication by applying logistic regression
on the selected parameter to assess the users’ acceptability of the quality level experi-
enced with web browsing service in particular.
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However, in contrast to other investigations using mostly ordinal logistic regression
in compliance with the type of test data determining categorical both the independent
variables and the dependent one and with numerical MOS rating converted to categor-
ical data, here, we put an accent on today’s network operator main QoE imperative
with web browsing in particular: to get an objective binary-type customer QoE rating—
acceptability, which we model here by binary logistic regression applied to the Average-
Time-to-Connect-TCP parameter that we found most relevant in this sense.

The rest of this paper is organized as it follows: In Section 2, we review the basics of
the logistic regression to be used in the QoE acceptability prediction model. The test
setup and tools that we used for conducting the experiment are also described in Sec-
tion 2, while we present the test results and the analysis of the experimental data in
Section 3. Conclusions are drawn in Section 4-.

2 Methods
Before analyzing the acquired data by means of logistic regression, we review the con-
cepts of the model and then apply it for the QoE prediction.

2.1 Logistic regression
Regression is mostly used as a means to predict a random variable from a number of
mutually independent random variables and a constant.

Specifically, logistic regression is used for predicting the probability that a certain ob-
servation will be sorted into one out of two categories of a dichotomous dependent
random variable, based on one or more independent random variables, which can be
continuous or categorical. In many aspects, logistic regression is similar to linear re-
gression, with the exception of the dependent variable type, which, in contrast to linear
regression, does not provide estimated value of the dependent variable, but the prob-
ability that it will belong to a certain category, based on the values of the independent
variables.

Among the three types of logistic regression, namely binary, ordinal, and nominal,
the first one is used when the dependent variable is binary, i.e., takes one out of two
categories. Moreover, if a dependent random variable can take more categories, then
the ordinal logistic regression or the nominal one is to be used for ordered and un-
ordered categories, respectively.

However, as it is already mentioned in Section 1, though ordinal logistic regression
has been most frequently used (even after properly converting MOS scoring), as our
focus here is on QoE acceptability, we consider here the binomial logistic regression,
commonly referred to simply as logistic regression.

Essentially, it is a supervised machine-learning classification algorithm used to predict
the conditional probability:

H(x;)= Pr(Y =1/X;=x); i=1,2,...N (1)

that a certain individual observation belongs to one out of two categories, i.e., that
the corresponding dichotomous dependent random variable Y takes one out of two
possible values (1 or 0), conditioned by one or more (N) continuous or categorical mu-
tually independent random variables X; taking their corresponding values x; [16—18].
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Let us assume the simple linear form of the logit transform (from now on just logit)
of I(x;), specifically for a single value x; = x [16]:

1(x)
1-T1(x)

logit[/T(x)] = In(odds) = ln( > =a+px (2)

where the odds are defined as the ratio of the probability /T(x) that the event (out-
come of interest) will occur for a particular value x of the random variable X, and the
probability 1 — I1(x) that the event will not occur, while 3 is the slope coefficient, and
the constant « is referred to as the intercept.

From (1) and (2), 71(x) can be expressed as:

QB
I(x) = Pr(Y:l\X:x):m (3)

where the iterative maximum likelihood (ML) method is used for estimating the ac-
cording a and f3 values by testing the null hypothesis that these do not make the logis-
tic regression accurate enough. In this case, small significance (represented by the p
value) indicates strong evidence to reject the null hypothesis.

In order to use the binomial logistic regression in practice, the following main as-
sumptions need to be fulfilled [18]:

1. Logistic regression requires the observed dependent random variable Y to be
dichotomous and a function of one or more mutually independent and non-
collinear predicting random variables—predictors.

2. The logit transform must be a linear function of continuous predicting random
variables.

3. Each test observation must be independent from others and all test categories
should be mutually exclusive and exhaustive.

4. Data must not exhibit significant outliers, high leverage points, or highly influential
points; otherwise, the reliability of the estimates may degrade significantly.

2.2 Test setup
The test setup is presented in Fig. 1. As it can be seen, the experiment was carried out
on a live network. The test configuration included the client, the gateway that was con-
nected to the live High Speed Packet Access Evolved (HSPA+ Rev.8) mobile network
(providing up to 42 Mb/s with 64QAM in downlink, and 11.5 Mb/s with 16QAM in up-
link), which is connected to the internet. The gateway ran on Linux OS, while the
NetEm [19] enhancement of the Linux traffic control (TC) facilities enabled introdu-
cing packet delay and packet loss in the experiment. We chose the test point to be at
the Gn interface, where the actually used Oracle Performance Intelligence Center (PIC)
[20] with passive probe captured the traffic data, Fig. 1.

Each test participant took part in experiments using the client operating on Windows
8 PC. The client device was connected to the gateway via 100 Mbps Ethernet full du-
plex link. We used the NetEm network emulator on Ubuntu OS of the gateway to vary
the network conditions by adding delay and packet loss. The Huawei E3272 LTE USB
modem was used for testing, while being managed by the embedded Connection Man-

ager software, which allowed setting the preferred access network.
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Fig. 1 Test system

We enabled the HSPA+ to be the preferable access network in the experiment.
The client system was connected to internet through the mobile network via the
gateway. In both laptops, the automatic software updates were disabled. The par-
ticipants in the experiment used Mozilla Firefox 35.0.1 web browser. The HTTP
and TCP extended Detailed Records (xDR) from the data captured on Gn inter-
face were made available by using ProTrace application on the Oracle PIC plat-
form. This way, we defined and activated new statistical sessions which generated
the in-service parameters’ values aggregated over 5-min intervals. The parameters
were defined from the HTTP and TCP xDR’s for the Mobile Station International
Subscriber Directory Number (MSISDN) [15] of the test SIM card.

The experiment was conducted by ten users, five female and five male, whose age
ranged between 12 and 45 years. All participants used the internet at least 1h a day
and usually via the WiFi access, except when switching to the mobile internet access
(only if WiFi was unavailable).

We investigated the relationship between the QoE and in-service parameters through
the following test scenario:

Each participant tested web browsing six times under different network conditions,
determined by the NetEm (adding delay or packet loss during the experiment).

Duration of a single test was limited to 5min, while the participants accessed web
pages of their choice and simply answered whether the technical quality of web brows-
ing service was acceptable or not, with “yes” or “no”, respectively.

Following that, by running statistics sessions in Oracle PIC platform, processing the
collected values of the relevant in-service parameter measured on Gn interface—Aver-
age-Time-to-Connect-TCP, which is the average time between SYN and ACK in the
TCP three-way handshake sequence, needed to establish the TCP connections within a
5-min interval [1].

2.3 Test tools
We used the Oracle PIC as monitoring and data gathering system that helps service
providers to manage their assets, encompassing network performance, QoS, and
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customer analysis [20]. The PIC uses passive probes to capture traffic data and forward
probe data units (PDU) to the Integrated xDR Platform (IXP). The IXP stores these
traffic data and correlates them into detailed records. The PIC provides applications
that mine the detailed records to provide value-added services such as network per-
formance analysis, call tracing, and reporting [21]. For the purpose of this research, we
used the HTTP and TCP sessions on the Gn interface of the mobile network, defining
parameters, and statistics sessions by using the ProTraq application [21].

Furthermore, we used the NetEm as enhancement of the Linux traffic control facil-
ities that allows adding delay, loss, duplication, and other impairments as well, to the
packets outgoing from the selected network interface. NetEm is built using the existing
QoS and the differentiated services (DiffServ) facilities in the Linux kernel [19].

3 Discussion and results

We analyzed the fields of data records collected from HTTP and TCP sessions on the
Gn interface, and selected the ones to define in-service parameters in Oracle PIC [15].
With this regard, some in-service parameters from HTTP and TCP xDRs, based on the
data captured by extensive testing that we made on Gn interface, are presented in the
Appendix, while in Fig. 2, the exemplar relevant TCP record time intervals can be seen.

Now, the task is to find out which out of the set of in-service measured parameters,
is mostly influencing the QoE acceptability in particular, so to be selected as the logistic
regression predicting variable.

With this respect, we consider the correlation to be the best indication, and therefore
we calculated it for various parameters, as it is presented in Table 1.

Due to monotonic relationship and evident strong (negative) correlation (Spearman
correlation coefficient r; = —0.791, and significance value p < 0.01) between the in-
service measured parameter Average-Time-to-Connect-TCP and users’ acceptability of
the service quality level [15], we consider the former as the independent predicting ran-
dom variable X, whose scatter plot with regard to QoE ratings is presented in Fig. 3,
while in Table 2, we present its in-service obtained test values selected from the overall
data table in the Appendix.

As it can be seen in Fig. 3 and Table 2, just a few sporadic peak values of the Aver-
age_Time_to_Connect TCP were measured (e.g., with just about 10% of them larger
than 1.55s). Observing bottom-up through the protocol stack, various reasons for this
could be considered, among them the (eventually) excessive retransmissions of Hybrid
Automatic Repeat-reQuest (HARQ) protocol data units (e.g., due to bit errors at the
physical layer). These could produce additional delays which propagate upwards the
stack causing the TCP 3-way handshaking time-outs (such as e.g., retransmission time-
out (RTO)), which imply even further delays of the TCP connection setup time.

3.1 Verifying the logistic regression assumptions

The first assumption for the logistic regression can be considered holding in this case,
as it can be seen in Table 2 that the observed dependent random variable Y is obviously
dichotomous and a function of just a single predicting continuous random variable (im-
plying that, in this case, multicollinearity among the predictors is not an issue).
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Fig. 2 Characteristic times for TCP session record on Gn interface

Regarding the second assumption, we used the Box-Tidwell (1962) procedure [22] to test
whether the logit transform is a linear function of the predictor, effectively by adding the non-
liner transform XInX of the original predictor X, as a second, so-called interaction variable,
and testing the null-hypothesis that adding it made no better prediction. As it can be seen in
the according table that is presented in Section 3.2, we found the logit linearity condition hold-
ing, with just minor non-linearity possible.

Further on complying with the third assumption, we did each test independently of others,
with all test categories being mutually exclusive and exhaustive.

Moreover, the data exhibited quite balanced behavior with no significant outliers and
no leverage or influential points.

Consequently, we can justifiably expect that the conducted logistic regression proced-
ure finally provided valid conditional probability /7(x) that the dependent random vari-
able Y takes one out of two possible values (1 or 0), conditioned by a single (in our
case) predicting random variable X taking the value x.

Page 7 of 21
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Table 1 Spearman correlation coefficient between QoE and in-service tested parameters [15]

In-service parameter QoE
Likert 5 Likert 3 Binary
Succ_rate_HTTP 0.168 0.149 0.309%
Cancellation_rate_HTTP -0320 -0301" —0406**
Avg_Server_Response_Time_HTTP -0.114 —-0.179 —0.130
Avg_Time_To_Get_1st_Data_All_HTTP -0790" -0792" —0.647**
Retransmit_DL_Vol_Ratio_HTTP —0.201 —0.169 —0236
Retransmit_UL_Vol_Ratio_HTTP —-0.224 -0.230 —-0224
Max_DL_throughput_HTTP 0616" 0592" 0.515%*
Max_UL_throughput_HTTP 0575 0554 0488**
Avg_Time_To_Get_Data_HTTP 0.034 -0.010 -0.075
Avg_Transaction_Time_HTTP -0510" —-0497" — 0494*
Avg_Transfer_Time_HTTP -0491" —0487" —0.523*
Radio_TCP_succ 0.239 0.241 0.147
Avg_Server_Response_Time_TCP, 0.066 —-0.029 0.008
Avg_Time_to_Connect_TCP 08317 0835 — 0,669
Avg_DL_throughput_TCP 0482" 0497" 0402%*
Avg_UL_throughput_TCP 0652" 0624 0.534**
Ratio_DL_Bytes_Retr_TCP -0217 -0.181 -0.210
Ratio_UL_Bytes_Retr_TCP —-0.199 —0.158 —0.235
Ratio_DL_Packets_Retr_TCP -0304 -0307" -0303*
Ratio_UL_Packets_Retr_TCP —-0.133 —-0.115 —-0.175
Avg_DL_Max_RTT_TCP —-0506" —0483" — 0423
Avg_UL_Max_RTT 0.129 0.079 0.085
Avg_Duration_Connection —0.150 —0.125 —0.194
**Correlation is significant at the 0.01 level (2-tailed)
*Correlation is significant at the 0.05 level (2-tailed)
Excellent- [ceele}
Good- @m 00
§ Fair- GIDCO0mWd O O
Poor o 0 @® o
Bad-+ O o O 00 o o
0 1000 2000 3000 4000 5000 6000
Average Time to Connect (ms)
Fig. 3 Scatter plot of QoE vs. Average-Time-to-Connect-TCP [15]
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Table 2 Independent predicting variable Average-Time-to-Connect-TCP (ms), in-service measured at
the Gn interface

No. Avg_Time_to_ No. Avg_Time_to_ No. Avg_Time_to_ No. Avg_Time_to_
Connect_TCP Connect_TCP Connect_TCP Connect_TCP

1 1123 16 601 31 4097 46 496

2 172 17 1054 32 222 47 295

3 502 18 2145 33 656 48 274

4 367 19 514 34 177 49 1668

5 433 20 798 35 344 50 544

6 589 21 776 36 51 704

7 608 22 989 37 340 52 759

8 781 23 959 38 5415 53 959

9 1490 241047 39 529 54 1292

10 997 25 286 40 674 55 2040

11 3195 26 189 41 728 56 1106

12 1165 27 231 42 1037 57 278

13 186 28 238 43 995 58 144

14130 29 229 44 3906 59 280

15 246 30 797 45 1124

3.2 Test cases and estimated logistic regression parameters

We consider a case (sample) to be a repeatable single test made by a single participant.
A number of recommended values exists for the required minimum number of samples
(cases) ranging from 15 to 50, but we adopted 60 samples per independent random
variable [18], as the ML-based logistic regression estimation significantly degrades for
rare test cases.

So, the counts of cases included/missing in the analysis are given in Table 3 (in ac-
cordance with Table 2), while Table 4 presents how the outcome random variable Y is
encoded.

The logistic regression coefficients for the model with independent random variable
Average-Time-to-Connect-TCP are estimated to take the values of a = 4.746, = -
0.005, while their properties—the standard error (S.E.), the Wald Chi-square (xz) test
value [18] for D.F. degrees of freedom, and the significance expressed by the p value—
are presented in Tables 5 and 6.

So, as we can see from the above tables, the Wald test [20] evaluates the independent
random variable Average-Time-to-Connect-TCP as statistically significant in the model,
as the p value is found to be very low: p < 0.001.

Table 3 Independent random variable X test cases

Unweighted cases N Percent

Selected cases Included in analysis 58 98.3
Missing cases 1 1.7
Total cases 59 100.0

Unselected cases 0 0

Total cases 59 100.0
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Moreover, as it is mentioned in Section 2, we tested the linearity assumption deter-
mining the validity of logistic regression, by applying the Box-Tidwell (1962) procedure
[22]. Accordingly, we tested the null-hypothesis that adding the new variable:

Avg_Time_To_Connect_TCP x In(Avg_Time_To_Connect_TCP)

into regression would make no better prediction.
As it can be seen from low p values in Table 7, we found the logit linearity condition
holding, with just minor non-linearity possible.

3.3 Intercept-only model and its extension by prediction
Back to (2), at first, let us consider the model without taking into account the inde-
pendent random variable Average-Time-to-Connect-TCP, i.e., when:

IIx)= Pr(Y=1X=x)= Pr(Y=1)=1I (4)

which effectively modifies (2) into:
logitlT — In(odds) — In(—-) = (5)
ogit!l = In(odds) = In{— | =«

Accordingly, in the next two tables, the outputs related to the model that includes
only the intercept value a, are presented. Such incomplete model predictions depend
purely on what category occurred most frequently in the data set, in accordance with
(4)/(5). It simply predicts that the service is acceptable, as the majority of participants
in the experiment considered the service acceptable (38 out of 58 participants answered
“yes”). So, applying this “best guess” strategy, one would be right for 65.5% of time
(Table 8).

Accordingly, the estimated statistics for this special case is presented in Table 9.

As exponential of & given in Table 9, the odds are estimated to be equal to 1.9, which
conforms to the ratio 38/20 of the counts of users who found the service acceptable
and not acceptable, respectively.

Now let us turn to the analysis of logistic regression with included independent ran-
dom variable X, i.e., the Average-Time-to-Connect-TCP as a predictor.

The likelihood ratio (LR) test is used to judge the null hypothesis that including the
Average-Time-to-Connect-TCP random variable into the model does not significantly
increase the ability to predict the decisions made by the subjects. This essentially im-
plies testing the ratio:

G=-21n (%) (©)

of likelihoods L0 and LI of test data representing the zero-valued and the maximum
likelihood estimate (MLE) of the parameter of interest, respectively. Under the

Table 4 Dependent random variable Y encoding

Original value Coded value
No 0
Yes 1
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Table 5 Estimated logistic regression intercept and its properties

Intercept a SE Wald DF. p value
4.764 1.261 14.261 1 0.00016

hypothesis that g = 0, the statistics G follows the Chi-square distribution with 1 degree
of freedom [17].

The according test results are presented in Table 10.

From Table 10, it can be seen that, for the Chi-square model with 1 degree of free-
dom and the value of 35.817, it comes out that p < 0.00001, and we justifiably reject
the null hypothesis. So the results of this test indicate that including Average-Time-to-
Connect-TCP random variable into the model statistically significantly increases the
ability to predict the acceptability of the service to the users.

3.4 Testing the logistic regression model goodness of fit

Furthermore, adequacy of the model can be assessed by means of the Hosmer and
Lemeshow goodness-of-fit test, which actually evaluates inadequacy of the model in
predicting categorical outcomes, i.e., the hypothesis that the observed data are signifi-
cantly different from the predicted values coming out of the model.

The test essentially partitions n observations into g approximately equal-size groups—
deciles, so that the first group contains approximately #/10 observations with the smal-
lest estimated probability, and the last group of approximately n/10 observations with
the largest estimated probabilities [17].

The statistics is:

£ (Ow—Ew)’
£~ E1c(1-&)

C= s Evie = si€x (7)

where Oy is the count of observations with Y = 1 (out of s; observations in total) in
the kth group, and Ej; is the expected count of the event in the kth group, whereas &
is the average predicted event probability for the kth group.

The statistics of (7) is close to y* distribution with 8 degrees of freedom (as for totally
g = 10 groups, it is: 10 — 2 = 8). Small enough p value (< 0.05) implies that the model
poorly fits to data.

The 2 x g contingency table presents the observed and the expected counts of the
event Y = 1. Accordingly, resulting from our test data are entries in Table 11.

Finally, as it can be seen in Table 12, the obtained high p value indicates low-
significance inadequacy of the fitting model, which implies that the model is not to be

considered inadequate (but opposite, i.e., adequate).

3.5 Category prediction
Furthermore, as the logistic regression estimates the probability of the event that the
service is acceptable to users, we adopt a typical decision threshold of 0.5, meaning that

Table 6 Estimated logistic regression slope and its properties
Predictor variable Slope B SE Wald D.F. p value
Average-Time-to-Connect-TCP —0.005 0.001 12.116 1 0.0005
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Table 7 Testing linearity assumption

Predicting variable B SE Wald DF. p value
Avg_Time_to_Connect_TCP —-0.034 0014 6.247 1 0.012
Avg_Time_To_Connect_TCP x In(Avg_Time_To_Connect_TCP) 0.004 0.002 5434 1 0.020
Intercept a A SE Wald DF. p value

8.014 2.545 9914 1 0.002

if the estimated probability is greater than or equal to 0.5, the event is classified as the
one that will happen; otherwise, the event is classified as the one that will not happen
[23].

Accordingly, the observed and predicted classifications are presented in Table 13.

As it is already pointed out in Section 3.3, Table 8, where the classification includes
just the intercept constant, we can see that 65.5% of cases overall could be correctly
classified by simply considering all cases (to be classified) as choosing “yes” for
acceptability.

However, with the independent random variable included in the model, the so-called
Percentage-Accuracy-in-Classification (PAC) [18] can be seen in Table 13 to be equal
to 84.5%, as the model correctly classified that many cases on a relative scale, which is
a significant improvement with regard to the case of classification without the predictor
variable.

Another classification feature is the sensitivity, which is the percentage of cases with
the target category correctly predicted by the model when the quality of services was
evaluated as acceptable (“yes”). So, as it is presented in Table 13, 86.8% of test cases,
when participants rated service as acceptable, were also classified by the model as
acceptable.

On contrary, the specificity is the percentage of cases that were found to not have the
target category [21], i.e,, which were correctly classified by the model when the service
was not rated as acceptable. In our study, the specificity was found to be equal to
80.0%, meaning that 80% of participants who did not rate service as acceptable were
correctly classified by the model, Table 13.

The positive predictive value is the percentage of correctly classified cases exhibiting
the target characteristic, relative to the total count of cases predicted to have the target
characteristic. In this case, simple calculus provides:

33/(33 +4) = 89.19%

Table 8 Classification without the independent predictor

Observed Predicted
Acceptability Correct
prediction
No Yes %
Acceptability No 0 20 0.0
Yes 0 38 100.0

Overall prediction % 65.5
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Table 9 The intercept-only model attributes

Intercept a SE Wald D.F. p value
0.642 0.276 5398 1 0.020

meaning that, out of all cases predicting the service acceptable, for 89.19% of them, the
prediction is correct.

The negative predictive value is the percentage of correctly classified cases without
the target characteristics, relative to the total count of cases predicted as not having the

target characteristics. In this case, it is:
16/(16 + 5) = 76.19%,

meaning that out of all cases predicting the service not acceptable, for 76.19% of them,
the prediction is correct.
Finally, by substituting the values of a = 4.746, B = - 0.005 from Section 3.2, into the

regression Eq. (2), the latter can be rewritten as:
logit[/T(x)] = In(odds) = 4.764—0.005x (8)

where x = Average-Time-to-Connect-TCP, while (3) turns into:

64'764_0‘005)(

(x) = 1 + e%764-0.005x )

The conditional probability  (x) that, having measured Average-Time-to-Connect-
TCP milliseconds, the acceptable quality of web browsing service will result is the tar-
get logistic regression test outcome, which is plotted in Fig. 4.

As it can be seen on the above graph, the transition between the acceptability and
non-acceptability is rather steep, as the curve exhibits a threshold effect around the
predictor value of 1s.

As an example, let us calculate how much would the odds be affected by reducing
the Average-Time-to-Connect-TCP parameter for 100 ms. With this regard, we simply
substitute the increment as follows:

In[odds(x + 100)] = 4.764-0.005-(x + 100) (10)
In[odds(x)]- In[odds(x + 100)] = 0.5 (11)
odds(x) __ 05 _ 1 65 (12)

odds(x + 100)

According to (12), it comes out that by reducing the Average-Time-to-Connect-TCP
parameter for 100 ms, the chance of success, i.e., the chance that the service is accept-
able, increases by the factor of 1.65.

Table 10 Likelihood ratio test statistics
Chi-square DF. p value
35817 1 <0.00001
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Table 11 Contingency table for Hosmer and Lemeshow test

K Acceptability Total

No Yes

Observed Expected Observed Expected
1 6 5.993 0 0.007 6
2 3 4.897 3 1.103 6
3 5 3630 1 2.370 6
4 3 2486 3 3514 6
5 3 1418 3 4.582 6
6 0 0.759 6 5241 6
7 0 0397 6 5.603 6
8 0 0.198 6 5.802 6
9 0 0.148 6 5.852 6
10 0 0.073 4 3.927 4

Table 12 Hosmer and Lemeshow test

Chi-square DF. p value
9.531 8 0.300

Table 13 Classification; observed vs. predicted

Observed Predicted
Acceptability Percentage
No Yes of correct
Acceptability No 16 4 80.0
Yes 5 33 86.8
Overall percentage 84.5
1
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Fig. 4 Probability  (x) of acceptable web service, conditioned by Average-Time-to-Connect-TCP
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4 Conclusions

We proposed a simple logistic regression model with a single independent predicting
variable, namely the Average-Time-to-Connect-TCP network parameter, derived from
live traffic data captured by passive probe on the Gn interface of the mobile network,
to estimate the users’ quality of experience acceptability of the web browsing service.

In parallel, we conducted simultaneous subjective users’ service quality acceptability
tests with a number of participants, to finally correlate the obtained values to detailed
records of the TCP protocol.

The model was found to provide correct estimation of the experienced service quality
acceptability, with high statistical significance determined by Chi-squared value above
35, p value below 0.0005, and correct classification in 84.5% of cases.

More specifically, the sensitivity and specificity were found to be equal to 86.8% and
80%, respectively, while the positive and negative prediction values were evaluated to
be equal to 89.19% and 76.19%, respectively.

Reducing by 100 ms the network service parameter that is selected as the predicting
variable was found to increase the chance of the service acceptability by the factor of
1.65.

We plan to extend the proposed approach application range and enhance its ability
to predict real-life acceptability of service quality experience, by involving more experi-
mental scenarios and wide-area users, as well as other aspects such as context and ex-
tended set of parameters. Moreover, the full-scale measurement campaign would go
beyond resource-limited preliminary tests reported here, and in 4G/5G environment,
where this approach and analysis still apply.
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5 Appendix

Abbreviations

DiffServ: Differentiated services; HSPA+: High Speed Packet Access Evolved; HTTP: Hypertext Transfer Protocol;

IXP: Integrated xDR Platform; LR: Likelihood ratio; ML: Maximum likelihood; MLE: Maximum likelihood estimate;

MOS: Mean opinion score; MSISDN: Mobile Station International Subscriber Directory Number; OS: Operating system;
PAC: Percentage-Accuracy-in-Classification; PDU: Probe data units; PIC: Performance Intelligence Center; PC: Personal
computer; QoE: Quality-of-Experience; QoS: Quality-of-Service; TC: Traffic control; TCP: Transmission Control Protocol;
xDR: Extended Detailed Records

Authors’ contributions

SIZ made in-service passive monitoring of traffic data on the mobile network Gn interface, as well as simultan-
eous tests of the web browsing service quality acceptability to users, which define independent and dependent
variables of the model, respectively. AL finalized the logistic regression model, to accommodate testing the net-
work service quality acceptability based on the chosen particular network parameter, and the text. VL set up
general guidelines for this work, specifically with regard to the analysis of test results and model verification.
The author(s) read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
Not applicable.

Author details
'BH Telecom, Sarajevo, Bosnia and Herzegovina. “University of Dubrovnik, Dubrovnik, Croatia.

Received: 4 December 2019 Accepted: 15 April 2020
Published online: 12 May 2020

References

1. Ericsson mobility report on the pulse of the networked society, November 2016

2. ITU-T Recommendation G.1030, Estimating end-to-end performance in IP networks for data applications, 2005

3. E.lbarrola, F. Liberal, . Taboada and R. Ortega, “Web QoE evaluation in multi-agent networks: validation of ITU-T G.1030,"
2009 Fifth International Conference on Autonomic and Autonomous Systems, Valencia, 2009, pp. 289-294.

4. P.Reichl, B. Tuffin, R. Schatz, Logarithmic laws in service quality perception: where microeconomics meets
psychophysics and quality of experience. Telecommun. Syst. 52(2), 587-600 (2013)

5. International Telecommunication Union, “Vocabulary and effects of transmission parameters on customer opinion of
transmission quality, amendment 2", [TU-T Recommendation P10/G.100, 2006

6. P.Spachos, W. Li, M. Chignell, A. Leon-Garcia, L. Zucherman and J. Jiang, “Acceptability and quality of experience in over
the top video," 2015 IEEE International Conference on Communication Workshop (ICCW), London, 2015, pp. 1693-1698.

7. Ernst Biersack, Christian Callegari, Maja Matijasevi¢, “Data Traffic Monitoring and Analysis”, Vol. 7754, Ed. 1, Springer-
Verlag Berlin Heidelberg, 2013

8. Song, Wei & Tjondronegoro, Dian & Himawan, Ivan, “Acceptability-based QoE management for user-centric mobile
video delivery: a field study evaluation,” MM 2014 — Proceedings of the 2014 ACM Conference on Multimedia. doi: https://
doi.org/10.1145/2647868.2654923.

9. Agboma, F. and Liotta, A, "Quality of experience management in mobile content delivery systems”, Telecommun Syst
(2012), 49, 1, pp. 85-98.

10. Song, W. and Tjondronegoro, D., “Acceptability-based QoE models for mobile video”, IEEE T. Multimedia (2014), 16, 3,
pp. 738 - 750.

11. R.Schatz, S. Egger and A. Platzer, “Poor, good enough or even better? bridging the gap between acceptability and QoE
of mobile broadband data services," 2011 IEEE International Conference on Communications (ICC), Kyoto, 2011, pp. 1-6.

12. Star Khirman and Peter Henriksen, “Relationship between Quiality-of-Service and Quality-of-Experience for public internet
service”, Passive and Active Network Measurement workshop, March 2002

13. Collange and J. L. Costeux, Passive estimation of quality of experience. J. Univ. Comput. Sci. 14(5), 625-641 (2008)

14.  Raimund Schatz and Sebastian Egger, "Vienna surfing — assessing mobile broadband quality in field”, Proceedings of the
1st ACM SIGCOMM Workshop on Measurements Up the Stack (W-MUST). ACM, 2011

15.  S. Isak-Zatega and V. Lipovac, “In-service assessment of mobile services QoE from network parameters,” 2016 24th
International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, 2016, pp. 1-7.

16.  Peng, Joanne & So, Tak-Shing, “Logistic regression analysis and reporting: a primer”, Understanding statistics: statistical
issues in psychology. Education., 2002, pp. 31-70.

17.  David W. Hosmer, Stanley Lemeshow, “Applied Logistic Regression”, Second Edition, A Wiley-Interscience Publication,
John Wiley & Sons, Inc., 2000


https://doi.org/10.1145/2647868.2654923
https://doi.org/10.1145/2647868.2654923

Isak-Zatega et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:96

19.
20.

21.

22.
23.

Laerd Statistics, “Binomial logistic regression using SPSS Statistics”, Statistical tutorials and software guides., 2005,
retrieved from https://statistics.laerd.com/

Stephen Hemminger, “Network emulation with NetEm”, Linux Conf Au, 2005

Oracle and/or its affiliates, Oracle Communication Performance Intelligent Center, Oracle data sheet, 2013 K. Elissa,
unpublished.

Oracle, Oracle® Communications Performance Intelligence Center ProTrace User's Guide, Release 10.1.5, E56987 Revision
1,2015

GEP. Box, P.W. Tidwell, Transformation of the independent variables. Technometrics 4, 531-550 (1962)

Fox, J., "Applied Regression, Linear Models, and Related Methods’, SAGE Publications, 1997

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®

journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 21 of 21


https://statistics.laerd.com/

	Abstract
	Introduction
	Methods
	Logistic regression
	Test setup
	Test tools

	Discussion and results
	Verifying the logistic regression assumptions
	Test cases and estimated logistic regression parameters
	Intercept-only model and its extension by prediction
	Testing the logistic regression model goodness of fit
	Category prediction

	Conclusions
	Appendix
	Abbreviations
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

