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Abstract

Reliability factors in Markov random field (MRF) could be used to improve
classification performance for synthetic aperture radar (SAR) and optical images;
however, insufficient utilization of reliability factors based on characteristics of
different sources leaves more room for classification improvement. To solve this
problem, a Markov random field (MRF) with amendment reliability factors
classification algorithm (MRF-ARF) is proposed. The ARF is constructed based on the
coarse label field of urban region, and different controlling factors are utilized for
different sensor data. Then, ARF is involved into the data energy of MRF, to classify
the sand, vegetation, farmland, and urban regions, with the gray level co-occurrence
matrix textures of Sentinel-1 imagery and the spectral values of the Landsat 8
imagery. In the experiments, Sentinel-1 and Landsat-8 images are used with overall
accuracy and Kappa coefficient to evaluate the proposed algorithm with other
algorithms. Results show that the overall accuracy of the proposed algorithm has the
superiority of about 20% in overall precision and at least 0.2 in Kappa coefficient
than the comparison algorithms. Thus, the problem of insufficient utilization of
different sensors data could be solved.

Keywords: Markov random field, Amendment reliability factors, SAR image, Optical
image, Classification

1 Introduction
The availability of reliable land cover information is of great importance for many

earth scientific applications, such as the transition of land, increasing demand for food

and fiber, biodiversity, and climate [1–5]. Earth observation has been proven to be one

of the most useful and efficient approach for land cover classification because it can

acquire large scale land cover information quickly and repeatedly [6–8]. Mapping and

monitoring land cover, optical remote sensing data has been extensively used for de-

cades, because of its ability to cover large areas in high temporal frequency and over-

come the problem of inaccessible areas [9]. However, optical remote sensing data
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could be affected by unfavorable weather condition, and there are some difficulties re-

lated to the so-called spectral confusions that lower the classification accuracy [10].

Synthetic aperture radar (SAR) as an active remote sensing technique can capture in-

formation in all-day, and even in unfavorable weather conditions, but could not provide

spectral information, resulting in difficulties in image interpretation [11]. So the data

information provided by a single sensor is incomplete, inconsistent, or inaccurate.

Thus, utilizing SAR and optical data as sources are indeed highly complementary,

where SAR data could ensure all-day and all-weather coverage, and optical data could

provide abundant spectral information. So the joint usage SAR and optical data have

been adopted in many applications [12]. In this regard, combination of two kinds of

data could be utilized to improve good performance on land cover classification.

Joint optical-SAR data classification has been addressed for a couple of decades and

many methodological approaches have been proposed, including statistical pattern rec-

ognition, neural networks, decision fusion, evidence theory, kernel-based learning, and

Markov random field (MRF) [13]. Among these methods, MRF is a probabilistic model

that is used to integrate spatial information into image classification [14], demonstrat-

ing the advantage to improve classification performance. Moser integrated SVMs and

Markov random field models in a unique formulation for spatial contextual classifica-

tion [15]. Hedhli proposed a classification framework based on hierarchical Markov

random fields [16]. Tarabalka involved the edge information into spatial energy term to

improve the classification performance [17]. Solberg proposed the Markov random

fields with reliability factors, with GIS data to complete multisource classification [18].

The motivation of this paper is to propose a MRF algorithm with amendment reli-

ability factors by utilizing Sentinel-1 and Landsat8 images for land cover classification

at coastal regions. Inspired by [18, 19], the information of different sources appear not

equally reliable. Thanks giving to the usage of GIS data, [18] could provide good classi-

fication results. If GIS data is not available, MRF with reliable factors may result in clas-

sification performance degeneration due to insufficient utilization of several sensors’

data.

In this paper, a classification algorithm based on MRF with amendment reliability

factors is proposed. Based on the coarse urban label field, the additional controlling fac-

tors are involved in reliability factors to construct the amendment reliability factors.

The amendment reliability factors could fully utilize the advantage of Landsat 8 and

Sentinel-1 to balance the contribution of weight in the data term of MRF. The perform-

ance is compared to some existing algorithms. The MRF with amendment reliability

factors performs better than those algorithms.

The rest of this paper is organized as follows. In Section 2, related works are briefly

reviewed, and the proposed classification algorithm driven by amendment reliability

factors is described. Experimental results and discussions are provided in Section 3 and 4.

Finally, conclusion is drawn in Section 5.

2 Methods
2.1 Related works

Assuming that the images are derived from n sensors, the size of the image taken from

one of the sensors with number s is M ×N; that means each image provided by this
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sensor has M ×N pixels. If feature information has been extracted from this image, the

feature vector of each pixel in this sensor could be expressed as XS(1, 1), …, XS(M,N),

S = 1, 2, . …n. Similarly, if the images provided by the sensor s have Ds bands, we can

also use images XS(i, j) representing a grayscale vector for whole bands of the sensor s

at the location of (i, j). That is, XS(i, j) = (XS(i, j, 1),…, XS(i, j,Ds)), where XS(i, j, g) repre-

sents the grayscale value of the band g. In this paper, n is 2, indicating the considered

images consisting of a Sentinel-1 SAR image and a Landsat-8 OLI optical image.

In the images derived from n sensors, it is assumed that there are K objects, namely

ω1, …, ωK. For prior probability P(ω1), …, P(ωK), C = {C(i, j); 1 ≤ i ≤M, 1 ≤ j ≤N} denotes

the label set for the whole scene, where C(i, j) ∈ {ω1, ω2,…, ωk}. All the pixels in the im-

ages could be represented by XS = {XS(i, j); 1 ≤ i ≤M, 1 ≤ j ≤N}.

The task of multisource classification is to maximize the posterior probability P(C|

X1,…, Xn) of each pixel, depicted as [18]:

P CjX1;…;Xnð Þ ¼ P X1;…;XnjCð ÞP Cð Þ
P X1;…;Xnð Þ ð1Þ

where P(X1,…, Xn|C) is the conditional probability of feature vector X1, …, Xn with the

label C. P(C) is a prior probability, and P(X1,…, Xn) is the probability of n sensors data.

Assume the images of different sensors are identical independent distributions, we

could get the formula as P(X1,…, Xn|C) = P(X1|C)⋯P(Xn|C). The corresponding

weight value is given according to the reliability factors for each sensor data. Thus, the

posterior probability could be formulated as [18]:

L CjX1;…;Xnð Þ ¼ P X1jCð Þα1⋯P XnjCð ÞαnP Cð Þ ð2Þ

where αs denotes a reliability factor with 0 ≤ αs ≤ 1. If the sensor s has low reliability, αs
is zero resulting PðXsjCÞαs ¼ 1. This means that the conditional probability will have no

effect on the likelihood function, while, for a sensor with lesser reliability, the closer the

reliability factor is close to 0, the more larger it will be to the posterior probability. By

using spatial information, prior probability for class labels P(C) could be depicted as [20]

P C i; jð ÞjC k; lð Þ; k; lf g≠ i; jf gð Þ ¼ P C i; jð ÞjC k; lð Þ; k; lf g∈ξ ij
� � ¼ 1

Z
e−U Cð Þ=T

ð3Þ

where U is the potential energy function, C denotes the clique, Z is the normalization

constant, T is the temperature constant, ξij is the local neighborhood pixel set of the

pixel (i, j).

Literature [21] pointed out that the reliability of a sensor could upgrade or down-

grade the data classes. The conditional probabilities can be grouped into a matrix R,

and denoted by

R ¼

P ω1jXS;1
� �

P ω2jXS;1
� �

… P ωK jXS;1
� �

P ω1jXS;2
� �

P ω2jXS;2
� �

… P ωK jXS;2
� �

: : … :
: : … :
: : … :

P ω1jXS;Z
� �

P ω2jXS;Z
� �

… P ωK jXS;Z
� �

2
6666664

3
7777775

ð4Þ
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where XS, 1 represents the feature vector of the first pixel in the sensor image s or the gray

vector at the first pixel position (assuming there are multiple bands), i.e., XS, 1 =XS(1, 1).

XS, Z represents the feature vector of the last pixel in the sensor image or the last pixel

position gray vector, i.e., XS, Z =XS(M,N) with Z =M ×N. If the sensor data is reliable, the

class label information for each data of the sensor will be unique. Specifically, each row in

the matrix has only one value with 1, and all the others would be zero. If the sensor data

is extremely unreliable, then the class label information for each data is random. Thus,

there is an uncertainty of log[1/P(ωj|Xs, i)] for a certain observation data Xs, i at sensor s

with class information ωj, and the average uncertainty of the data about the class informa-

tion can be calculated as [21]

H ωjXs;i
� � ¼ X

j

P ω jjXs;i
� �

log
1

P ω jjXs;i
� � ð5Þ

If the uncertainty of the sensor data can be measured as H(ω| Xs), it could be

expressed by

H ωjXsð Þ ¼
X
i

P Xs;i
� �

H ωjXs;i
� �

¼
X
j

X
i

P Xs;i
� �

P ω jjXs;i
� �

log
1

P ω jjXs;i
� �

¼
X
j

X
i

P Xs;i;ω j
� �

log
1

P ω jjXs;i
� �

ð6Þ

If only αs =H(ω| Xs) of the image is taken as the sole basis for the reliability factor of

the image, it could have influence on the posterior probability (2). If αs is small except

0, the sensor data has more effect on (2). Conversely, it plays less role. However, due to

the different advantages of different sensors on certain land cover, the reliability factors

may result in low classification performance or misclassification. When a reliability fac-

tor is not zero, a small reliability factor will make the posterior probability large, and a

large reliability factor will make the posterior probability small. Taking two sensors as

an example, sensor 1 has an advantage on land cover A over sensor 2, but the reliability

factor of sensor 1 may be large and the reliability factor of sensor 2 is small, resulting

in a large contribution of sensor 2 to classification. So the classification performance

will not be as good as that of sensor 1 for land cover A. Furthermore, the land cover A

is classified as another class with small reliability factor, resulting in misclassifications.

Therefore, for certain land cover, a sensor with good classification advantage may be

chosen. Assuming correct classification, the reliability factor should be small, and the

posterior probability is large. The sensor without such an advantage should be with a

large reliability factor. Then, the posterior probability is small. This will improve the

classification performance to a certain extent and reduce the problem of

misclassifications.

In order to solve this problem, we use different reliability factors for different

land covers. Different sensors in the same region have different reliability factors,

so that the data with better classification advantage could be more important, that

is, the reliability factor with better classification ability is lesser. Different sensors

use different reliability factors in different land covers. Different sensor data have

different classification ability for different land covers, such as SAR images having
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better classification for urban areas, but for those areas without much detail, such

areas could not obtain good results. The optical image has rich spectral informa-

tion, so the discrimination ability of areas without detailed information is larger.

Therefore, we divide the image to be classified into the urban area and the non-

urban area and give different reliability factors to different sensor data for different

areas.

2.2 Proposed method

Since the reliability factors of the two sensors are fixed in (5), reliability factors in dif-

ferent object regions could not be given full play to their classification advantages. In

order to solve this problem, we assume that different object areas should adopt differ-

ent reliability factors, so that data with good classification advantage could play a

greater role in different land covers, that is, the reliability factor with good classification

ability is lesser and vice versa. Starting from the reliability factors, we divide the reliabil-

ity factor of Eq. (5) into two quantities as

λ
0
SAR;i ¼ H ωjXSAR;i

� �
¼

X
j

P ω jjXSAR;i
� �

log
1

P ω jjXSAR;i
� �

λ
0
Optical;i ¼ H ωjXOptical;i

� �
¼

X
j

P ω jjXOptical;i
� �

log
1

P ω jjXOptical;i
� �

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

where λ
0
SAR;i and λ

0
Optical;i are the reliability factors of the i pixel in the SAR image and

the optical image, respectively. XSAR, i and XOptical, i represent the i pixel in the SAR

image and the optical image, respectively. Normalizing the SAR image and the optical

image reliability factors, the reliability factors at the same position in the SAR image

and the optical image both could reach 1. However, when the two reliability factors are

close to each other, the advantage of one image cannot be highlighted, which leads to

the inability to improve the classification accuracy. To solve this problem, according to

the literature [22], we introduce the idea of stretching. We stretch (7) and get

λSAR;i ¼
1= 1þ exp −16� λ

0
SAR;i þ 4

� �� �
1= 1þ exp −16� λ

0
SAR;i þ 4

� �� �
þ 1= 1þ exp −16� λ

0
Optical;i þ 4

� �� �

λOptical;i ¼
1= 1þ exp −16� λ

0
Optical;i þ 4

� �� �
1= 1þ exp −16� λ

0
SAR;i þ 4

� �� �
þ 1= 1þ exp −16� λ

0
Optical;i þ 4

� �� �

λSAR;i þ λOptical;i ¼ 1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ

where λSAR, i and λOptical, i are the normalized reliability factors. The aim of (8) is to

make highly reliable sensor data having more contribution in the classification process.

At medium resolution, SAR images have better classification accuracy for texture

areas such as urban areas than optical images [23], which means that SAR images can
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have better recognition ability for urban areas. In SAR images, there are often many

bright spots inside the building area that are reflected by objects such as oblique roofs

and sharp corners. The middle of the bright spot is mixed with shadows, black roads,

and light gray blocks caused by vegetation, and the arrangement of the buildings is usu-

ally relatively neat, so it is easy to form a texture with a regular light and dark interval

[24]. Therefore, we perform a measure of uniformity on SAR images, to extract urban

areas and obtain image classification method with different reliability factors for differ-

ent sensor images.

At present, the extraction of urban areas based on SAR images has been re-

ported. In the literatures [24, 25], both of them using the gray level co-

occurrence matrix texture [26] as the main means for building extraction in SAR

images. In [25], the extracted urban area is used as a marking field, and the SAR

image is divided into urban area and non-urban area. Then, a joint utilization

rule from the SAR image and multi-spectral image based on these two different

areas is given.

Inspired by this idea, in order to improve the measurement of reliability factors, we

introduce urban area as the label field into the classification of SAR and optical images.

In the extraction of urban areas, we use the entropy information of the gray level co-

occurrence matrix used in [25]. The difference is that our method does not use the

block-based extraction urban area strategy in [25], because the edge fit of [25] is poor

according to the experiments. Here, we use a pixel-based approach to extract urban

areas. The specific description is as follows: First, the gray level co-occurrence matrix is

calculated for the SAR image, and the entropy information is calculated from the gray

level co-occurrence matrix [25].

In order to improve the accuracy of urban area extraction, we need to make full

use of the information of SAR and optical images. The extracted urban area could

be obtained by an entropy threshold for Sentinel-1 image with 0.6 (parameter sen-

sitivity analysis could be seen in experimental section), providing a coarse label

field. Figure 1 a–c are the Sentinel-1 image, the Landsat-8 image, and the coarsely

extracted urban area image in Xiamen, China. Figure 2a–c are the Sentinel-1

image, the Landsat-8 image, and the coarsely extracted urban area image in Neiye,

Japan.

Fig. 1 Urban area extraction in Xiamen, China. The study site in Xiamen, China is shown by a Sentinel-1
image and b Lansat-8 image. The coarse extracted urban area with white color c
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After obtaining the urban area, we propose the strategy to obtain amendment reli-

ability factor for the urban area and the non-urban area. In order to make the contribu-

tion of the highly reliable sensor data in classification of these two sources, the strategy

with amendment reliability factors could be depicted as: It is assumed that ωB denotes

the urban area label, and ωB
0 indicates the label of the non-urban area. We define that

the amendment factor could be expressed by the reliability factors in (7) added

with controlling factors such as λe = 1, λ
0
e ¼ 0. If the current pixel is in the urban

area, the conditional probability P(Xi| ωB) belonging to the urban category depicted

as PðXijωBÞ ¼ PðXSAR;ijωBÞλSAR;iþλ
0
e � PðXOptical;ijωBÞλOptical;iþλ

0
e should be increased,

where the amendment reliability factor is denoted as αs;i ¼ λs;i þ λ
0
e , while the con-

ditional probability of none-urban PðXijωB
0 Þ belonging to the urban category could

be denoted as PðXijωB
0 Þ ¼ PðXSAR;ijωB

0 ÞλSAR;iþλe � PðXOptical;ijωB
0 ÞλOptical;iþλe and the

amendment factor could be denoted with αs, i = λs, i + λe. The reason is that the

conditional probability P(Xs, i| ωj) of the i pixel has the value between 0 and 1.

Therefore, the lesser the value of the conditional probability, the lesser the sensor

will contribute to the classification. If the current pixel is in the urban area, the

value of the amendment reliability factor of a sensor data under the correct label

should be as small as possible, and the reliability of the sensor for non-building

with incorrect label should be larger, so the former case λ
0
e is added, while the lat-

ter case λe is added. Thus, the probability that the current point is judged to be a

non-urban area becomes small, and the probability of being judged as an urban

area becomes large. Conversely, if the current pixel is in a non-urban area, the

probability that the current point is judged to be an urban should be as small as possible,

and the current point is a non-urban should be as large as possible. It means that Pð
XFused;ijωBÞ ¼ PðXSAR;ijωBÞλSAR;iþ

1
ep � PðXOptical;ijωBÞλOptical;iþ 1

ep should be small for the pixel

in the non-urban area with the amendment reliability factor αs;i ¼ λs;i þ 1
ep, and vice versa,

where ep is a very small positive real number. The amendment reliability factors in non-

urban belong to the non-urban in the SAR image and the optical image could be denoted

as αSAR, i = λSAR, i + λe, and αOptical;i ¼ λOptical;i þ λ
0
e respectively. The reason is that when

Fig. 2 Urban area extraction in Neiye, Japan. The study site in Neiye, Japan are shown by a Sentinel-1
image and b Lansat-8 image. The coarse extracted urban area with white color (c)
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the current pixel is in a non-urban area, the value of the amendment reliability factor ωB

under a given label with urban should be as large as possible, and the design αs;i ¼ λs;i

þ 1
ep ensures that the value of the amendment reliability factor is large enough. The

smaller the value of the amendment reliability factor ωB
0 of the sensor under the given

label with non-building should be smaller. In order to highlight the important effect be-

tween SAR image and optical images in the non-urban area, λ
0
e and λe are introduced into

αOptical, i and αSAR, i, thus ensuring αSAR, i > αOptical, i, demonstrating the nature that the

optical image contributes more to the image classification in the non-urban area than the

SAR image. From the above discussion, we get

if Maski ¼ 1; λe ¼ 1; λ
0
e ¼ 0 :

P Xijω j
� �
¼ P XSAR;ijωB

� �λSAR;iþλ
0
e � P XOptical;ijωB

� �λOptical;iþλ
0
e

P XSAR;ijωB
0

� �λSAR;iþλe � P XOptical;ijωB
0

� �λOptical;iþλe

(

if Maski≠1; λe ¼ 1; λ
0
e ¼ 0; ep ¼ 0:00001 :

P Xijω j
� �
¼ P XSAR;ijωB

� �λSAR;iþ 1
ep � P XOptical;ijωB

� �λOptical;iþ 1
ep

P XSAR;ijωB
0

� �λSAR;iþλe � P XOptical;ijωB
0

� �λOptical;iþλ
0
e

8<
:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð9Þ

where Maski = 1 indicates that the current pixel is in the urban area and Maski ≠ 1 indi-

cates that the current pixel is in a non-urban area.

If U(C| X1,…, Xn) = log(L(C| X1,…, Xn)), we introduce (8) into the following energy

function [21] as

U CjX1;…;Xnð Þ ¼
Xn
s¼1

αsUdata XSð Þ þ Usp Cð Þ ð10Þ

Then, (9) is used in (10), we get the object functions of MRF with amendment reli-

ability factors for classification as follows:

(1) If the current pixel is in the building area, then the energy function that belongs to

the building is

Udata XFusedð Þ þUsp Cð Þ
¼ −f λSAR;i þ λ

0
e

� �
log P XSAR;ijωB

� �� �
þ λOptical;i þ λ

0
e

� �
log P XOptical;ijωB

� �� �g þ Usp Cð Þ
ð11Þ

(2) If the current pixel is in the building area, then the energy function that belongs to

the non-building is
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Udata XFusedð Þ þ Usp Cð Þ
¼ −f λSAR;i þ λe

� �
log P XSAR;ijωB

0
� �� �

þ λOptical;i þ λe
� �

log P XOptical;ijωB
0

� �� �g þ Usp Cð Þ
ð12Þ

(3) If the current pixel is in a non-building area, then the energy function that belongs

to the building is

Udata XFusedð Þ þUsp Cð Þ
¼ −f λSAR;i þ 1

ep

� �
log P XSAR;ijωB

� �� �
þ λOptical;i þ 1

ep

� �
log P XOptical;ijωB

� �� �g þUsp Cð Þ
ð13Þ

(4) If the current pixel is in a non-building area, then the energy function that belongs

to the non-building is

Udata XFusedð Þ þUsp Cð Þ
¼ −f λSAR;i þ λe

� �
log P XSAR;ijωB

0
� �� �

þ λOptical;i þ λ
0
e

� �
log P XOptical;ijωB

0
� �� �g þ Usp Cð Þ

ð14Þ

If the current pixel is in the building area, the energy function of each class is calcu-

lated according to (11) and (12), then the label that minimizes the energy function is

the final label for the current pixel. If the current pixel is in the non-urban region, the

energy function of each class is calculated according to (13) and (14), and the class that

minimizes the energy function is the final label for the current pixel.

3 Results
3.1 Study sites, data, and evaluation indexes

Based on Windows 7 system and Matlab2015a as the experimental platform, Sentinel-1

image and Landsat-8 image are used in the experiments. The C-band Level-1 products

with an imaging mode of IW in Sentinel-1 are used. The single-view spatial resolution

is 5 by 20 m. The Landsat8 satellite launched by NASA on February 11, 2013, carries

not only the OLI Land Imager, but also the TIRS Thermal Infrared Sensor. The reso-

lution is 30 × 30m and the panchromatic resolution is 15 × 15m.

Experiments were chosen in two sites of Xiamen, China, and Neiye, Japan. The size of the

image in Xiamen is 762 × 805. The classification categories of this area are: urban area, vege-

tation and water area. As shown in Fig. 3, Fig. 3a is a preview image of Sentinel-1, and the

gray rectangular region in this figure is used in the experiment. Figure 3b shows an image

with a resolution of 2.17m in Google Earth. It is recommended to use the optical image to

mark the Ground Truth map of the Xiamen experimental area. The image size of Neiye is

549 × 504 (the size is the Sentinel-1 image size, the Landsat-8 image needs to be registered

Shi et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:87 Page 9 of 20



and upsampled to reach this size). The classification categories of the area are urban area,

vegetation, farm land, and sand. As shown in Fig. 4, Fig. 4a is a preview image of Sentinel-1,

where the gray rectangular region is used in the experiment. Figure 4b is an image with a

resolution of 2.17m in Google Earth. The optical image is also used to mark the Ground

Truth map for Neiye. Both study sites have been co-registered with upsampling to 30 × 30m.

The accuracy evaluation index is dependent on the confusion matrix. Product’s ac-

curacy (PA), user accuracy (UA), overall accuracy (OA), and Kappa coefficients are cal-

culated for quantitative evaluation [16].

3.2 Parameters setting

For SAR images, the grayscale co-occurrence matrix window sizes of SAR images in

Xiamen and Neiye are 9 and 33 (according to parameter performance analysis), and the

spatial smoothing weights of Markov random fields are 0.01 and 0.001, respectively

Fig. 3 The site of Xiamen, China. The whole image is provided, containing the site of Xiamen as shown by
a Sentinel-1 image and b Google Earth image

Fig. 4 The site of Neiye, Japan. The whole image is provided, containing the site of Neiye as shown by a
Sentinel-1 image and b Google Earth image
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(according to parameter performance analysis). The threshold values of the SAR images

were selected to be 0.5 respectively (according to parameter performance analysis). The

training sample selection and stopping strategy adopt the method consistent with the

comparison algorithms. At each iteration, the samples with top 20% of the classification

accuracy are selected as the training data set. In order to reduce the running time of

the algorithm and ensure the accuracy of the algorithm, we choose the label updating

rate less than 5%; then, the iterations are stopped. For the optical image, bands of 4, 3,

and 2 in Landsat-8 are used. The spatial smoothing weights and the training data set

selection are as same as those in SAR images. The proposed algorithm is named as

MRF-ARF.

The comparison algorithm adopts a pixel-based fusion classification algorithm [22],

named as ATWT-EMD, and the parameters are set as follows: the number of layers

decomposed by the à trous wavelet transform (ATWT) is 3 and the number of layers

decomposed by empirical mode decomposition (EMD) is 3. The spatial smoothing

weights of the Markov random field in Xiamen and the inland are 0.01 and 0.001, re-

spectively. At each iteration, the samples with top 20% of the classification accuracy are

selected as the training data set. When the label updating rate is less than 5%, then the

iteration is stopped.

The classification algorithm based on reliability factors without GIS data is adopted

[18] named as MRF-RF. The parameters are set as follows: the spatial smoothing

weights of the Markov random field in Xiamen and the Neiye are 0.01 and 0.001, re-

spectively. At each iteration, the samples with top 20% of the classification accuracy are

selected as the training data set. When the label updating rate is less than 5%, then the

iteration is stopped.

3.3 Experimental comparison

The site in Fig. 5 is Xiamen, China. Figure 5a–h are the original Landsat-8 image, the

original Sentinel-1 image, Ground truth map, the result of MRF-ARF, the result only

on optical image classification, the result only on SAR image classification, the result of

MRF-RF, and the result of ATWT-EMD. The ground truth map as shown in Fig. 5c in-

dicates red color for urban, green color for water, and blue color for vegetation. As

shown in Fig. 5d, the consistency of MRF-ARF with the data label is the highest, and

the urban area is basically consistent with the urban area. Therefore, the extraction re-

sults seem to be good. In Fig. 5d, there is a fault in the narrower part of the water. This

is because Markov random field has the effect of spatial smoothness, that is, the energy

of the data term is not high, resulting into such a fault.

As shown in Fig. 5e, the classification result based solely on the optical image is good

in non-urban areas, but some point-like error labels appear in the vegetation and urban

regions. This is because the optical image-based classification only uses the spectral

characteristics of the optical image, resulting into such problem.

When only the SAR image is used, as shown in Fig. 5f, the classification of the urban

area can achieve good result, while those regions lack the detailed texture due to the

electromagnetic wave reflection information, misclassification could occur in non-

urban areas.
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For the result of MRF-RF as shown in Fig. 5g, the optical image reliability factor is

small because it cannot be excluded in the urban area, that is, the reliability factor in

optical image contributes more than that in the SAR image. In the non-urban area, it is

also possible that the reliability factor in the SAR image is small, providing more contri-

bution to the objective function than that in the optical image. In other words, MRF-

RF method is lack of full utilization of reliability factors. The proposed MRF-ARF algo-

rithm has strong guiding ability due to the existence of urban region marking field.

That is, in this area, the advantage of the SAR image is exerted (the SAR image has a

good recognition ability for the building), and in the non-urban area, the optical image

is fully utilized (using the spectral characteristics of the optical image).

For the result of ATWT-EMD, as shown in Fig. 5h, it can be seen that the ATWT-

EMD method has significantly classification labels in the vegetation area. That is to say,

Fig. 5 Classification results of Xiamen, China. The study site in Xiamen could be shown by a Landsat 8
image and b Sentinel-1 image. The ground truth (c). The classification results are provided, with the
proposed MRF-ARF algorithm combing two sources d, the result by optical source (e), the result by SAR
source (f), and the results of MRF-RF and ATWT-EMD algorithms (g, h)
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this method also has a guiding effect. It means, in the urban area, the characteristics of

the SAR image are more prominent, while in the non-urban area, the spectral charac-

teristics of the optical image are more prominent.

The site in Fig. 6 is Neiye, Japan. Figure 6a–h are the original Landsat-8 image, the

original Sentinel-1 image, Ground truth map, the result of MRF-ARF, the result only

on optical image classification, the result only on SAR image classification, the result of

MRF-RF, and the result of ATWT-EMD. The ground truth map as shown in Fig. 6c in-

dicates red color for urban, green color for sand, pink color for farmland, and blue

color for vegetation.

From Fig. 6d, compared with the experimental result in Xiamen area, the classifica-

tion effect of the urban area in Neiye is slightly worse, which is due to the deviation ac-

cording to extraction of the urban area. The urban areas may not be so dense, and

Fig. 6 Classification Results of Neiye, Japan. The study site in Neiye could be shown by a Landsat 8 image
and b Sentinel-1 image. The ground truth (c). The classification results are provided, with the proposed
MRF-ARF algorithm combing two sources (d), the result by optical source (e), the result by SAR source (f),
and the results of MRF-RF and ATWT-EMD algorithms (g, h)
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there are more surrounding vegetation areas. Beside the boundary between urban and

farmland, some misclassifications have also appeared. This is because this area belongs

to non-urban areas.

When using only optical image for classification as shown in Fig. 6e, the classification

of non-urban areas is very good, but the urban area will be misclassified, because this

area is often mixed with shadows, black roads, and light gray plates together with

vegetation.

When only SAR image classification is used as shown in Fig. 6f, the classification ef-

fect of non-urban areas is very poor, indicating that SAR images have less classification

ability for areas without detailed information.

For the result of MRF-RF as shown in Fig. 6g, in the urban area, it is possible that the

reliability factor of the optical image is smaller than that of the SAR image, showing

that the optical image has a greater advantage in the classification, resulting in a

misclassification.

For the result of ATWT-EMD as shown in Fig. 6h, there are still some points of mis-

classification in the urban area, namely, shadows, black roads, and light gray plates

caused by vegetation.

To quantitatively assess the classification performance, product’s accuracy (PA),

user’s accuracy (UA), overall accuracy (OA), and Kappa coefficient (KC) are utilized.

The comparison of experimental results in Xiamen could be seen in Table 1. The over-

all accuracy and Kappa coefficient of MRF-RF are the largest, reaching 93.61% and

0.8717 respectively, indicating that the classification performance of the proposed algo-

rithm is superior to comparison algorithms.

In terms of PA, compared with result of the SAR image classification only, the water

and vegetation areas of the algorithm have been significantly improved, increasing by

48.04% and 48.60%, respectively. This is because when using only SAR image classifica-

tion, the SAR image has little detailed information in the non-building area, causing it

to less discriminating ability in this area. Compared with the optical image classification

only, the classification accuracy of urban and vegetation has been improved by about

38.62% and 9.97%, respectively. The reason for the classification accuracy of urban area

is that compared with the optical image classification only, MRF-ARF utilized the

amendment reliability factor in SAR image, to distinguish the urban area. Therefore,

the classification accuracy of the urban area is improved. The result of PA in MRF-RF

Table 1 Performance comparison of Xiamen, China

Method Precision Urban water Vegetation Overall accuracy Kappa

MRF-ARF PA 97.87% 85.20% 87.47% 93.61% 0.8717

UA 92.46% 87.96% 96.40%

MRF-RF PA 58.48% 88.81% 62.45% 61.00% 0.4209

UA 97.99% 8.48% 84.01%

ATWT-EMD PA 66.48% 88.65% 60.02% 64.90% 0.3549

UA 74.38% 29.93% 60.98%

SAR only PA 95.55% 37.16% 38.87% 72.75% 0.3938

UA 70.52% 99.76% 81.07%

Optical only PA 59.25% 93.26% 77.50% 67.15% 0.4444

UA 96.97% 25.77% 56.05%
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and ATWT-EMD algorithms have better performance in water than MRF-RF, and

lower in urban and vegetation than MRF-ARF.

In terms of UA, MRF-ARF has best performance in water and vegetation, among

three algorithms. MRF-RF has the best result in urban area.

MRF-RF and ATWT-EMD have the overall accuracy of less than 70%. The Kappa co-

efficient is less than 0.5, indicating MRF-ARF has the best performance in contrast with

the other two algorithms, although the other two algorithms have some superiority in

PA or UA with certain land covers.

The comparison of experimental results in Neiye could be seen in Table 2. The

overall accuracy and Kappa coefficient of MRF-ARF are the largest, reaching

87.86% and 0.7219 respectively, indicating its superiority in classification. Compared

with the overall accuracy and Kappa coefficient in Xiamen, these two indexes in

Table 2 have decreased, because the land cover in this image has lower contrast

and classification is more difficult. It can also be seen that in terms of PA, com-

pared with the SAR image classification algorithm alone, the values by MRF-ARF

at sand, vegetation, and farmland have been significantly improved, increasing by

14.35%, 15.88%, and 25.15%, respectively. The reason is that when using only SAR

image classification, the SAR image has little detailed information in the non-

building area, which shows less discriminative ability. When MRF-ARF is used in

the non-building area, the main contribution of amendment reliability factor from

the optical image is good, because the optical image has rich spectral characteris-

tics in non-building areas. Thus, the PA of MRF-ARF in sandy, vegetation, and

agricultural arable land has been significantly improved. Compared with the optical

image classification alone, although the PA of MRF-ARF at vegetation and farm-

land decreased slightly, the PA of MRF-ARF at urban and sand regions has reached

31.94% and 9.04%, respectively. Compared with the optical image classification

alone, MRF-ARF takes advantage of the SAR image, owning good discrimination

ability for building cover. As to MRF-RF, PA at urban region is lower than that of

MRF-ARF, following with ATWT-EMD, while PA of ATWT-EMD at vegetation

and farmland is best.

In terms of UA, MRF-RF is best at building region following by ATWT-EMD, and

MRF-ARF. MRF-ARF has best results at sand and vegetation than the other two

algorithms.

Table 2 Performance comparison of Neiye, Japan

Method Precision Urban Sand Vegetation Farmland Overall accuracy Kappa

MRF-ARF PA 90.67% 74.01% 69.16% 90.56% 87.86% 0.7219

UA 96.45% 65.65% 65.12% 68.20%

MRF-RF PA 54.33% 74.26% 85.20% 81.38% 60.69% 0.3905

UA 99.67% 22.32% 24.91% 86.23%

ATWT-EMD PA 42.38% 62.10% 91.54% 90.59% 52.05% 0.3168

UA 98.13% 15.11% 26.65% 78.74%

SAR only PA 80.25% 59.66% 53.28% 65.41% 75.31% 0.5149

UA 98.92% 26.16% 29.75% 75.92%

Optical only PA 58.73% 64.97% 87.74% 96.07% 64.89% 0.4250

UA 96.91% 19.68% 59.68% 53.72%
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According to PA and UA at the sites of Xiamen and Neiye, these three algorithms have

their own advantages at different land covers. For OA and Kappa coefficient, MRF-ARF

shows best results following by MRF-RF and ATWT-EMD. The joint usage of MRF-ARF

could provide better result than the results of single-source Landsat 8 or Sentinel-1, dem-

onstrating the superiority of the amendment reliability factors with two sources.

4 Discussions
To quantitatively analyze the sensitivity of parameters in MRF-ARF, the parameter β in

regularity term of MRF-ARF, threshold, and grayscale symbiotic matrix window size

are assessed according to PA, UA, OA, and Kappa coefficient at different land covers.

4.1 Analysis of parameter β on the performance

Figures 7 and 8 show the experimental results of the influence of parameters β on the

classification performance in Xiamen and Neiye, respectively. The abscissa values are

the values of different β in logarithm and the vertical coordinate values are the indexes

for PA, UA, OA, and Kappa coefficients at different land covers. As shown in Fig. 7,

when the SAR image threshold and the gray level symbiotic matrix window size in Xia-

men are fixed at 0.68 and 13, respectively, the Kappa coefficient (blue line) and the

overall accuracy (yellow line) have good stable performance at [0.01, 0.1, 1, 10], with

the abscissa values shown as [− 2, − 1, 0, 1]. When the parameter β is distributed in the

interval as [0.01, 10], the classification performance of MRF-ARF is stable. Thus, 0.01 is

chosen for the site of Xiamen. From Fig. 8, the Kappa coefficient (blue line) and the

overall accuracy (yellow line) are stable at the interval of [0.0001, 10]. Thus, 0.001 is

chosen for the site of Neiye.

4.2 Analysis of SAR threshold on the performance

Figures 9 and 10 show experimental results of threshold values on above four indexes

in Xiamen and Neiye, respectively. For the site of Xiamen, the threshold values locate

Fig. 7 Influence of parameter in Xiamen, China. The result in Xiamen on the accuracy evaluation indexes
with different is provided
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at the interval of [0.3, 0.7]. The Kappa coefficient shown in Fig. 9 for the blue line, and

the overall accuracy shown in Fig. 10 for the yellow line, could be stable. When the

threshold value of SAR image is greater than 0.7, the performance obviously begins to

decrease.

From Fig. 10, the Kappa coefficient (blue line) and overall accuracy (yellow line)

could be stable at interval of [0.5, 0.7]. When the threshold value is greater than 0.7,

the performance begins to decrease. Thus, 0.6 is chosen for the sites of Xiamen and

Neiye in the experiments.

4.3 Analysis of grayscale co-occurrence matrix window size on the performance

Figure 11 shows the experimental results with the window size of grayscale co-

occurrence matrix (GLCM) on above four indexes in Xiamen. It could be seen that the

Fig. 9 Influence of threshold value to SAR in Xiamen, China. The result in Xiamen on the accuracy
evaluation indexes with different threshold values is provided

Fig. 8 Influence of parameter in Neiye, Japan. The result in Neiye on the accuracy evaluation indexes with
different is provided
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Kappa index (blue line) and the overall accuracy (yellow line) reach the maximum value

when the window size is 9, and the values are 93.70% and 0.8733, respectively. The PA

and UA of the building fluctuate greatly, indicating that the window size of GLCM has

a great influence on the performance of the classification. The window size of 9 is used

for Xiamen.

Figure 12 shows the results of the window size of GLCM on above four indexes in

Neiye. The grayscale symbiotic matrix window size range is [4, 49]. It could be seen

that the Kappa index (blue line) and the overall accuracy (yellow line) reach the max-

imum when the window size is 33, and the values are 87.86% and 0.7219, respectively.

In fact, if the window size of GLCM is too large, non-edge points could possibly be

judged as edge points according to the experiments. If the window size of GLCM is too

Fig. 10 Influence of threshold value to SAR in Neiye, Japan. The result in Neiye on the accuracy evaluation
indexes with different threshold values is provided

Fig. 11 Influence of GLCM size in Xiamen, China. The result in Xiamen on the accuracy evaluation indexes
with different GLCM sizes is provided
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small, only part of the target could possibly be detected. For Neiye, the window size of

GLCM is 33.

5 Conclusion
In this paper, a classification algorithm based on MRF with amendment reliability fac-

tors is proposed. Based on the coarse urban label field, the additional controlling factors

are involved in reliability factors to construct the amendment reliability factors. The

amendment reliability factors could fully utilize the advantage of Landsat 8 and

Sentinel-1 to balance the contribution of weight in the data term of MRF. Xiamen and

Neiye are chosen as the testing sites. According to the experimental comparison, the

proposed MRF-ARF shows the superiority of at least 20% in OA and at least 0.2 in

Kappa coefficient in contrast with those of comparison algorithms. Although PA and

UA of these algorithms have their own advantages, this paper still provides a way for

land cover classification with the joint use of optical and SAR images.
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