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Abstract

In this paper, we presented a logistic regression model that we applied for
assessment of the users’ quality of experience with web browsing service over
mobile network. With this regard, we chose the Average-Time-to-Connect-TCP
network service quality parameter as an independent predictor, obtained by passive
monitoring of live traffic data, captured by a passive probe on the mobile network
Gn interface, and related to detailed records of the Transport Control Protocol. In
parallel with in-service measuring the selected network parameter, we conducted
simultaneous subjective tests of the quality of experience acceptability to users,
specifically for web browsing service. Particularly, it was found that the model
provided correct acceptability classification in 84.5% of cases, while reducing the
chosen independent predictor for 100 ms implied increasing the chance of the
service acceptability by factor of 1.65. Based on the obtained results, it comes out
that the applied logistic regression model provides satisfactory estimation of the web
browsing service quality experience acceptability.

Keywords: Quality-of-experience, In-service network monitoring, Regression

1 Introduction
Web browsing is among dominant cellular network applications and is expected to

grow by 39% annually over the coming 6 years [1]. Growing users’ demand for reliable

data delivery comes along with their expectation for adequate Quality-of-Experience

(QoE), too, making the latter the most important user decision criterion in selecting a

specific service provider. Consequently, network operators are kin to ensure the best

possible QoE level, for which the conditio sine qua non is their ability to reliably and

accurately assess the achieved customer satisfaction with their services, such as web

browsing.

The majority of existing QoE estimation models are based on the mean opinion

score (MOS) testing, but MOS-based monitoring of web browsing QoE in particular

requires fairly complex metrics [2–4].
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Therefore, it has become crucial to relate the subjective QoE to measurable technical

service quality parameter(s), which can be in-service monitored in the operator envir-

onment, so enabling objective and real-time QoE estimation [3].

Moreover, as network operators are mostly interested in testing users’ acceptability of

provided web services [5–7], i.e., the “binary measure to locate the threshold of mini-

mum acceptable quality that fulfills user quality expectations and needs for certain ap-

plication or system” [7], consequently, in recent years, a number of QoE models based

on acceptability have been proposed, especially for video signal delivery [8–10], as well

as for interactive data services [11].

Specifically, the ITU-T Recommendation G.1030 provides some experimental results

regarding the users’ perception in relation to web browsing response time, as well as

some guidelines for QoE estimation [2]. The according experiments were conducted to

evaluate the suitability of the developed network emulator system for the QoE estima-

tion [3] and to validate the ITU-T Recommendation G.1030. The obtained results show

logarithmic dependency between the QoE and the page load time for a simple web

page.

Furthermore, in contrast to the studies which are mostly based on direct user feed-

back [2–4], the QoE is sometimes estimated from passive network tests [12, 13]. Specif-

ically, the relationship between the QoE and the Quality-of-Service (QoS) for web

browsing services was analyzed based on HyperText Transfer Protocol (HTTP)/Trans-

mission Control Protocol (TCP) traces collected in the network, where cancelation rate

of HTTP requests was used for QoE estimation, but without any validation of the

achieved results by simultaneous real-life subjective QoE testing.

Moreover, though in some studies subjective user ratings are combined with

network-level information, experimental findings coming out of the recorded TCP and

HTTP traces and web browsing service QoE are reported only by graphical means and

are not backed by any analytical model [14].

Therefore, in this paper, we address the aforementioned challenges by developing the

QoE acceptability predictive model for web browsing service over mobile network,

where the model is based on network parameters, in-service measurable by passive

monitoring of live traffic data, and practically implementable by mobile operators.

As linear regression is not appropriate for modeling acceptability-based QoE, where

the outcome variable–the acceptability is binary, logistic regression is the method of

our choice. To our best knowledge, so far, no attempt has been made to assess accept-

ability of the mobile web browsing service by means of the logistic regression.

With this regard, in the previous work [15], the extent of the relationship be-

tween the in-service measured live traffic data parameters and the web browsing

user QoE in the mobile network was analyzed by using the Spearman’s rank-order

correlation. Taking into account both strength and direction of the relationship, it

came out that the parameters Average-Time-to-Get-1st-Data and Average-Time-to-

Connect-TCP exhibited the strongest relationship with the web browsing QoE eval-

uated by means of the ordinary 5-point Likert scale (with ratings: excellent, good,

fair, poor, bad).

Therefore, in this paper, we followed that indication by applying logistic regression

on the selected parameter to assess the users’ acceptability of the quality level experi-

enced with web browsing service in particular.

Isak-Zatega et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:96 Page 2 of 21



However, in contrast to other investigations using mostly ordinal logistic regression

in compliance with the type of test data determining categorical both the independent

variables and the dependent one and with numerical MOS rating converted to categor-

ical data, here, we put an accent on today’s network operator main QoE imperative

with web browsing in particular: to get an objective binary-type customer QoE rating–

acceptability, which we model here by binary logistic regression applied to the Average-

Time-to-Connect-TCP parameter that we found most relevant in this sense.

The rest of this paper is organized as it follows: In Section 2, we review the basics of

the logistic regression to be used in the QoE acceptability prediction model. The test

setup and tools that we used for conducting the experiment are also described in Sec-

tion 2, while we present the test results and the analysis of the experimental data in

Section 3. Conclusions are drawn in Section 4.

2 Methods
Before analyzing the acquired data by means of logistic regression, we review the con-

cepts of the model and then apply it for the QoE prediction.

2.1 Logistic regression

Regression is mostly used as a means to predict a random variable from a number of

mutually independent random variables and a constant.

Specifically, logistic regression is used for predicting the probability that a certain ob-

servation will be sorted into one out of two categories of a dichotomous dependent

random variable, based on one or more independent random variables, which can be

continuous or categorical. In many aspects, logistic regression is similar to linear re-

gression, with the exception of the dependent variable type, which, in contrast to linear

regression, does not provide estimated value of the dependent variable, but the prob-

ability that it will belong to a certain category, based on the values of the independent

variables.

Among the three types of logistic regression, namely binary, ordinal, and nominal,

the first one is used when the dependent variable is binary, i.e., takes one out of two

categories. Moreover, if a dependent random variable can take more categories, then

the ordinal logistic regression or the nominal one is to be used for ordered and un-

ordered categories, respectively.

However, as it is already mentioned in Section 1, though ordinal logistic regression

has been most frequently used (even after properly converting MOS scoring), as our

focus here is on QoE acceptability, we consider here the binomial logistic regression,

commonly referred to simply as logistic regression.

Essentially, it is a supervised machine-learning classification algorithm used to predict

the conditional probability:

Π xið Þ ¼ Pr Y ¼ 1=Xi ¼ xið Þ; i ¼ 1; 2;…;N ð1Þ

that a certain individual observation belongs to one out of two categories, i.e., that

the corresponding dichotomous dependent random variable Y takes one out of two

possible values (1 or 0), conditioned by one or more (N) continuous or categorical mu-

tually independent random variables Xi taking their corresponding values xi [16–18].
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Let us assume the simple linear form of the logit transform (from now on just logit)

of Π(xi), specifically for a single value xi = x [16]:

logit Π xð Þ½ � ¼ ln oddsð Þ ¼ ln
Π xð Þ

1−Π xð Þ
� �

¼ αþ βx ð2Þ

where the odds are defined as the ratio of the probability Π(x) that the event (out-

come of interest) will occur for a particular value x of the random variable X, and the

probability 1 − Π(x) that the event will not occur, while β is the slope coefficient, and

the constant α is referred to as the intercept.

From (1) and (2), Π(x) can be expressed as:

Π xð Þ ¼ Pr Y ¼ 1jX ¼ xð Þ ¼ eαþβx

1þ eαþβx
ð3Þ

where the iterative maximum likelihood (ML) method is used for estimating the ac-

cording α and β values by testing the null hypothesis that these do not make the logis-

tic regression accurate enough. In this case, small significance (represented by the p

value) indicates strong evidence to reject the null hypothesis.

In order to use the binomial logistic regression in practice, the following main as-

sumptions need to be fulfilled [18]:

1. Logistic regression requires the observed dependent random variable Y to be

dichotomous and a function of one or more mutually independent and non-

collinear predicting random variables–predictors.

2. The logit transform must be a linear function of continuous predicting random

variables.

3. Each test observation must be independent from others and all test categories

should be mutually exclusive and exhaustive.

4. Data must not exhibit significant outliers, high leverage points, or highly influential

points; otherwise, the reliability of the estimates may degrade significantly.

2.2 Test setup

The test setup is presented in Fig. 1. As it can be seen, the experiment was carried out

on a live network. The test configuration included the client, the gateway that was con-

nected to the live High Speed Packet Access Evolved (HSPA+ Rev.8) mobile network

(providing up to 42Mb/s with 64QAM in downlink, and 11.5Mb/s with 16QAM in up-

link), which is connected to the internet. The gateway ran on Linux OS, while the

NetEm [19] enhancement of the Linux traffic control (TC) facilities enabled introdu-

cing packet delay and packet loss in the experiment. We chose the test point to be at

the Gn interface, where the actually used Oracle Performance Intelligence Center (PIC)

[20] with passive probe captured the traffic data, Fig. 1.

Each test participant took part in experiments using the client operating on Windows

8 PC. The client device was connected to the gateway via 100Mbps Ethernet full du-

plex link. We used the NetEm network emulator on Ubuntu OS of the gateway to vary

the network conditions by adding delay and packet loss. The Huawei E3272 LTE USB

modem was used for testing, while being managed by the embedded Connection Man-

ager software, which allowed setting the preferred access network.
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We enabled the HSPA+ to be the preferable access network in the experiment.

The client system was connected to internet through the mobile network via the

gateway. In both laptops, the automatic software updates were disabled. The par-

ticipants in the experiment used Mozilla Firefox 35.0.1 web browser. The HTTP

and TCP extended Detailed Records (xDR) from the data captured on Gn inter-

face were made available by using ProTrace application on the Oracle PIC plat-

form. This way, we defined and activated new statistical sessions which generated

the in-service parameters’ values aggregated over 5-min intervals. The parameters

were defined from the HTTP and TCP xDR’s for the Mobile Station International

Subscriber Directory Number (MSISDN) [15] of the test SIM card.

The experiment was conducted by ten users, five female and five male, whose age

ranged between 12 and 45 years. All participants used the internet at least 1 h a day

and usually via the WiFi access, except when switching to the mobile internet access

(only if WiFi was unavailable).

We investigated the relationship between the QoE and in-service parameters through

the following test scenario:

Each participant tested web browsing six times under different network conditions,

determined by the NetEm (adding delay or packet loss during the experiment).

Duration of a single test was limited to 5min, while the participants accessed web

pages of their choice and simply answered whether the technical quality of web brows-

ing service was acceptable or not, with “yes” or “no”, respectively.

Following that, by running statistics sessions in Oracle PIC platform, processing the

collected values of the relevant in-service parameter measured on Gn interface–Aver-

age-Time-to-Connect-TCP, which is the average time between SYN and ACK in the

TCP three-way handshake sequence, needed to establish the TCP connections within a

5-min interval [1].

2.3 Test tools

We used the Oracle PIC as monitoring and data gathering system that helps service

providers to manage their assets, encompassing network performance, QoS, and

Fig. 1 Test system
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customer analysis [20]. The PIC uses passive probes to capture traffic data and forward

probe data units (PDU) to the Integrated xDR Platform (IXP). The IXP stores these

traffic data and correlates them into detailed records. The PIC provides applications

that mine the detailed records to provide value-added services such as network per-

formance analysis, call tracing, and reporting [21]. For the purpose of this research, we

used the HTTP and TCP sessions on the Gn interface of the mobile network, defining

parameters, and statistics sessions by using the ProTraq application [21].

Furthermore, we used the NetEm as enhancement of the Linux traffic control facil-

ities that allows adding delay, loss, duplication, and other impairments as well, to the

packets outgoing from the selected network interface. NetEm is built using the existing

QoS and the differentiated services (DiffServ) facilities in the Linux kernel [19].

3 Discussion and results
We analyzed the fields of data records collected from HTTP and TCP sessions on the

Gn interface, and selected the ones to define in-service parameters in Oracle PIC [15].

With this regard, some in-service parameters from HTTP and TCP xDRs, based on the

data captured by extensive testing that we made on Gn interface, are presented in the

Appendix, while in Fig. 2, the exemplar relevant TCP record time intervals can be seen.

Now, the task is to find out which out of the set of in-service measured parameters,

is mostly influencing the QoE acceptability in particular, so to be selected as the logistic

regression predicting variable.

With this respect, we consider the correlation to be the best indication, and therefore

we calculated it for various parameters, as it is presented in Table 1.

Due to monotonic relationship and evident strong (negative) correlation (Spearman

correlation coefficient rs = − 0.791, and significance value p < 0.01) between the in-

service measured parameter Average-Time-to-Connect-TCP and users’ acceptability of

the service quality level [15], we consider the former as the independent predicting ran-

dom variable X, whose scatter plot with regard to QoE ratings is presented in Fig. 3,

while in Table 2, we present its in-service obtained test values selected from the overall

data table in the Appendix.

As it can be seen in Fig. 3 and Table 2, just a few sporadic peak values of the Aver-

age_Time_to_Connect_TCP were measured (e.g., with just about 10% of them larger

than 1.5 s). Observing bottom-up through the protocol stack, various reasons for this

could be considered, among them the (eventually) excessive retransmissions of Hybrid

Automatic Repeat-reQuest (HARQ) protocol data units (e.g., due to bit errors at the

physical layer). These could produce additional delays which propagate upwards the

stack causing the TCP 3-way handshaking time-outs (such as e.g., retransmission time-

out (RTO)), which imply even further delays of the TCP connection setup time.

3.1 Verifying the logistic regression assumptions

The first assumption for the logistic regression can be considered holding in this case,

as it can be seen in Table 2 that the observed dependent random variable Y is obviously

dichotomous and a function of just a single predicting continuous random variable (im-

plying that, in this case, multicollinearity among the predictors is not an issue).
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Regarding the second assumption, we used the Box-Tidwell (1962) procedure [22] to test

whether the logit transform is a linear function of the predictor, effectively by adding the non-

liner transform X·lnX of the original predictor X, as a second, so-called interaction variable,

and testing the null-hypothesis that adding it made no better prediction. As it can be seen in

the according table that is presented in Section 3.2, we found the logit linearity condition hold-

ing, with just minor non-linearity possible.

Further on complying with the third assumption, we did each test independently of others,

with all test categories being mutually exclusive and exhaustive.

Moreover, the data exhibited quite balanced behavior with no significant outliers and

no leverage or influential points.

Consequently, we can justifiably expect that the conducted logistic regression proced-

ure finally provided valid conditional probability Π(x) that the dependent random vari-

able Y takes one out of two possible values (1 or 0), conditioned by a single (in our

case) predicting random variable X taking the value x.

Fig. 2 Characteristic times for TCP session record on Gn interface
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Fig. 3 Scatter plot of QoE vs. Average-Time-to-Connect-TCP [15]

Table 1 Spearman correlation coefficient between QoE and in-service tested parameters [15]

In-service parameter QoE

Likert 5 Likert 3 Binary

Succ_rate_HTTP 0.168 0.149 0.309*

Cancellation_rate_HTTP − 0.320* − 0.301* − 0.406**

Avg_Server_Response_Time_HTTP − 0.114 − 0.179 − 0.130

Avg_Time_To_Get_1st_Data_All_HTTP − 0.790** − 0.792** − 0.647**

Retransmit_DL_Vol_Ratio_HTTP − 0.201 − 0.169 − 0.236

Retransmit_UL_Vol_Ratio_HTTP − 0.224 − 0.230 − 0.224

Max_DL_throughput_HTTP 0.616** 0.592** 0.515**

Max_UL_throughput_HTTP 0.575** 0.554** 0.488**

Avg_Time_To_Get_Data_HTTP 0.034 − 0.010 − 0.075

Avg_Transaction_Time_HTTP − 0.510** − 0.497** − 0.494**

Avg_Transfer_Time_HTTP − 0.491** − 0.487** − 0.523**

Radio_TCP_succ 0.239 0.241 0.147

Avg_Server_Response_Time_TCP, 0.066 − 0.029 0.008

Avg_Time_to_Connect_TCP − 0.831** − 0.835** − 0.669**

Avg_DL_throughput_TCP 0.482** 0.497** 0.402**

Avg_UL_throughput_TCP 0.652** 0.624** 0.534**

Ratio_DL_Bytes_Retr_TCP − 0.217 − 0.181 − 0.210

Ratio_UL_Bytes_Retr_TCP − 0.199 − 0.158 − 0.235

Ratio_DL_Packets_Retr_TCP − 0.304* − 0.307* − 0.303*

Ratio_UL_Packets_Retr_TCP − 0.133 − 0.115 − 0.175

Avg_DL_Max_RTT_TCP − 0.506** − 0.483** − 0.423**

Avg_UL_Max_RTT 0.129 0.079 0.085

Avg_Duration_Connection − 0.150 − 0.125 − 0.194

**Correlation is significant at the 0.01 level (2-tailed)
*Correlation is significant at the 0.05 level (2-tailed)
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3.2 Test cases and estimated logistic regression parameters

We consider a case (sample) to be a repeatable single test made by a single participant.

A number of recommended values exists for the required minimum number of samples

(cases) ranging from 15 to 50, but we adopted 60 samples per independent random

variable [18], as the ML-based logistic regression estimation significantly degrades for

rare test cases.

So, the counts of cases included/missing in the analysis are given in Table 3 (in ac-

cordance with Table 2), while Table 4 presents how the outcome random variable Y is

encoded.

The logistic regression coefficients for the model with independent random variable

Average-Time-to-Connect-TCP are estimated to take the values of α = 4.746, β = −

0.005, while their properties—the standard error (S.E.), the Wald Chi-square (χ2) test

value [18] for D.F. degrees of freedom, and the significance expressed by the p value—

are presented in Tables 5 and 6.

So, as we can see from the above tables, the Wald test [20] evaluates the independent

random variable Average-Time-to-Connect-TCP as statistically significant in the model,

as the p value is found to be very low: p < 0.001.

Table 2 Independent predicting variable Average-Time-to-Connect-TCP (ms), in-service measured at
the Gn interface

No. Avg_Time_to_
Connect_TCP

No. Avg_Time_to_
Connect_TCP

No. Avg_Time_to_
Connect_TCP

No. Avg_Time_to_
Connect_TCP

1 1123 16 601 31 4097 46 496

2 172 17 1054 32 222 47 295

3 502 18 2145 33 656 48 274

4 367 19 514 34 177 49 1668

5 433 20 798 35 344 50 544

6 589 21 776 36 51 704

7 608 22 989 37 340 52 759

8 781 23 959 38 5415 53 959

9 1490 24 1047 39 529 54 1292

10 997 25 286 40 674 55 2040

11 3195 26 189 41 728 56 1106

12 1165 27 231 42 1037 57 278

13 186 28 238 43 995 58 144

14 130 29 229 44 3906 59 280

15 246 30 797 45 1124

Table 3 Independent random variable X test cases

Unweighted cases N Percent

Selected cases Included in analysis 58 98.3

Missing cases 1 1.7

Total cases 59 100.0

Unselected cases 0 0

Total cases 59 100.0
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Moreover, as it is mentioned in Section 2, we tested the linearity assumption deter-

mining the validity of logistic regression, by applying the Box-Tidwell (1962) procedure

[22]. Accordingly, we tested the null-hypothesis that adding the new variable:

Avg Time To Connect TCP � ln Avg Time To Connect TCPð Þ

into regression would make no better prediction.

As it can be seen from low p values in Table 7, we found the logit linearity condition

holding, with just minor non-linearity possible.

3.3 Intercept-only model and its extension by prediction

Back to (2), at first, let us consider the model without taking into account the inde-

pendent random variable Average-Time-to-Connect-TCP, i.e., when:

Π xð Þ ¼ Pr Y ¼ 1jX ¼ xð Þ ¼ Pr Y ¼ 1ð Þ ¼ Π ð4Þ

which effectively modifies (2) into:

logitΠ ¼ ln oddsð Þ ¼ ln
Π

1−Π

� �
¼ α ð5Þ

Accordingly, in the next two tables, the outputs related to the model that includes

only the intercept value α, are presented. Such incomplete model predictions depend

purely on what category occurred most frequently in the data set, in accordance with

(4)/(5). It simply predicts that the service is acceptable, as the majority of participants

in the experiment considered the service acceptable (38 out of 58 participants answered

“yes”). So, applying this “best guess” strategy, one would be right for 65.5% of time

(Table 8).

Accordingly, the estimated statistics for this special case is presented in Table 9.

As exponential of α given in Table 9, the odds are estimated to be equal to 1.9, which

conforms to the ratio 38/20 of the counts of users who found the service acceptable

and not acceptable, respectively.

Now let us turn to the analysis of logistic regression with included independent ran-

dom variable X, i.e., the Average-Time-to-Connect-TCP as a predictor.

The likelihood ratio (LR) test is used to judge the null hypothesis that including the

Average-Time-to-Connect-TCP random variable into the model does not significantly

increase the ability to predict the decisions made by the subjects. This essentially im-

plies testing the ratio:

G ¼ −2 ln
L0
L1

� �
ð6Þ

of likelihoods L0 and L1 of test data representing the zero-valued and the maximum

likelihood estimate (MLE) of the parameter of interest, respectively. Under the

Table 4 Dependent random variable Y encoding

Original value Coded value

No 0

Yes 1
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hypothesis that β = 0, the statistics G follows the Chi-square distribution with 1 degree

of freedom [17].

The according test results are presented in Table 10.

From Table 10, it can be seen that, for the Chi-square model with 1 degree of free-

dom and the value of 35.817, it comes out that p < 0.00001, and we justifiably reject

the null hypothesis. So the results of this test indicate that including Average-Time-to-

Connect-TCP random variable into the model statistically significantly increases the

ability to predict the acceptability of the service to the users.

3.4 Testing the logistic regression model goodness of fit

Furthermore, adequacy of the model can be assessed by means of the Hosmer and

Lemeshow goodness-of-fit test, which actually evaluates inadequacy of the model in

predicting categorical outcomes, i.e., the hypothesis that the observed data are signifi-

cantly different from the predicted values coming out of the model.

The test essentially partitions n observations into g approximately equal-size groups–

deciles, so that the first group contains approximately n/10 observations with the smal-

lest estimated probability, and the last group of approximately n/10 observations with

the largest estimated probabilities [17].

The statistics is:

Ĉ ¼
Xg
k¼1

O1k−E1kð Þ
E1k 1−ξkð Þ

2

; E1k ¼ skξk ð7Þ

where O1k is the count of observations with Y = 1 (out of sk observations in total) in

the kth group, and E1k is the expected count of the event in the kth group, whereas ξk
is the average predicted event probability for the kth group.

The statistics of (7) is close to χ2 distribution with 8 degrees of freedom (as for totally

g = 10 groups, it is: 10 − 2 = 8). Small enough p value (< 0.05) implies that the model

poorly fits to data.

The 2 × g contingency table presents the observed and the expected counts of the

event Y = 1. Accordingly, resulting from our test data are entries in Table 11.

Finally, as it can be seen in Table 12, the obtained high p value indicates low-

significance inadequacy of the fitting model, which implies that the model is not to be

considered inadequate (but opposite, i.e., adequate).

3.5 Category prediction

Furthermore, as the logistic regression estimates the probability of the event that the

service is acceptable to users, we adopt a typical decision threshold of 0.5, meaning that

Table 5 Estimated logistic regression intercept and its properties

Intercept α S.E. Wald D.F. p value

4.764 1.261 14.261 1 0.00016

Table 6 Estimated logistic regression slope and its properties

Predictor variable Slope β S.E. Wald D.F. p value

Average-Time-to-Connect-TCP − 0.005 0.001 12.116 1 0.0005
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if the estimated probability is greater than or equal to 0.5, the event is classified as the

one that will happen; otherwise, the event is classified as the one that will not happen

[23].

Accordingly, the observed and predicted classifications are presented in Table 13.

As it is already pointed out in Section 3.3, Table 8, where the classification includes

just the intercept constant, we can see that 65.5% of cases overall could be correctly

classified by simply considering all cases (to be classified) as choosing “yes” for

acceptability.

However, with the independent random variable included in the model, the so-called

Percentage-Accuracy-in-Classification (PAC) [18] can be seen in Table 13 to be equal

to 84.5%, as the model correctly classified that many cases on a relative scale, which is

a significant improvement with regard to the case of classification without the predictor

variable.

Another classification feature is the sensitivity, which is the percentage of cases with

the target category correctly predicted by the model when the quality of services was

evaluated as acceptable (“yes”). So, as it is presented in Table 13, 86.8% of test cases,

when participants rated service as acceptable, were also classified by the model as

acceptable.

On contrary, the specificity is the percentage of cases that were found to not have the

target category [21], i.e., which were correctly classified by the model when the service

was not rated as acceptable. In our study, the specificity was found to be equal to

80.0%, meaning that 80% of participants who did not rate service as acceptable were

correctly classified by the model, Table 13.

The positive predictive value is the percentage of correctly classified cases exhibiting

the target characteristic, relative to the total count of cases predicted to have the target

characteristic. In this case, simple calculus provides:

33= 33þ 4ð Þ ¼ 89:19%

Table 7 Testing linearity assumption

Predicting variable Β S.E. Wald D.F. p value

Avg_Time_to_Connect_TCP − 0.034 0.014 6.247 1 0.012

Avg_Time_To_Connect_TCP × ln(Avg_Time_To_Connect_TCP) 0.004 0.002 5.434 1 0.020

Intercept α Α S.E. Wald D.F. p value

8.014 2.545 9.914 1 0.002

Table 8 Classification without the independent predictor

Observed Predicted

Acceptability Correct
prediction
%

No Yes

Acceptability No 0 20 0.0

Yes 0 38 100.0

Overall prediction % 65.5
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meaning that, out of all cases predicting the service acceptable, for 89.19% of them, the

prediction is correct.

The negative predictive value is the percentage of correctly classified cases without

the target characteristics, relative to the total count of cases predicted as not having the

target characteristics. In this case, it is:

16= 16þ 5ð Þ ¼ 76:19%;

meaning that out of all cases predicting the service not acceptable, for 76.19% of them,

the prediction is correct.

Finally, by substituting the values of α = 4.746, β = − 0.005 from Section 3.2, into the

regression Eq. (2), the latter can be rewritten as:

logit Π xð Þ½ � ¼ ln oddsð Þ ¼ 4:764−0:005x ð8Þ

where x = Average-Time-to-Connect-TCP, while (3) turns into:

Π xð Þ ¼ e4:764−0:005x

1þ e4:764−0:005x
ð9Þ

The conditional probability (x) that, having measured Average-Time-to-Connect-

TCP milliseconds, the acceptable quality of web browsing service will result is the tar-

get logistic regression test outcome, which is plotted in Fig. 4.

As it can be seen on the above graph, the transition between the acceptability and

non-acceptability is rather steep, as the curve exhibits a threshold effect around the

predictor value of 1 s.

As an example, let us calculate how much would the odds be affected by reducing

the Average-Time-to-Connect-TCP parameter for 100ms. With this regard, we simply

substitute the increment as follows:

ln odds xþ 100ð Þ½ � ¼ 4:764−0:005∙ xþ 100ð Þ ð10Þ

ln odds xð Þ½ �− ln odds xþ 100ð Þ½ � ¼ 0:5 ð11Þ

odds xð Þ
odds xþ 100ð Þ ¼ e0:5 ¼ 1:65 ð12Þ

According to (12), it comes out that by reducing the Average-Time-to-Connect-TCP

parameter for 100 ms, the chance of success, i.e., the chance that the service is accept-

able, increases by the factor of 1.65.

Table 9 The intercept-only model attributes

Intercept α S.E. Wald D.F. p value

0.642 0.276 5.398 1 0.020

Table 10 Likelihood ratio test statistics

Chi-square D.F. p value

35.817 1 <0.00001
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Table 12 Hosmer and Lemeshow test

Chi-square D.F. p value

9.531 8 0.300

Table 11 Contingency table for Hosmer and Lemeshow test

K Acceptability Total

No Yes

Observed Expected Observed Expected

1 6 5.993 0 0.007 6

2 3 4.897 3 1.103 6

3 5 3.630 1 2.370 6

4 3 2.486 3 3.514 6

5 3 1.418 3 4.582 6

6 0 0.759 6 5.241 6

7 0 0.397 6 5.603 6

8 0 0.198 6 5.802 6

9 0 0.148 6 5.852 6

10 0 0.073 4 3.927 4

Table 13 Classification; observed vs. predicted

Observed Predicted

Acceptability Percentage
of correctNo Yes

Acceptability No 16 4 80.0

Yes 5 33 86.8

Overall percentage 84.5

Fig. 4 Probability (x) of acceptable web service, conditioned by Average-Time-to-Connect-TCP
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4 Conclusions
We proposed a simple logistic regression model with a single independent predicting

variable, namely the Average-Time-to-Connect-TCP network parameter, derived from

live traffic data captured by passive probe on the Gn interface of the mobile network,

to estimate the users’ quality of experience acceptability of the web browsing service.

In parallel, we conducted simultaneous subjective users’ service quality acceptability

tests with a number of participants, to finally correlate the obtained values to detailed

records of the TCP protocol.

The model was found to provide correct estimation of the experienced service quality

acceptability, with high statistical significance determined by Chi-squared value above

35, p value below 0.0005, and correct classification in 84.5% of cases.

More specifically, the sensitivity and specificity were found to be equal to 86.8% and

80%, respectively, while the positive and negative prediction values were evaluated to

be equal to 89.19% and 76.19%, respectively.

Reducing by 100ms the network service parameter that is selected as the predicting

variable was found to increase the chance of the service acceptability by the factor of

1.65.

We plan to extend the proposed approach application range and enhance its ability

to predict real-life acceptability of service quality experience, by involving more experi-

mental scenarios and wide-area users, as well as other aspects such as context and ex-

tended set of parameters. Moreover, the full-scale measurement campaign would go

beyond resource-limited preliminary tests reported here, and in 4G/5G environment,

where this approach and analysis still apply.
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Abbreviations
DiffServ: Differentiated services; HSPA+: High Speed Packet Access Evolved; HTTP: Hypertext Transfer Protocol;
IXP: Integrated xDR Platform; LR: Likelihood ratio; ML: Maximum likelihood; MLE: Maximum likelihood estimate;
MOS: Mean opinion score; MSISDN: Mobile Station International Subscriber Directory Number; OS: Operating system;
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xDR: Extended Detailed Records
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