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Abstract
In vehicular communications using IEEE 802.11p, estimating channel frequency
response (CFR) is a remarkably challenging task. The challenge for channel estimation
(CE) lies in tracking variations of CFR due to the extremely fast time-varying
characteristic of channel and low density pilot. To tackle such problem, inspired by
image super-resolution (ISR) techniques, a deep learning-based temporal spectral
channel network (TS-ChannelNet) is proposed. Following the process of ISR, an average
decision-directed estimation with time truncation (ADD-TT) is first presented to extend
pilot values into tentative CFR, thus tracking coarsely variations. Then, to make tentative
CFR values accurate, a super resolution convolutional long short-term memory
(SR-ConvLSTM) is utilized to track channel extreme variations by extracting sufficiently
temporal spectral correlation of data symbols. Three representative vehicular
environments are investigated to demonstrate the performance of our proposed
TS-ChannelNet in terms of normalized mean square error (NMSE) and bit error rate
(BER). The proposed method has an evident performance gain over existing methods,
reaching about 84.5% improvements at some high signal-noise-ratio (SNR) regions.

Keywords: Vehicular communications, Channel estimation, IEEE 802.11p, Deep
learning, Image super resolution

1 Introduction
Vehicular communications, which form a network to support vehicle-to-vehicle (VTV)
and vehicle-to-infrastructure (VTI) communications, are essential techniques of intelli-
gent transportation system (ITS). In recent years, lots of attention has been drawn to
develop multiple applications in vehicular communications such as automatic selection
of routing protocol[1]. To realize such high-speed mobile communications, the IEEE
802.11p standard [2], that defines the physical layers (PHY) and the medium-access lay-
ers (MAC), has been officially applied in 2010. The IEEE 802.11p is a modified version
of 802.11a [3]. The main difference between them is that 802.11p facilitates the half of
frequency bandwidth of 802.11a, thus making signals more robust against fading and
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multipath propagation effects in vehicular environments[4]. What is more, it can sup-
port lower latency, realize higher data rate, and enhance security compared to other
standards [5].
Channel estimation (CE) schemes play a crucial role in the performance of vehicular

communication using 802.11p. The estimated channel response (CR) significantly affects
the subsequent equalization, demodulation, and decoding. In general, the accuracy of CE
determines the performance of the whole system. However, in PHY layer, the 802.11p
protocol utilizes four pilot subcarriers per one OFDM symbol. The pilot positions are
too loose to adequately track variations of channel frequency response (CFR). In addi-
tion, due to the fact that CR varies greatly in vehicular communications, coupled with no
restrictions of the packet length in 802.11p, channel estimation (CE) keeps easily outdated
during the entire packet.
A lot of work has been proposed to track channel variations over the frame dura-

tion for vehicular communication under the IEEE 802.11p standard. The current method
focuses on data pilot-aided successive (DPAS) whose key is to consider the demapped
data signals as aided pilot [6–9]. The performance gain, however, is not evident espe-
cially at high signal-noise-ratio (SNR) region because of the error propagation caused
by accumulated noise in the iterative process. Recently, deep learning (DL) has shown
impressively promising prospects. DL enables to extract inherent characteristic of signals
and is applied for channel estimation [10–14]. However, due to deep fading caused by
high Doppler shift under vehicular environment, above DL-based approaches degrades
in the accuracy of CE. The main objective of this paper is to estimate precisely CFR by
integrating DPAS with DL.
In this paper, a deep learning-aided temporal spectral channel network (TS-

ChannelNet) for 802.11p-based channel estimation under high-speed vehicular scenarios
is proposed to track variations of CFR. In general, the pilot taken as low-resolution
(LR) version of CR is utilized to recover high-resolution (HR) version of CR by TS-
ChannelNet. Our presented TS-ChannelNet consists of two phases. Initially, coarse CR is
restored via pilot by leveraging averaging decision-directed with time truncation (ADD-
TT). By averaging both in time and frequency domains, ADD-TT handles few of the
impacts of error propagation caused by time truncation based on decision feedback.
Afterwards, a neural network (NN) architecture named super resolution convolutional
long short-term memory (SR-ConvLSTM) is introduced to make estimated CR more
accurate. SR-ConvLSTM utilizes the power of convolutional long short-term memory
(ConvLSTM) that exploits temporal spectral correlation to combat deep fast fading under
the extremely time-varying environments. The obtained CR is tailored for vehicular com-
munications. Simulation results demonstrate that our method is competent over previous
methods under representative vehicular scenarios. Our contributions of this paper are
summarized as follows.

• CFR is modeled as an image. The pilot is considered as a LR version of the image.
The estimated CFR is viewed as a HR version of the image. Then, the
TS-ChannelNet, which includes pilot-based interpolation and DL-based restoration,
is presented to obtain HR version of CFR.

• An improved interpolation based on DD-TT called ADD-TT is taken to extend pilot
into reasonable initial coarse CFR. ADD-TT handles few impacts of error
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propagation by time truncation based on decision feedback and further improves the
performance of the follow-up SR-ConvLSTM.

• The new super resolution technique-based architecture named SR-ConvLSTM is
designed. It restores HR version of CFR by reflecting highly variations of channel.

• The extensive ablation experiment is conducted to verify that SR-ConvLSTM
powerfully extract temporal spectral correlation of signal to track the variations of
channel.

The rest of this paper is organized as follows. Section 2 illustrates related work in
details. Section 3 introduces the systemmodel, channel model, and benchmark algorithm.
Section 4 presents our temporal spectral deep learning-based channel estimation scheme.
Section 5 verifies the full advantage of TS-ChannelNet by simulation results. Section 6
concludes the paper.

2 Related work
In this section, the existing work of CE under vehicular communications using 802.11p
standard is first elaborated. The downside of present work is then introduced. Further-
more, DL applied in the communication field, as a promising prospect, is investigated.
In few years, mobile ad hoc network (MANET) has successfully applied in amounts

of field, such as health care [15, 16], broadcast encryption [17], vehicular streaming
service [18], and urban management [19]. CE has been investigated actively because it
decides the performance of the system in PHY layer [7]. The current CE focuses on DPAS
method, such as STA [6] and CDP [7]. The key part of these algorithms is to consider the
demapped data signals as aided pilot. Then, the estimated CR is iteratively used to con-
struct data pilot in the follow-up orthogonal frequency division multiplexing (OFDM)
symbol. Mehrabi [9] introduced decoded data bits into DPAS to suppress noise caused by
demodulation, but the performance gain is still marginal at high SNR region. To further
improve accuracy of CFR, Awad [8] transformed CFR into time domain and performed
truncation operation, thus removing demodulation errors. However, because iterative
accumulated noise is not eliminated completely, these schemes still suffer from error
propagation especially in the rapid time-varying vehicular channels.
Compared to the conventional schemes, DL has been shown to extract powerfully

the inherent characteristic of signals [20] and thus has been qualified when overcom-
ing multiple problems in wireless communications field [21–25]. FCNN was utilized
into channel estimation and pilot design [11, 12]. It initially demonstrates the power-
ful ability of DL to increase improvement in the accuracy of CE. However, the scheme
is not fit for vehicular communications using 802.11p. Because the unlimited packet
length in 802.11p leads to increase rapidly in the number of neurons and thus FCNN
tends to overfit. Neumann [13] modeled channel as conditionally Gaussian distribution
given a set of random hyperparameters. Those hyperparameters are learned via con-
volutional neural network (CNN). Soltani [14] viewed channel estimation as an image
super resolution problem where the pilot was a low-resolution sampled version of the
channel and time-frequency CR was the image to be recovered. But the performance
of the method still degrades under fast time-variant environment. The goal of this
paper is to integrate DPAS with DL to track variations of channel, thus estimating CFR
precisely.
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3 Systemmodel
In this section, the structure of IEEE 802.11p under vehicular communications is first
presented. Then, the channel model for vehicular wireless environment employed in this
paper is briefly introduced. Subsequently, ChannelNet applied as benchmark algorithm is
elaborated.

3.1 Structure of IEEE 802.11p

IEEE 802.11p physical layer is based on OFDM which boosts spectrum utilization by
turning serial large data streams into parallel data streams on orthogonal subcarriers.
In 802.11p, the received signal is turned into parallel data for fast Fourier transformation

(FFT) input, thus obtaining follow-up output in the frequency domain.

Y (t, k) = H(t, k)X(t, k) + Z(t, k). (1)

where Y (t, k) and X(t, k) represents received, transmitted OFDMdata symbols using FFT
respectively,H(t, k) represents the CFR of the wireless channel, and Z(t, k) is added white
Gaussian noise (AWGN). t represents the index of length per frame with 1≤ t ≤ T .
T is the number of length per frame. k denotes the index of subcarriers per frame with
1≤ k ≤ K . K is the number of subcarrier per frame. How to estimate H more accurately
is the goal of this paper.
IEEE 802.11p defines 75 MHz band at 5.9 GHz. The 75 MHz bandwidth is divided

into 7 channels including one control channel (CCH) and six service channels. Safety
messages are transmitted through CCHwhen emergent events happen [26]. IEEE 802.11p
standard defines that pilot tones for channel estimation is comb structure. It is located on
subcarriers -21, -7, 7, and 21 as Fig. 1 is shown. The initial channel estimation is enabled by
utilizing the known training symbols transmitted of the preamble. Due to the highly time-
varying channel in vehicular environments and the fact that the frame length is unlimited
in the IEEE 802.11p standard, the channel estimation for each packet outdates easily over

Fig. 1 The structure of TS-ChannelNet
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the entire packet duration. Therefore, how to design a channel estimation scheme to track
variations under vehicular channel is a challenging problem.

3.2 Channel model for vehicular communications

Due to the relative motion of the transmitter and receiver, a Doppler spectral spread or
broadening appears under vehicular communication. The relatively high velocity causes
fast time-varying CR. To capture the joint Doppler-delay characteristics of vehicular
communications, the tapped-delay line (TDL) model is adopted following the parameter
of [27]. In [27], taps are characterized by Doppler power spectral density due to Rayleigh
fading. The channel impulse response is calculated as (2)

h(t, τ) =
L∑

l=1
φl(t)δ(τ − τl(t)). (2)

where φl(t) represents the fading coefficient, L denotes resolution multipath, δ is impulse
function, and τl(t) denotes time delay in lth path.
In this paper, three representative models are given as in [27], i.e., VTV Expressway

Oncoming (VTVEO), VTV Urban Canyon (VTVUC) Oncoming, and RTV Expressway
(RTVE). In the VTV Expressway Oncoming scenario, the moving speed of the receiver
and the transmitter is the highest compared to the other scenarios. Its speed is 100km/h
and its Doppler shift is about 1200Hz. Then, the VTV Urban Oncoming is the medium
challenging environment for channel estimation. Its Doppler shift is 400–500 Hz with
about 32 km/h moving velocity. In conclusion, the models presented are typical standard
vehicular environments that consist of different velocities (low velocity/high velocity), and
a Doppler shift ranged from 400 to 1200 Hz.

3.3 Benchmark algorithm: ChannelNet

In [14], a deep learning-based channel estimation scheme named ChannelNet was imple-
mented for the short length of frame in slow time-varying environment. By viewing CR
as images, the pilot values were utilized via image super resolution technique to restore
(estimate) CR.
The process of ChannelNet consists of two phases. On the one hand, the isolated pilot

values are extended to initial CR via Gaussian interpolation. On the other hand, CR values
as input are fed into super resolution neural network (SRCNN) [28] followed by denoising
convolutional neural network (DnCNN) [29]. The NN generates the estimated CR. The
authors investigate the performance of ChannelNet in relatively slow time-varying envi-
ronment. In our experimental trial, ChannelNet furthermore degrades for high-velocity
mobile communications. This is owing to the unreliability of initial interpolation method,
coupled with the fact that CNN does not have enough capacity to uncover temporal
spectral correlation of the CR, thereby keeping CR outdated over the frame duration.

4 Proposedmethod
In this section, we first describe the pre-process of TS-ChannelNet. It utilizes interpola-
tion scheme based on ADD-TT via pilot values. Then, the NN architecture named SR-
ConvLSTM is presented to track variations of vehicular channel. Afterwards, the training
process of TS-ChannelNet that is made up of ADD-TT following by SR-ConvLSTM is
illustrated.
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4.1 Interpolation based on ADD-TT

In this subsection, interpolation based on pilot via ADD-TT is implemented to obtain
coarse CR. It extends few pilot values to initial CR values that are taken as IR images.
Usually, least squares (LS) estimation utilizes two identical preambles which are sent at

the beginning of received packet in IEEE 802.11p to estimate tentative CR. Y (1, k), Y (2, k)
are the first two long training symbols. X(1, k), X(2, k) are identical and two transmitted
predefined long symbols in the frequency domain. To obtain CFR for all subcarriers, the
received Y (1, k) and Y (2, k) are divided by X(1, k) as

ĤLS(1, k) = Y (1, k) + Y (2, k)
2X(1, k)

, (3)

where ĤLS(1, k) represents the LS channel estimate at the 1th time slot on the kth subcar-
rier. LS estimation assumes the channel is stationary. However, vehicular channel varies
fast and the performance of LS estimation degrades significantly.
Then, decision-directed channel estimation is presented. It is based on correlation of

adjacent symbols. The symbols are equalized by previous channel estimation as follows

Ŝ(t, k) = Y (t, k)
Ĥ(t − 1, k)

, (4)

where Ŝ(t, k) denotes equalized symbol at the tth time slot on the kth subcarrier and
Ĥ(t − 1, k) is the previous channel estimation. Based on the high correlation between
adjacent data symbols, the current tth CFR is assumed to be unchanged with respect
to the previous. The errors caused by such assumption are alleviated by the subsequent
demodulation. Hence, the previous Ĥ(t − 1, k) is utilized to estimate. Note that the first
estimated CR is LS channel estimation using (2). Then, the decision feedback is used to
update channel estimate according to (5)

Ĥ(t, k) = Y (t, k)
X̂(t, k)

, (5)

where X̂(t, k) represents the demodulated OFDM data symbol that stems from Ŝ(t, k).
The errors of estimated CFR are alleviated by demapping Ŝ(t, k) to the corresponding
constellation point X̂(t, k). Thus, data symbols can provide useful channel information to
construct data pilot.
However, Ĥ(t, k) still cannot eliminate completely noise and accumulate error in iter-

ative process, caused by error propagation, especially at low SNR region. The error
propagation happens because the data symbols may be incorrectly demapped and thus
the error is gradually accumulated during the iteration. To reduce such negative impact
on decision-directed channel estimation, an average method based on time-domain trun-
cation loop approach is applied. The scaled version of FFT matrix V is firstly calculated
following by

V = √
MFM(:, 1 : L + 1), (6)

where M represents the modulation order of the signal, FM is the FFT matrix, and L
is the number of reserved time domain taps. Ĥ(t, k) is converted to h(t, k) in the time
domain using inverse fast Fourier transformation (IFFT). To curb noise, time truncation
is operated. V is the scaled matrix that works for converting ĥ(t, k) to frequency domain.
Then, Ĥ(t, k) is turned into time domain to remove the time domain taps containingmost
of noise as follows
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Ĥf (t, k) = Vĥ(t, 1 : L), (7)

where ĥ(t, 1 : L) represents the reserved CR in time domain at the tth time slot and Ĥf (k)
denotes scaled version of CR in frequency domain. The demodulation errors are equiva-
lent to adding noise into ĥ. Converting from frequency domain to time domain, noise is
uniformly distributed across the different taps. ĥ is truncated in the time domain to alle-
viate the effect of noise caused by demodulation errors. Even though the time truncation
is employed, there are some cumulative errors in Ĥf (k) caused by minor noise. Thus, the
average of Ĥf (k) in time and frequency domains to smooth CR according to (8), (9)

Ĥs(t, k) =
λ=β∑

λ=−β

1
2β + 1

Ĥf (t, k + λ), (8)

where 2β+1 represents the number of averaged subcarriers. The high correlation between
adjacent subcarriers Ĥf (t, k+λ) can be introduced to further improve the accuracy of the
estimates. Then, averaging in time domain is calculated as follows,

Ĥf (t, k) = (1 − α)Ĥ(t − 1, k)f + αĤs(t, k). (9)

where Ĥf (t, k) denotes the output of ADD-TT scheme at the tth time slot on the kth sub-
carrier, and α is coefficient parameter to update CR. Based on the high correlation across
successive OFDM symbols, the weighted summation of previous and current estimated
CFR can improve the performance. α, β are parameters related to knowledge of the vehic-
ular environments. However, it is impossible to obtain such information in practice. It is
observed in [6] that the best performance of averaging in time and frequency domain is
achieved with α = 0.5 and β = 2. Thus, α is fixed to 0.5 and β is set to 2 in this paper.

4.2 The architecture of SR-ConvLSTM

ChannelNet based on CNN is inept in uncovering the inherent characteristics of tempo-
ral spectral correlation, thus a NN architecture SR-ConvLSTM based on ConvLSTM is
proposed. It models temporal spectral correlation of adjacent symbols to estimate CR and
is suitable for non-stationary scenarios.
Channel estimation of vehicular communications using IEEE 802.11p is viewed as super

resolution problem. Considering the time-variant channel, LSTM that enables to extract
time correlation of series is introduced to tackle super resolution problem. In [30], the
authors prove LSTM successfully handles channel state information (CSI) feedback for
time-varying communications. Adding a convolution operation to the LSTM composes
of ConvLSTM. ConvLSTM is more effective for feature extraction when the time series
data are images. The ConvLSTM [31] originates from LSTM. The difference is that after
adding the convolution operation which not only obtain the timing relationship, but also
to extract features such as convolution layers. In this way, we obtain the temporal spectral
characteristics via SR-ConvLSTM based on ConvLSTM.
The details of proposed SR-ConvLSTM are presented. SR-ConvLSTM is composed of

five layers including ConvLSTM and batch normalization (BN). Since this paper views
channel estimation as an image super resolution problem, inspired by the architecture of
[28], the structure of ConvLSTM following by BN is chosen and such structure is repeated
to track high variations of CFR. ConvLSTM works for capturing temporal spectral cor-
relation between adjacent data symbols and BN enables SR-ConvLSTM to converge. The
specific structure is seen in Table 1. The first layer applies 64 filters of size 9 × 9 of
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Table 1 Architecture of the SR-ConvLSTM

Layer Type Number of filters Size of filters Activation function

1 ConvLSTM(Input) 64 9×9 ReLU

2 BN – – –

3 ConvLSTM 32 1×1 ReLU

4 BN – – –

5 ConvLSTM(Output) 1 5×5×5 ReLU

ConvLSTM following by rectified linear units (ReLU) activation following by

R(x) = max(0, x), (10)

where x is input of the ConvLSTM. When the activation value of the neuron enters the
negative half region, the gradient is 0. That means this neuron is trained to keep spar-
sity. The second layer is BN. BN is able to solve the problem when the neural network is
training with slow convergence speed or exploding gradients. In fact, we find out if BN is
removed from SR-ConvLSTM, the network cannot be converged. The reason may lie in
the complex distribution of channel that needs BN operation. In addition, BN is added to
speed up the training speed and improve the accuracy of the model. The third layer uses
32 filters of size 1×1 of ConvLSTM following by ReLU activation. The fifth layer is BN.
The last layer is 1 filter of size 5×5×5 to reconstruct the output. Notably, to strike bal-
ance between performance and complexity, TS-ChannelNet removes DnCNN compared
to ChannelNet.
The relationship between input and output of proposed SR-ConvLSTM is represented

as

Ĥ = f
(
θ ; Ĥseq

)
. (11)

where θ denotes the parameters of SR-ConvLSTM, Ĥ is the final estimated CR, and f
means nonlinear function that is determined by θ .
The architecture of ChannelNet must be revised if the frame lengths are changed.What

is worse, the whole ChannelNet should be trained from scratch, which is non-trivial in
practice. In SR-ConvLSTM, the CR is divided into blocks that contain n data symbols.
Hence, SR-ConvLSTM fits for the arbitrary frame length without amending the input
shape of NN. In conclusion, SR-ConvLSTM is more robust than SRCNN that is building
blocks of ChannelNet.

4.3 Training of TS-ChannelNet

In this paper, estimating CFR at the receiver is viewed as a super resolution problemwhich
includes pilot-based interpolation and DL-based restoration [14]. Thus, the proposed TS-
ChannelNet is composed of ADD-TT and SR-ConvLSTM. In the first phase, pilot values
hp are extended into the coarse CFR whose dimension is identical to estimated Ĥ . In this
second phase, SR-ConvLSTM parameterized by θ is utilized to make coarse CFR become
HR version via DL. The relationship between the input and output of TS-ChannelNet can
be represented by this equation:

Ĥ = f (θ ; hp) = fθ (fADD−TT (hp); θ) (12)

where fθ and fADD−TT are the network and interpolated functions, respectively.
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ADD-TT in the first phase comprises decision-direction, time truncation, and weighted
average. Firstly, decision-direction assumes that the tth CFR is highly correlated with the
previous and thus Ĥ(t − 1, k) is used as pseudo Ĥ(t, k) to calculate data pilot. The errors
caused by such iterative operation are alleviated via demapping data pilot to constellation
point. Secondly, accumulate errors by wrong demodulation are equal to adding noise.
Noise is uniformly distributed across the different taps from frequency domain to time
domain [8] and operate truncation to curb it. Thirdly, to make use of pilot, averaging
Ĥ(t, k) in the frequency and time domain is taken into account. In general, ADD-TT
utilizes average decision-directed time truncation to make pilot become coarse Ĥ .
SR-ConvLSTM in the second phase is introduced to restore HR version of Ĥ . Initially,

training SR-ConvLSTM needs to extract real and imaginary part of Ĥ and stack them.
Then, the stacked Ĥ is divided into several blocks tomake SR-ConvLSTM reveal temporal
spectral correlation. SR-ConvLSTM has impressive power to achieve intrinsic correlation
of signal in a end-to-end manner. The stacked Ĥ is divided into several blocks. Finally,
the output of SR-ConvLSTM is concatenated to obtain final estimated CFR. In addition,
the optimization algorithm Adam [11] is chosen to make SR-ConvLSTM converge. To
measure the accuracy of estimates, the normalized mean square error (NMSE) between
Ĥ and H is utilized.

NMSE = 1
N

N∑

i=1

E
[∣∣∣H − Ĥ

∣∣∣
2
]

E
[|H|2] (13)

where N is the frame length. Besides, bit error rate (BER) is also chosen to demonstrate
the performance of TS-ChannelNet. The algorithm of TS-ChannelNet is summarized in
Algorithm 1.

5 Simulation and results
In this section, we first introduce the settings of the simulation, which includes the param-
eters of IEEE 802.11p and DL-based model. Then, the simulation results demonstrate the
strength of our proposed TS-ChannelNet.

5.1 Simulation setup and parameters

The IEEE 802.11p end-to-end PHY is implemented for simulation. The NMSE and BER
are taken as the performance measurement of the scheme. The range of SNRs for simu-
lation is from 0 to 30 dB with 4 quadrature amplitude modulation (QAM). The velocities
range from 32 to 104 km/h. Frame length with 60 blocks is chosen.

Table 2 The parameters of simulation

Parameter Value Parameter Value

Epoch 60 Modulation mode QAM

Dropout 0.2 Number of symbols 60

Batch size 128 Number of subcarriers 52

Train dataset size 32000 Bandwidth 10 MHz

Validate dataset size 8000 Carrier frequency 5.2 GHz

Test dataset size 4000 FFT size 64
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Algorithm 1 Proposed TS-ChannelNet Algorithm.
Input: Training epochs E, Frame length T
Initialize train dataset (the received data symbols Ytrain, the label of CFR Hlabel)
Initialize test dataset (Ytest)
Initialize SR-ConvLSTM parameters θ with random values,
Calculate Htrain(0, k), Htest(0, k) as described in (3)
for t = 1 : T do

Obtain (Ĥtrain(t, k), Ĥtest(t, k)) via decision-direction by (4), (5)
Update (Ĥtrain(t, k), Ĥtest(t, k)) via time truncation as in (6), (7)
Update (Ĥtrain(t, k), Ĥtest(t, k)) via averaging in frequency and time domain in (8),

(9)
end for
(Ĥtrain, Ĥtest) ← Stack real and imaginary part of (Ĥtrain, Ĥtest)
(Ĥtrain, Ĥtest) ← Split (Ĥtrain, Ĥtest) into sequences
for epoch = 1 : E do

θ ← Train SR-ConvLSRM with (Ĥtrain,Hlabel) via optimization algorithm Adam
[11]

if NMSE calculated with (Ĥtrain,Hlabel) in (13) converges then
break

end if
end for
Ĥout ← Feed Ĥtest into the trained SR-ConvLSTM
Concatenate Ĥout
Output: Ĥtest

Tensorflow using graphics processing unit (GPU) is employed for our approach. The
learning rate is 0.001 and the dropout is 0.2. The batch size is 128 and epochs are 60. The
training size, validation size, and test size are 32000, 8000, and 4000 respectively. The two
models are trained at the SNR values of 22 dB with above hyperparameters with respect
to three different environments. The specific parameters of simulation are described in
Table 2..

Fig. 2 NMSE with 4QAMmodulation, maximum Doppler = 1200 Hz, and 60 OFDM symbols (VTV Expressway
Oncoming)
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Fig. 3 NMSE with 4QAMmodulation, maximum Doppler = 300 Hz, and 60 OFDM symbols (RTV Expressway)

5.2 Results and discussion

Figures 2, 3, and 4 compare the performance of TS-ChannelNet and other schemes with
maximum Doppler shift ranged from 300 to 1200 Hz. It is seen that the DD-TT out-
performs ChannelNet at the high SNR region. Our presented scheme consistently has
a better performance advantage than other approaches. This is because our proposed
scheme estimates CR by integrating pilot knowledge, data knowledge, and the correlation
of adjacent symbol. TS-ChannelNet is competent under high-velocity communication,
which is challenging for real vehicular communication.
In Fig. 5, ideal BER is illustrated. Ideal BER is obtained with known of CR without

noise. It is seen that the performance of our method is approaching the ideal situa-
tion, which means TS-ChannelNet can nearly accurately recover CR. It is obvious that
TS-ChannelNet has a better performance as deep fading for vehicular communications
become severer. Through the performance under representative vehicular models, we

Fig. 4 NMSE with 4QAMmodulation, maximum Doppler = 500 Hz, and 60 OFDM symbols (VTV Urban
Canyon)
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Fig. 5 BER with 4QAMmodulation, maximum Doppler = 500 Hz, and 60 OFDM symbols (VTV Urban Canyon)

demonstrate our TS-ChannelNet is robust and has a evident performance in terms of BER
or NMSE.
To further investigate our proposed method, an ablation analysis for fast time-varying

environment is introduced. Due to the fact that Gaussian interpolation (GI) is uti-
lized in ChannelNet, we take GI, DD-TT, and ADD-TT as interpolation methods in
the first phase of TS-ChannelNet respectively while SR-ConvLSTM remains. We refer
these approaches as GI-(SR-ConvLSTM), DD-TT-(SR-ConvLSTM), and ADD-TT-(SR-
ConvLSTM). Besides, ChannelNet is taken as benchmark algorithm.
Figure 6 plots the NMSE of TS-ChannelNet with different interpolation methods under

high mobility scenario while ChannelNet is considered as a reference. It is clearly seen
that TS-ChannelNet with GI outperforms ChannelNet with GI. It suggests that our pro-
posed SR-ConvLSTM has better capacity to extract temporal spectral correlation of data

Fig. 6 NMSE for ablation analysis with 4QAMmodulation, maximum Doppler = 1200 Hz and 60 OFDM
symbols (VTV Expressway Oncoming)
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Table 3 The improved percentage of TS-ChannelNet with respect to the compared methods

LS (%) STA (%) CDP (%) DD-TT (%) ChannelNet (%)

RTVE 99.9 94.0 96.5 95.5 84.5

VTVEO 99.9 99.4 99.3 96.5 95.6

VTVUC 99.9 99.4 99.3 94.9 97.6

symbol than NN structure of ChannelNet. It is also observed that the different interpola-
tion methods have effect on the performance of following SR-ConvLSTM. It proves that
our proposed ADD-TT outperforms DD-TT, especially at high SNR values.
With respect to the compared methods, the improved result of our method in per-

centage is also presented in Table 3. Under three representative channel models, this
percentage is obtained in terms of NMSE with SNR=30 dB. The three representative
channel models are RTV Expressway (RTVE), VTV Expressway Oncoming (VTVEO),
and VTV Urban Canyon (VTVUC) as mentioned before. It is obvious that our proposed
method delivers fairly performance gain. Besides, the gain increases as the maximum
Doppler shift grows. It demonstrates our proposed method can track more adequately
variations of CFR with respect to the compared methods.

6 Conclusions
Because CFR in vehicular communications varies highly, it is difficult to track variations
of channel. The current DPAS method suffers from error propagation caused by accu-
mulative noise. In this paper, a TS-ChannelNet-based channel estimation method for the
fast time-varying scenario using IEEE 802.11p is proposed. In this scheme, CR is taken
as images and apply TS-ChannelNet to estimate the CR leveraging pilot. TS-ChannelNet
is made up of two phases. Pilot values are first extended to coarse tentative CR via
interpolation based on ADD-TT. Note that the estimated CR is divided into sequences
that contain n adjacent symbols. Afterwards, the SR-ConvLSTM takes divided CR as
input and generates recovered CR. Simulation results demonstrate that our proposed
method enables prominent performance over previous schemes under high-sped scenar-
ios. Further experiments verify the two building blocks of TS-ChannelNet have all evident
performances in channel estimation accuracy. The proposed TS-ChannelNet sheds light
on how DL can be successfully applied for CE under high velocity environments.
In this paper, the NN is trained separately with respect to the correspoding representive

environments. Hence, the generalization ability of network needs to be further improved.
How to use transfer learning to overcome this problem will be our future work.
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