
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01724-2&domain=pdf
mailto:csxpml@163.com
http://creativecommons.org/licenses/by/4.0/


















min
x∈ℜ
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The solution of this formula is x ¼ shrinkð f ; �
2Þ

Definition 5 The shrink operator expression is as follows:
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For Eq. (46), it can be decomposed into multiple one-dimensional optimizations. For

the i-th dimension optimization problem, I can fix other elements of the xkj outer vec-

tor x, and Eki denotes the i-th element of the vector Ek. According to the definition 5,

we can get:

Xk ¼ � � shrink � j; tk �

 �

ð49Þ

� j ¼
X

i
Eki−

X
k≠ j

Xk ðamongÞ

By using formula (46) for iterative calculation, xk is kept close to the optimal value.

As long as the number of iterations is properly controlled, the original signal can be re-

constructed and the noise can be effectively filtered.

5 Reconstruction of wireless sensor signal based on compressed sensing
Using the approximate gradient descent method as the signal reconstruction algorithm,

the specific process of signal acquisition based on compressed sensing wireless sensor

network can be expressed as follows:

1. In a wireless sensor network, all sensor nodes are first time synchronized.

Assuming that the event occurred for a period of time, each active node detects

Zhu et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:106 Page 18 of 27



the event signal with a period T. The resulting signal is represented by the vector

X. In order to thin the signal, a discrete cosine transform is used to construct the

sparse basis matrix Ψ. Each sensing node generates a projection of a signal vector

under the matrix in a period of T, which can achieve signal thinning. This step is a

prerequisite for compressive sensing of wireless signals.

2. Each sensor node constructs a sampling matrix according to Eq. (17). Further, the

thinned signal vector is projected under the sampling matrix to obtain Y, that is,

the sampling of the signal is completed. Since the sampling matrix is not a square

matrix, this is a process of undersampling the signal.

3. The sensor node transmits the compressed sampled signal to the central node of the

sensor network, and the sampling matrix is also transmitted to the central node (if all

sensing nodes use the same sampling matrix, only one of the nodes needs to transmit

the sampling matrix to central node). After receiving the signal, the center uses the

approximate gradient algorithm to recover the sparse form of the signal and uses the

discrete cosine inverse transform to restore the signal, further completing the signal

fusion processing. The entire system flow is shown in Fig. 2.

The central node receives the compressed signal Y, and then uses PRG algorithm to

approximate the exact solution of Y step by step. At the beginning, we construct a unit

Fig. 2 flow chart of wireless sensor based on compressed sensing. The sensor node obtains the signal, after
sparse change, samples sparse signal with the sampling matrix, and then transmits it to the central node
for recovery
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vector with the same length as the original signal vector as the initial vector. In the

process of algorithm execution, the selection of convergence threshold � determines the

execution time and accuracy of the algorithm. Here, we use the optimal convergence

threshold � = 0.015 obtained by T. blumensath and others in the literature [27]. When using

the linear contraction operator to calculate the k-step approximation solution, its step tk de-

pends on the step tk-1, tk = ((tk− 1 − 1)2 + � )p/2− 1 of the last iteration, where p is 0.21 [28].

The algorithm is executed iteratively until the convergence threshold condition is satisfied.

6 Simulation experiment
In the experimental design, 100 sensor nodes are randomly distributed in the area of

100 × 100, and the center of the area is the center node. The target signals (sources) to

be detected are randomly distributed in the region. The experiment assumes that the

sensor node collects the signal in a period of time, and each sensor processes the signal

sparsely, compresses the sample, and then transmits it to the central node.

For the sensor node to acquire the signal, the weak signal on a certain sensor node

may be a strong signal at other nodes, and a signal strength threshold may be set, and

the signal below the threshold is no longer acquired; so to the extent that weaker sig-

nals are avoided, they are filtered out as noise during the recovery phase. In order to

verify the performance of PRG algorithm in wireless sensor network, we introduce or-

thogonal matching tracking (OMP) [29], basis pursuit (BP) [30], and subspace tracking

(subspace), subspace pursuit, (SP) [32] algorithm, and compressive sampling matching

(COSAMP) [33] algorithm to compare and analyze the reconstruction accuracy of dif-

ferent algorithms. According to the theory proposed by Candes et al., the number of

times of compression sampling, that is, the line m of the sampling matrix satisfies m ≥

C ⋅ 
 2(Φ,Ψ) ⋅ r ⋅ log n, where r represents the sparseness of the signal after sparse pro-

jection, n represents the signal length, Φ is the perceptual matrix, and Ψ represents the

sparse basis matrix. If Φ, Ψ is irrelevant [34], ideally the coherence factor 
 (Φ,Ψ) = 1,

then m ≥ C ⋅ r ⋅ log n, most experimental results show that m ≥ 4r is the best value. In

the experiment in this paper, the sparse basis matrix uses a 1024 × 1024 discrete cosine

transform matrix, so the sensor accepts the signal with a length of 1024 bits for seg-

mentation. The sampling matrix is constructed using (24). In order to more clearly

demonstrate the resilience of the PRG algorithm and other algorithms, we use the

signal-to-noise ratio (SNR) of the reconstructed signal and the original signal to repre-

sent the recovery effect. The definition is as follows:

SNR Xtrue;Xrecð Þ ¼ 20 log
Xtruek k2

Xtrue−Xreck k2
ð50Þ

where Xture represents the original signal from the source, and Xrec represents the sig-

nal that is compressed and then reconstructed.

7 Results and discussion
The signal reconstruction by PRG algorithm is a process of successively approximating

the optimal solution. To quantitatively analyze the performance of the PRG algorithm,

the experiment is performed at a sampling rate of 400. In Eq. (46), the parameter � is

0.35 [35]. It can be seen from Fig. 3 that the reconstruction effect of the PRG algorithm

tends to be stable after 10 iterations, and the number of iterations is further increased,
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and the signal reconstruction effect is not improved much. Therefore, the number of it-

erations of the PRG algorithm is unified to 10 times in subsequent experiments.

Figure 4 shows the recovery ability of OMP, SP, BP, CoSaMP, and PRG algorithm in

wireless sensor network without noise interference. For the sampling matrix con-

structed by formula (24), the sub matrix is constructed by randomly selecting row vec-

tors of the matrix to undersample, and the number of row vectors is the sampling rate.

It can be seen from the observation in Fig. 4 that the resilience of different algo-

rithms is not much different in a noise-free environment. Under the condition of

low sampling rate, the recovery ability of these algorithms is not good. This is be-

cause the low sampling rate cannot guarantee the main characteristic information

of the sensor to obtain the signal, and it is difficult to achieve perfect reconstruc-

tion of the signal, that is, the SNR value is low. As the sampling rate is further

Fig. 3 PRG algorithm iteration number and reconstruction effect. The SNR of the reconstructed wireless
sensor signal by PRG algorithm, in which iterations involve 5, 10, 15, 20, 25, 30, and 35

Fig. 4 Reconstruction of sensor signals without noise. The SNR of the reconstructed wireless sensor signal
by PRG, OMP, SP, BP, and COSAMP. The sampling rates 100, 150, 200, 250, 300, 350,and 400, respectively
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increased, it can be seen that the SNR value is increasing and tends to be stable,

that is, the signal can be accurately reconstructed.

In order to further analyze the influence of noise interference on the signal col-

lected by the sensor, we add Gaussian white noise and sinusoidal signal plus nar-

rowband Gaussian noise with a signal-to-noise ratio of 10, 20,...100 to the original

signal. These are two common noises in wireless sensor networks .Then, compare

the reconstruction capabilities of the four algorithms OMP, SP, BP, COSAMP, and

PRG. In this experiment, the number of samples is 400, the discrete cosine trans-

form is used to construct the base matrix, and the SNR values of the signal and

noise are gradually increased. Figures 5 and 6 show the resilience of the algorithm

under Gaussian white noise and sinusoidal signal plus narrowband Gaussian noise.

In the case of low signal-to-noise ratio, it means that the noise energy and the sig-

nal energy are equivalent. In order to better reduce the noise influence, this puts

high requirements on the reconstruction ability of the algorithm. In fact, the noise

is relatively strong. In most cases, most algorithms are difficult to reconstruct the

signal perfectly. As the SNR value increases, the situation improves. It can be seen

whether Gaussian white noise or sinusoidal signal plus narrowband Gaussian noise,

the PRG algorithm exhibits better resilience than other algorithms in the SNR

value of 40–90, and since 90 is relatively large in signal energy relative to noise,

most algorithms can reconstruct the signal better. Moreover, compared with the

Gaussian white noise, PRG algorithm has a good recovery effect under sinusoidal

signal plus narrowband Gaussian noise. Therefore, it can be concluded that the

PRG algorithm exhibits better reconstruction performance under non-strong noise

interference and can effectively restore the original signal.

Further, we built a real wireless sensor network system, which is composed of 30

temperature sensor nodes. Every nodes support 802.11 and 2.4 GHz network bands.

Fig. 5 Sensor signal reconstruction under Gaussian white noise. The SNR of the reconstructed wireless
sensor signal by PRG, OMP, SP, BP, and COSAMP. The SNR of noise is 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100, respectively
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