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Abstract

Compressed sensing (CS) is a new theory for sampling and recovering signal-based
sparse transformation. This theory could help us to acquire complete signal at low cost.
Therefore, it also satisfies the requirement of low-cost sampling since bandwidth and
capability of sampling is not sufficient. However, wireless sensor network is an open
scene, and signal is easily affected by noise in the open environment. Specially, CS
theory indicates a method of sub-Nyquist sampling which is effective to reduce cost in
the process of data acquirement. However, the sampling is “imperfect”, and the
corresponding data is more sensitive to noise. Consequently, it is urgently requisited for
robust and antinoise reconstruction algorithms which can ensure the accuracy of signal
reconstruction. In the article, we present a proximal gradient algorithm (PRG) to
reconstruct sub-Nyquist sampling signal in the noise environment. This algorithm
iteratively uses a straightforward shrinkage step to find the optimum solution of
constrained formula, and then restores the original signal. Finally, in the experiment,
PRG shows excellent performance comparing to OMP, BP, and SP while signal is
corrupted by noise.

Keywords: Compressed sensing, Sparse reconstruction, Wireless sensor network, Sub-
Nyquist

1 Introduction
With the rapid development of Internet of Things technology, more and more re-

searchers are actively participating in this research field. As one of the supporting

technologies of the Internet of Things, wireless sensor networks have attracted a

lot of attention. An important application of wireless sensor networks is to moni-

tor the temperature, humidity, and illumination of the environment. Usually, a

wireless sensor network is composed of a large number of sensor nodes, each

node needs to collect a large amount of data, and then reach the central node

through multi-hop routing. In this process, a lot of storage space and energy are

consumed. Due to the limited computing, power, and storage capabilities of sensor

nodes, we need to establish efficient models for data acquisition and transmission

to maximize sensor life and reduce the cost of information acquisition. So, the
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main goal of data collection is to collect the most accurate data with the least cost.

Traditional methods such as distributed source coding techniques [1], cooperative wavelet

transform [2], and data clustering [3] can be used to reduce data traffic. For example, in

order to improve the efficiency of wireless network data transmission and reduce energy

consumption, Shih et al. studied the selection of the modulation method of wireless signal

transmission, and proposed a low-power coding mode of the physical layer [4]. Singh

et al. proposed a low-energy signal sampling method in wireless networks to increase the

lifetime of sampling nodes [5]. Some researchers also established the prediction model of

multi-step sensor data in wireless sensor networks to reduce network traffic and increase

network life correspondingly [6–8]. According to the characteristics of time series or

spatial sequence of wireless sensor networks, [9] uses Fourier transform, discrete cosine

transform, and wavelet transform to establish signal sparse basis, generate sparse repre-

sentation data of signals, and then sample sparse data. This can greatly reduce the time

and space consumption of sampling. The sparse reconstruction algorithm can achieve

more accurate data reconstruction and lower energy efficiency [10]. These methods make

use of the spatial correlation of the detected data, compress and encode the data, but can-

not effectively handle the abnormal event data, and the computational complexity is high.

The theory of compressed sensing proposed in recent years provides a new way

of data acquisition for wireless sensor networks [11–13]. According to the theory

of compressed sensing, a sparse signal can be accurately reconstructed with fewer

samples, and its sampling can be done by linearly projecting the detected data.

This allows sensor nodes to perform data acquisition in a compressed manner

without additional computational overhead. For the wireless sensor network, al-

though it has the characteristics of convenient construction, strong adaptability and

high transmission efficiency, there are some limitations in some aspects, such as

energy supply, sensor life cycle, delay, bandwidth, signal distortion, and transmis-

sion cost. Nodes in wireless sensor networks also require independent energy sup-

plies, so energy consumption is an important factor in determining the life cycle of

sensor nodes. The combination of compressed sensing theory and wireless sensor

networks provides an effective way to solve these problems [14], which can

optimize sensor node energy consumption [15]. Compressed sensing enables sparse

signals in wireless sensor networks to be accurately reconstructed with fewer sam-

ples [16]. Compressed sensing essentially provides a method for optimal computa-

tion based on mathematically constrained conditions for the solution of sparse

information.

When combining compressed sensing theory with wireless sensor network, the

influence of noise on signal in wireless sensor network environment must be con-

sidered [17]. The compressed sampling itself uses the projection of the signal on

the sparse basis to generate the sparse signal, then uses the measurement matrix

to sense, and then obtains the sampling value. In the process of sampling, in fact,

it is not as complete as the sampling method under the Shannon-Nyquist theory

to collect signal information, but a kind of under sampling method [18]. The “in-

complete” of signal acquisition makes the sampling value more sensitive to noise

than the “complete” sampling. Reducing the impact of noise on this “incomplete”

sampling is the key to the compression sensing theory that can be effectively used

in wireless sensor networks.
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In the experimental, 100 sensor nodes are randomly distributed in the area of

100 × 100, and the center of the area is the center node. The target signals

(sources) to be detected are randomly distributed in the region. The experiment as-

sumes that the sensor node collects the signal in a period of time, and each sensor

processes the signal sparsely, compresses the sample, and then transmits it to the

central node.

Further, we built a real wireless sensor network system, which is composed of 30

temperature sensor nodes. Every nodes support 802.11 and 2.4GHz network bands. The wire-

less sensor nodes are separated by 5 m, and the central node is directly replaced by PC. A

stable heat source was randomly placed in the experiment, and then the temperature of the

heat source was measured. Since the current hardware-based sensing matrix design is still not

perfect, we add a module to each sensing node, implement the sparse and compressed sam-

pling by software, and then transmit temperature data by compressed sampled to center node.

Signal of temperature was refactored in the center node.

The main contributions of this paper are as follows:

1. The multi-path channel transmission model and compressed sampling model of

the wireless sensor network are given, and the mathematical representation of the

sampling matrix of the sensor network is given. The Restricted Isometry Property

(RIP) is also demonstrated.

2. In view of the fact that wireless sensor networks are susceptible to noise

interference, a noise reduction algorithm for compressed sensing restoration is

proposed. In this algorithm, the approximate gradient iteration method is adopted,

and the convex optimization problem of signal recovery is solved step by step to

approach the optimal solution, so that the signal can be reconstructed perfectly.

The experimental results show that the algorithm has good robustness and

reconstruction accuracy in noisy environment.

3. Through experiments, we analyze the excellent performance of our proposed

sensor signal reconstruction algorithm compared to other algorithms under the

number of iterations and noise interference. Furthermore, a temperature sensing

wireless sensor network environment is constructed. The test results show that our

method has higher reconstruction accuracy.

The rest of this paper is arranged as follows: in Section 2, we briefly discuss the

basic theory of compressed sensing and the constrained isometric attribute; in Sec-

tion 3, we introduce the working structure of wireless sensor network, gives the

multi-path channel transmission model of sensor network, and demonstrates the

construction method of compressed sampling matrix of wireless sensor network

and its compliance with rip characteristics; in Section 4, we discuss the sensing sig-

nal for the reconstruction problem, and an approximate gradient descent algorithm

is proposed for signal reconstruction in noisy environment; in Section 5, the spe-

cific process of signal acquisition and reconstruction in wireless sensor network

based on compression sensing is introduced in detail; in Section 6, the experimen-

tal environment used for performance analysis is introduced, and the experimental

results are discussed; and in Section 7, the full text is summarized, and further re-

search work is introduced.
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2 Basic theory of compressed sensing
If a discrete signal has only k non-zero elements, the signal is considered to be k sparse.

Considering a non-sparse discrete signal U, the sparse or near sparse representation of

the signal can be obtained under an appropriate sparse basis Ψ ∈ RN× L:

U ¼ Ψx ð1Þ

U is an n-dimensional signal. Ψ ∈ RN× L is the sparse basis matrix of signal U. Ψ ∈

RL × 1 is the sparse or near sparse representation of signal U. Under the theory of

compressed sensing, the process of sampling discrete signals can be described as fol-

lows: the m-times projection of a signal U with length N on the sensing matrix Φ and

{Φi, i = 1, 2,…M} can obtain the compressed sampling form of its signal. Its expression

is yi ¼ ΦT
i u i = 1, 2,...M. where M represents the sampling number for the signal. In

order to improve the sampling efficiency, the sampling times should be as small as pos-

sible, usually m < n. Therefore, it can be seen that the length of Y is less than the length

of u, so it is called compression sensing. Different from the traditional way of data col-

lection, compression, transmission, and decompression, the compression sensing theory

does not need to acquire complete signals and high-resolution images, but only collects

the information that best represents the data characteristics, which greatly saves the

storage space and reduces the transmission cost. The biggest difference between the

compression sensing and the traditional data sampling method is that the compression

sensing realizes the compression in the data collection process, and reconstructs in the

later use; the traditional method is to collect the complete data information first, and

then compress for the needs of storage and transmission [19]. Therefore, compressed

sensing theory is an under acquisition method for data acquisition, which can acquire

information at a rate lower than Nyquist. The mathematical model of compressed per-

ception is expressed as follows:

For signals U ∈ RN × 1, find a linear measurement matrix Φ ∈ RM ×N (m < n) and

perform projection operation.

y ¼ Φu ð2Þ

Among Φ ¼
ΦT

1
ΦT

2
…
ΦT

M

2
664

3
775; u ¼

u1
u2
…
uN

2
664

3
775; and y ¼

y1
y2
…
yM

2
664

3
775, Y is the collected signal. Now

the key of the problem is to recover u from signal y. because Φ is not a square matrix

(M < N), it involves solving an under determined equation (Table 1). In this way, u can

be solved by many groups of solutions (Table 2). The theory of compressed sensing

shows that under certain conditions, u has a unique solution, and the only solution is

the reconstruction of Y obtained by compressed sampling using the recovery algorithm

(Table 3). In order to show the projection of the signal on the measurement matrix, we

use numerical calculation to explain the process. The Φ is the measurement matrix (as

follows Table 1), u is the original signal (as follows Table 2), y is the signal sampled by

formula (2) (as follows Table 3).

Equation (2) shows the sampling mode of the signal. The theory of compressed sens-

ing shows that the solution of (2) must ensure that x is sparse, and then it can be

solved by L0 norm minimization. In the actual environment, most of the signals are
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non-sparse. The existing theory shows that when the signal is projected onto the or-

thogonal transform basis, the absolute value of most of the transform coefficients is

very small, and the obtained transform vectors are sparse or nearly sparse, which can

be regarded as a simple expression of the original signal, which is a prior condition of

compression perception, that is, the signal must be sparse under some transformation.

Therefore, sparse transform basis ψ can be established to complete sparse representa-

tion of non-sparse signals according to formula (1) (Table 5). Combining formulas (1)

and (2), the compression sampling of signal U can be described as follows: through for-

mula (2), the compression sampling of signal U is carried out to get y, then the sparse

solution x is obtained according to formula (3), and finally, the signal U is recon-

structed by sparse inverse transformation of x. The numerical calculation shows that

the sparse signal x is obtained by recovering y. x is consistent with projection of u on

the sparse basis ψ (as shown in Table 4). Namely, Table 5 is the sparse representation

of Table 3, which further shows that the signal can be restored with low sampling

through sparse transformation.

y ¼ ΦΨx ¼ Θx ð3Þ

Where Θ =ΦΨ, this is still an underdetermined equation, but under certain con-

straints, x can be obtained by y. Of course, if the signal itself is sparse, then no sparse

transformation is needed, then Θ =Φ. In addition to the condition that the signal needs

to satisfy the sparse expression in compressed sensing, another important constraint is

that Θ satisfies the Restricted Isometry Property (RIP).

Definition 1 [19] for matrix Θ, there is a constrained equidistance constant δs, which

is the minimum value that holds the following equation.

1−δsð Þ xsk k22≤ Θxsk k22≤ 1þ δsð Þ xsk k22 ð4Þ

Here, s = 1, 2,... is an arbitrary integer, and x is an arbitrary s-order sparse vector. If a

matrix Θ conforms to (4), then Θ satisfies the constraint equidistant property. If δs is

not too close to 1, it is not very rigorous to say that Θ conforms to the s-order con-

straint isometric property. When this property is present, the matrix approximation

contains the Euclidean distance of the sparse signal x, which in turn implies that the x

sparse vector cannot be in the null space of the Θ matrix.

In practice, we not only care about the recovery of sparse signals, but also those

near-sparse signals (the signal vector has some smaller values in addition to the ele-

ments with larger values). Therefore, for the near sparse signal vector x̂, assuming that

there are k large element values, the remaining elements are zero except for the k

larger elements, denoted by x̂k .

Theorem 1 assumes a 2 k-order RIP constant B of a matrix A. For C, the solution x

is obtained according to D to satisfy the following formula:

Table 3 y is the signal sampled by formula (2)

− 2.93138 − 4.65541 2.036959 − 0.52761 − 5.63 4.273751

Table 2 u is the original signal

− 0.19857 1.012132 − 1.20946 0.4 − 1.43907 0.587868 − 0.7529 1.3 − 0.7529 0.587868
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x�−x̂k k2≤C0k
−1=2 x−x̂kk k1 ð5Þ

C0 is a constant. In fact, if x̂ is a standard k sparse vector, then x̂ can be completely

recovered from y, and for near-sparse signals, it can be fully recovered under the condi-

tion of satisfying Eq. (5).

3 System model
3.1 Working structure of wireless sensor network

Wireless sensor network is composed of many autonomous sensor nodes, which can

detect the physical state of the surrounding environment. Each physical node consists

of four parts: sensor unit, processing unit, communication unit, and energy supply unit.

Wireless sensor nodes usually collect environmental data, such as temperature, pres-

sure, flow rate, humidity and location, and then send these data to the central node

(sink) through wireless transmission, and the central node uses other transmission

media for transmission. In addition to the aggregation node, each wireless sensor node

collects information within its monitoring range and sends it to the aggregation point,

so a large number of data in the aggregation point may cause data transmission block-

ing. In wireless sensor network, compression sensing technology is introduced, and

compression sampling is carried out in the process of data acquisition, which can

greatly reduce the amount of data transmission and energy consumption.

The wireless sensor system based on compressed sensing works in the following way:

each target periodically transmits a signal, the transmission period is T, and the targets

are independent of each other and do not require synchronization. The sensor period-

ically collects the signal, and the period is also T. after the end of the period time slice,

each sensor sends the result to the central node, which recovers the data using the per-

ception matrix, then transmits it, and finally analyzes the data at the processing end. As

shown in Fig. 1, the solid dot represents the sensor node, and the square represents the

center node.

Suppose that there are N sensors randomly distributed in the detection area, they

can detect the event signals generated in the area. K represents the number of

times the sensor node transmits in the period T. Considering that in wireless sen-

sor network, a large amount of data transmission in a long time interval will con-

sume more energy, and frequent data transmission in a short time interval will

also cause the energy consumption of nodes to be too fast, so the selection of K

plays an important role in balancing the energy consumption of nodes. Each node

periodically detects the event signals in this region and gets a vector sequence x,

which is usually non sparse, so sparse transformation is needed. Choosing appro-

priate sparse transform basis can improve the robustness of transmission signal

and the accuracy of reconstruction signal.

3.2 Data sampling in wireless sensor networks with compressed sensing

Generally, wireless sensor network consists of a large number of sensor nodes, which

have the ability of acquisition, processing, communication, and control, and can

Table 5 x is the projection of the original signal u on the sparse basis, and the sparsity of u is 7

0 0 0.2932 − 0.1466 − 1.2792 0 − 1.2792 − 0.1466 0.2932 0
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monitor the real environment. A wireless sensor network with n nodes, the data col-

lected by each node in a cycle is Xi, i = 1,2,3.... Here, Xi is a scalar, so in a period, the

whole wireless sensor network data constitutes a vector, which is expressed as:

X ¼ x1; x;…xn½ �T ð6Þ

In general, for wireless sensor networks, to obtain complete information, it needs a

complete n samples of signal x, and compression sensing can recover the complete

wireless sensor signal (β includes non-zero coefficient) by acquiring the transformation

coefficient β (||β||0 < <N) of the signal.

In wireless sensor networks, the data vector x is usually large, which may be com-

posed of data from hundreds of thousands of wireless sensor nodes. Compressed sens-

ing can reduce the amount of information collected in wireless sensor networks. For a

signal x, if there is a sparse basis ψ, and the signal x can achieve a dilution of P sparse

representation under the sparse basis, the sparse basis is expressed as:

Ψ ¼ Ψ1;Ψ2;…Ψp
� �T ð7Þ

Therefore, the data sampling of the wireless sensor network can be expressed as:

X ¼
XN
i¼1

Siψi OR X ¼ Sψ ð8Þ

where S is a sparse representation of X. Therefore, the vector data X generated by the N

wireless sensor nodes in one cycle can be represented as a vector S (p < <N) having p

non-zero coefficients. The usual compression method requires prior determination of the

position of all non-zero coefficients of the signal X of length N. The method of compres-

sive sensing does not need to determine the non-zero coefficient in advance and can dir-

ectly compress and sample the signal. By means of compressed sampling, in the wireless

sensor network, we only need to obtain the vector data of length M (p < M < <N) to fully

express the information of the whole sensor network unit period sampling and

Fig. 1 Communication structure of wireless sensor network
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reconstruct it. The original signal. Therefore, the data size processed by the sensor net-

work is reduced from N to M, thereby saving space and time for processing. Compressed

sensing uses the sampling matrix Φ to directly sample the data on the sensing node. Con-

sidering the sparse representation of the signal X = SΨ, the signal Y obtained by the com-

pressed sampling is expressed as:

Y ¼ ϕX ¼ ϕΨS ð9Þ

Among them ϕ = {ϕj, i} is the sampling matrix, also called the perceptual matrix, and

the elements in the matrix satisfy the independent and identical distribution, and the

variance is 1/M. Therefore, the size of Y obtained by compression sampling is much

lower than the original signal, and it is easier to store, transmit, and process. Therefore,

the formula (9) can be transformed into:

y1
y2
…
yM

2
664

3
775 ¼

φ1;1 φ1;2 … φ1;N
φ2;1 φ2;2 … φ2;N
… … … …
φM;1 φM;2 … φM;N

2
664

3
775

x1
x2
…
xN

2
664

3
775 ð10Þ

In order to achieve perfect recovery after compressed sampling, the value of M is:

M≤
p log N=pð Þ

1=c
ð11Þ

We have carried out numerical analysis on the sampling length M. The analysis was

implemented under different signal length N and sparsity P. As shown in Table 6, the

lower the sparsity is, that is, the less the signal non-zero element is and the smaller the

required sampling length M is; of course, under the same sparsity, the longer the signal

length is, the longer the sampling length will be.

Where C is a constant [20]. In order to ensure complete recovery of the sensing sig-

nal from the under-sampled information X, we further give four limiting conditions

[21]. First, in a wireless sensor network with N nodes, in order to avoid congestion, the

common rate R of the sensor node is set as:

Table 6 The influence of sparsity and signal length on sampling length

N, P 32 64 128 256 512 1024 2048

10 19 31 42 54 65 76 88

20 38 61 84 107 130 153

30 72 106 140 175 209

50 78 135 192 249 306

80 154 245 337 428

100 155 270 384 498

120 287 425 562

150 304 475 647

180 311 516 722

220 558 810

300 608 951

450 611 1125

800 1241
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R≥

ffiffiffiffiffiffiffiffiffiffiffiffi
logN
πN

r
ð12Þ

Second, when the central node receives the signal, the range of the arrival rate ξ:

ζ ≥
4WN

σM logN
ð13Þ

where W is the bandwidth of transmission signal, and σ > 0 is a small constant.

Third, in wireless sensor networks, in order to reduce channel contention from sensor

nodes to central nodes, we set the service rate μ as:

μ ¼ 1þWλ
W

ð14Þ

Finally, for the N node wireless sensor network, when the node ni sends information

to the node nj, in order to ensure the efficiency of transmission, the distance between

the nodes ni and nj is generally not greater than the common rate:

ni−nj

�� ��≤R ð15Þ

3.3 Multipath channel transmission model

In a wireless sensor network, a source may send information to multiple sensor nodes,

and a sensor node may also receive signals from multiple sources. Therefore, the entire

network signal transmission model can be expressed as the energy r1, …, rm consumed

by the sensor S1, S2, …, Sn receiving the source R1, …, Rm. It is assumed that the Ri en-

ergy consumption Cij is received from Sj; therefore, the multipath channel transmission

model needs to find an optimal transmission scheme to minimize energy consumption.

The mathematical description of this problem is as follows: let the energy consump-

tion from Ri to point Sj be Xij, so the total consumption is:

S ¼
Xm
i¼1

Xn
j¼1

cijxij ð16Þ

where Xij meets

Xn
j¼1

xij ¼ r j i ¼ 1; 2;…;m

Xn
i¼1

xij ¼ s j j ¼ 1; 2;…;m

xij≥0

8>>>>><
>>>>>:

ð17Þ

and

Xm
i¼1

ri ¼
Xn
j¼1

s j ð18Þ
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Therefore, in the sensor network determined by R and s, the problem of finding the

best transmission channel is transformed into finding a set of values of Xij satisfying

formula (17) to make formula (16) take the minimum value.

Definition 2 assumption R = [r1 r2 … rm]
T, S = [s1 s2 … sn]

T are two positive

vectors, satisfying

Xn
i¼1

ri ¼
Xn
j¼1

s j > 0: ð19Þ

Assumption ℋ (R, S) = {A∈ Rm × n|A ≥ 0, .A is m x n with R s, as row sum vector ST

as column sum vector}

That is, for a given positive quantity R and S, ℋ(R,S) is a set of all m× n nonnegative

matrices with R as row sum vector and ST as column sum vector. Such problems are called

nonnegative matrix problems with given row sum and column sum.

Definition 3 assumes that q1, q2, …, qr are some non-negative real numbers and sat-

isfy
Pr
i¼1

qi ¼ 1: The combination
Pr
i¼1

qixi is called the convex combination of the element

x1, x2, …, xr. Let X be a set, and the whole convex combination of any finite element in

X is called the convex hull of the set X. If any finite element of the set X, its convex

combination still in X, and X is said to be a convex set; if a point P of convex set X is

not a convex combination of X other points in X, then P is said to be a pole of X.

Suppose A is a m × n non-negative matrix, and b is an m-dimensional non-negative

vector. Then the set

Ω ¼ y∈Rn Ay≤bjf g ð20Þ

is a convex set.

From Klein-Milman theorem, it is known that a bounded convex set is a convex

combination of its poles. From the theory of linear algebra, it is known that the point y

belongs to is a pole if and only if the column vector of a corresponding to the non-zero

coordinate in Y is the independent vector group of the column vector set of A.

Since the study of a given row, column, and non-negative matrix problem is closely

related to the signal transmission problem of the sensor network, the extreme value of

the transmission problem must be realized by the pole on the domain. Therefore, the

pole in ℋ(R, S)corresponds to the minimum energy consumption of the sensor network.

For the pole problem of H(R, S), the analysis is as follows:

Lemma 1 assumes that R = [r1 r2 …rm]
T are two positive vectors, satisfying

Pm
i¼1

ri
Pn
j¼1

s j , and then A is the pole of ℋ(R, S) if and only if A is the only matrix in H(R, S) that

has the same zero pattern as A.

Prove:

suppose A ∈H(R, S). It is easy to know that A = [aij] is the matrix in ℋ(R, S) equivalent

to aij in A is the solution of the equation.
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Xn
j¼1

xij ¼ ri i ¼ 1; 2;…;m

Xn
j¼1

xij ¼ si j ¼ 1; 2;…; n

Xm
i¼1

ri ¼
Xn
j¼1

si

8>>>>>>>>><
>>>>>>>>>:

ð21Þ

Therefore, Eq. (21) can be written as

x11 þ x12 þ…x1n ¼ r1
x21 þ x22 þ…x2n ¼ r2

… …
xm1 þ xm2 þ xmm ¼ rm

x11 þ x21 …þ xm1 ¼ s1
x12 þ x22 …xn1 ¼ s2

… … … …
x1n þ x2n þ xmn ¼ sn

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

Due to condition
Pm
i¼1

ri ¼
Pn
j¼1

s j , Eq. (22) is a set of compatible equations of rank m + n

−1. Knowing the solution of Eq. (22) by convex set theory, A = [aij] is the pole in ℋ(R, S).

After the pole is solved, the transmission channel of the sensor network can be estab-

lished. The sensing node receives the signal through the channel and constructs a sam-

pling matrix. Details of section 3.3 are detailed.

3.4 Compressed sampling matrix of wireless sensor network

In the actual measurement, the active sensor node captures the signal of the event. But

there are two problems. One is that if all events happen at the same time, each sensor

will receive the signal of mutual interference. Secondly, under the condition of propaga-

tion loss and thermal noise, the signal will be distorted seriously. In order to further

analyze the signal acquisition process of wireless sensor network, the vector expression

of the signal received by the sensor under noise is given here [22]:

YM�1 ¼ GM�NXN�1 þ ωM�1 ð23Þ

Here, X represents the original signal (in order to simplify the description, assume x

is a sparse vector, of course, the actual signal x may not be sparse, but we can use the

sparse basis constructed by DCT and other methods to sparse), Y represents the sens-

ing signal, and ω represents the thermal noise and interference. It obeys the independ-

ent Gaussian distribution with mean value of zero and variance of σ2. GM × N is a

channel sampling matrix, whose structure is as follows:

Gi; j ¼ di; j
� �−α

2 hi; j
�� ��i∈M; and j∈N ð24Þ

Where dij is the distance from the i-th signal sensor to the j-th signal sensor. α is the

propagation loss factor. hmn is the Rayleigh attenuation parameter of Gaussian noise

with mean value of zero and variance of σ2. Therefore, the compressed sensing process

of wireless sensor network can be expressed as follows:
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y1
y2
…
yM

2
664

3
775 ¼

G1;1 G1;2 … G1;N

G2;1 G2;2 … G2;N

… … … …
GM;1 GM;2 … GM;N

2
664

3
775

x1
x2
…
xN

2
664

3
775þ

ω1

ω2

…
ωM

2
664

3
775 ð25Þ

In order to explain the compressed sampling process in detail, the numerical calculation

is carried out. Where the distance between sensors in the channel sampling matrix is gener-

ated randomly, the matrix G is obtained according to formula (24). The signal x and the

interference term w are sampled according to Eq. (25). Then, Then Fourier orthogonal

transformation matrix is used as sparse basis to recover signal. Five sets of numerical ana-

lysis are carried out to compare the difference between the original signal and the recovered

signal (|recovered signal-original signal|/|original signal|*100%). As shown in Table 7, the

numerical calculation shows that after compression sampling, it can be recovered, but the

recovery accuracy is not enough, which is related to the signal reconstruction algorithm.

The later part of this paper studies the reconstruction algorithm.

RIP is the constraint that all sampling matrices must follow under the theory of com-

pressed sensing. Therefore, for the sampling matrix G, we further demonstrate that it

conforms to the constraint equidistant property.

According to the Johnson-Lindenstrauss theorem [23], when a matrix Φ satisfies the

RIP condition, then the following formula holds:

Pr Φxk k2− xk k2
�� ��≥ε xk k2
� �

≤2e−nc0 εð Þ0 < ε < 1 ð26Þ

Pr(•) indicates the probability of reaching the desired value. C0(ε) is a constant that

depends on ε and is greater than zero.

Now, we discuss how to use the convergence of inequality (26) to prove the RIP property of

matrix G. First, we discuss the sampling matrix G in a fixed k-dimensional subspace. In par-

ticular, we give a subscript set T(T ≤ k), and XT represents a non-zero vector set with subscript

T in RN space. This is a k-dimensional linear space which can be used for L2 norm

calculation.

The general way to build such a linear space is to build a set of points in the k-

dimensional subspace, which meet the uniform constraints of (26), and then extend the re-

sult to all k-dimensional signals. This is a common method of constructing set space, and

the proof of Dvoretsky theory is also constructed [24]. For L2 norm of matrix G in finite di-

mensional space, we cannot get the appropriate boundary constraint at the beginning, but

adopt the way of gradual refinement.

Theorem 2 assumes that Φ(w) and w ∈ΩnN are a random matrix of size n × N, which

satisfies inequality (26). For any set T, there is |T|0 = k < n, and 0 < δ < 1, then

1−δð Þ xk k2≤ Φ wð Þxk k2≤ 1þ δð Þ xk k2x∈XT ð27Þ

The probability that the formula is established is greater than or equal to 1−2ð12=δÞk
e−c0ðδ=2Þn

Table 7 The difference between the original signal and the recovery signal

The first group the second group The third group The fourth group The fifth group

Error 7.83% 10.87% 9.27% 11.45% 8.53%
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First of all, it can be concluded that formula (27) is obviously valid under the constraint

of ‖x‖2 = 1. Because Φ is linear, next, we choose a finite set of points QT, QT ⊆ XT, and for

all q ∈QT, there is ‖q‖2 ≤ 1, for all x ∈ XT, and there is ‖X‖2 ≤ 1, so we can get

min
q∈QT

x−qk k2≤δ=4 ð28Þ

Further, we get that there is ‖QT‖1 ≤ (12/δ)k for set QT. Next, the consistency con-

straint is applied to the point set X of Eq. (19) and ε = δ/2, so its probability will be

greater than 1−2ð12=δÞke−c0ðδ=2Þn, so
1−δ=2ð Þ qk k2≤ Φqk k2≤ 1þ δ=2ð Þ qk k2 q∈QT ð29Þ

Here we assume that a is the minimum value satisfying the above formula

Φxk k2≤ 1þ Að Þ xk k2; x∈XT ; xk k2≤1 ð30Þ

Our goal is to draw A ≤ δ. So, for any x ∈ XT and ‖X‖2 ≤ 1, we can choose q ∈QT so

that ‖x − q‖2 ≤ δ/4, in this case, we can get:

Φxk k2≤ Φqk k2 þ Φ x−qð Þk k2≤1þ δ=2þ 1þ Að Þδ=4 ð31Þ

Since A is the minimum value that satisfies the formula (30), A ≤ δ/2 + (1 +A)δ/4 is taken

here, so there is A≤ 3δ=4
1−δ=4 ≤δ . We have proved that the upper bound of inequality (27) is

established, and the lower bound proof process is similar, which is expressed as follows:

Φxk k2≥ Φqk k2− Φ x−qð Þk k2
≥1−δ=2− 1þ δð Þδ=4≥1−δ ð32Þ

Then, the lower bound of (27) is also true.

After demonstrating that the sampling matrix G conforms to the constraint equidistant

property, another factor that affects the sampling efficiency and recovery accuracy is the

number of samples. What we need to further determine is the number of times the sensor

node transmits in the period T, the number of sensors that acquire the signal, and the num-

ber of all the sensors: K < M < N. Therefore, the last measured signal vector Y is a com-

pressed representation of the event. From another point of view, the vector Y is a feature

that acquires X by a lower number of samples (M times). Since the noise interference of the

wireless sensor network directly affects the signal accuracy of the compressed sampling, it

has a great influence on the signal reconstruction result. Here, we adopt an approximate

gradient descent algorithm, which can reconstruct the result of compressed sampling in the

noise interference environment and recover the original signal with higher accuracy.

4 Approximate gradient descent algorithm
In order to effectively recover the original signal in the wireless sensing network, signal

recovery in a noisy environment must be considered. Therefore, the noisy compressed

sensing model is established as follows [11]:

An unknown signal X ∈ RN can be expressed as a known sampling matrix Φ ∈ RM ×N

(M < <N) and a linear measured value Y ∈ RM:

YM�1 ¼ ΦM�NXN�1 þ ωM�1 ð33Þ

In order to reconstruct X, we need to solve the proposed constrained denoising

model by Candes et al. [25]:
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minx Xk k1 subject to ΦX−Yk k22 ð34Þ

The solution of formula (34) is a convex optimization process. Here, we give a gen-

eral description of the problem. For unconstrained convex optimization problems, the

expression is minimize

F xð Þ; F xð Þ ¼ f xð Þ þ g xð Þ ð35Þ

The objective function F(x) is considered to be a combinatorial convex optimization

function, where g(x) is a continuous convex function, but not smooth, and f(x) is a

smooth convex function. The first derivative of function F(x) is lipshciz continuous def-

inition 4. Function f(x) is a lipshciz continuous function if and only if:

∇ f xð Þ−∇ f yð Þk k2≤L fð Þ x−yk k ð36Þ

where L(f) > 0 is the Lipschitz constant.

For a general optimization problem, a smooth function f(x) is convex if and only if

the tangent of the function is below the function curve. Its mathematical expression is:

f xð Þ≥ f yð Þþ < ∇ f yð Þ; x−y > ð37Þ

If the first-order Lipschitz of f(x) is continuous and is a convex function, then f(x) is a

local quadratic function whose Hessain matrix is L(f) ⋅ I and satisfies the following

conditions:

f xð Þ≥ f yð Þþ < ∇ f yð Þ; x−y >

f xð Þ≤ f yð Þþ < ∇ f yð Þ; x−y > þ L fð Þ
2

x−yk k22

The proof is as follows:

f xð Þ ¼ f yð Þ þ
Z1

0

∇ f yþ τ x−yð Þð Þ; x−yh idτ ¼ f yð Þ þ ∇ f yð Þ; x−yh i þ
Z1

0

∇ f yþ τ x−yð Þð Þ−∇ f yð Þ; x−yidτh

f xð Þ− f yð Þ− ∇ f yð Þ; x−yh ij j

¼
Z1

0

∇ f yþ τ x−yð Þð Þ−∇ f yð Þ:x−yh i
������

������
≤
Z1

0

∇ f yþ τ x−yð Þð Þ−∇ f yð Þ:x−yj jdτ

≤
Z1

0

∇ f yþ τ x−yð Þð Þ−∇ f yð Þk k2 � x−yk k2dτ

≤
Z1

0

τL fð Þ x−yk k22dτ ¼ L fð Þ
2

x−yk k22

4.1 Certificate completion

In order to reconstruct the original signal from the compressed sampled signal, further

consider the mathematical optimization model of signal reconstruction in the process

of compressed sensing, i.e.,
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Minimize Xk k1 subject to ΦX−yk k1 < ε ð38Þ

Where x and y are vectors and Φ are matrices. This problem in the optimization so-

lution is usually expressed as:

Minimize Φx−yk k22 þ λ xk k1 ð39Þ

where λ is the weight between the sparsity of x and the signal error, and the value of

λ depends on the degree to which the two parts of Eq. (39) play a definitive role in the

optimization problem. Obviously, Eq. (38) is equivalent to Eq. (35), and its correspond-

ing form is:

f xð Þ ¼ Φx‐yk k22 � g xð Þ ¼ λ xk k1 ð40Þ

If in the convex equation of (35), the variable is not a vector but a matrix, and this

can be extended to digital signal processing in two-dimensional space, such as image

processing. The model of the minimum distortion of total variance can be used to

achieve the filtering of image compression perception [26]. For the problem of (39), we

propose an approximate gradient descent algorithm to find the optimal solution.

Suppose the function f(x) is a smooth convex function, and the first-order Lipschitz

continuous, using the gradient method for k iterations, the expression is:

Xk ¼ Xk−1−tk∇ f Xk−1ð Þ ð41Þ

where tk > 0 is a scalar representing the step size of the iteration, where a quadratic

equation is used to illustrate the iterative calculation from xk-1 to xk

Xk ¼ arg min f Xk−1ð Þþ < X−Xk−1ð Þ;∇ f Xk−1ð Þ > þ 1
2tk

X−Xk−1k k22
	 


ð42Þ

Ignore the constant term, and the same formula can be obtained by (35):

Xk ¼ arg min
1
2tk

X− Xk−1−tk∇ f Xk−1ð Þð Þk k22 þ g Xð Þ
	 


ð43Þ

For the compressed sensing in noisy environment, it can be expressed as follows:

minimize f(x) = minimize kΦx−yk22 þ λkyk1.
According to formula (39), the iteration of each step can be obtained:

Xk ¼ arg min
1
2tk

X− Xk−1−tk∇ f Xk−1ð Þð Þk k22 þ λ Xk k1
	 


ð44Þ

To find the gradient of f ðXÞ ¼ kΦX−yk22, the formula (44) is equivalent to:

Xk ¼ arg min
1
2tk

X−Xk−1 þ 2tkΦT ΦXk−1−Xð Þ�� ��2
2 þ λ Xk k1

	 

ð45Þ

where xk is an iterative calculation using such a linear shrinking step.

Let Ek = Xk − 1 − 2tkΦ
T(ΦXk − 1 − y) then (45) be transformed into:

Xk ¼ arg min
1
2tk

X−Ekk k22 þ λ Xk k1
	 


ð46Þ

For Eq. (46), we first consider the simple form under one-dimensional conditions:
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min
x∈ℜ

Q xð Þ ¼ λ xj j þ x− fð Þ2 ð47Þ

The solution of this formula is x ¼ shrinkð f ; λ2Þ
Definition 5 The shrink operator expression is as follows:

shrink f ;
λ
2

� �
¼

f −
λ
2

if f >
λ
2

0 if −
λ
2
≤ f ≤

λ
2

f þ λ
2

if f < −
λ
2

8>>>>><
>>>>>:

ð48Þ

For Eq. (46), it can be decomposed into multiple one-dimensional optimizations. For

the i-th dimension optimization problem, I can fix other elements of the xkj outer vec-

tor x, and Eki denotes the i-th element of the vector Ek. According to the definition 5,

we can get:

Xk ¼ λ� shrink β j; tkλ
 �

ð49Þ

β j ¼
X

i
Eki−

X
k≠ j

Xk ðamongÞ

By using formula (46) for iterative calculation, xk is kept close to the optimal value.

As long as the number of iterations is properly controlled, the original signal can be re-

constructed and the noise can be effectively filtered.

5 Reconstruction of wireless sensor signal based on compressed sensing
Using the approximate gradient descent method as the signal reconstruction algorithm,

the specific process of signal acquisition based on compressed sensing wireless sensor

network can be expressed as follows:

1. In a wireless sensor network, all sensor nodes are first time synchronized.

Assuming that the event occurred for a period of time, each active node detects
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the event signal with a period T. The resulting signal is represented by the vector

X. In order to thin the signal, a discrete cosine transform is used to construct the

sparse basis matrix Ψ. Each sensing node generates a projection of a signal vector

under the matrix in a period of T, which can achieve signal thinning. This step is a

prerequisite for compressive sensing of wireless signals.

2. Each sensor node constructs a sampling matrix according to Eq. (17). Further, the

thinned signal vector is projected under the sampling matrix to obtain Y, that is,

the sampling of the signal is completed. Since the sampling matrix is not a square

matrix, this is a process of undersampling the signal.

3. The sensor node transmits the compressed sampled signal to the central node of the

sensor network, and the sampling matrix is also transmitted to the central node (if all

sensing nodes use the same sampling matrix, only one of the nodes needs to transmit

the sampling matrix to central node). After receiving the signal, the center uses the

approximate gradient algorithm to recover the sparse form of the signal and uses the

discrete cosine inverse transform to restore the signal, further completing the signal

fusion processing. The entire system flow is shown in Fig. 2.

The central node receives the compressed signal Y, and then uses PRG algorithm to

approximate the exact solution of Y step by step. At the beginning, we construct a unit

Fig. 2 flow chart of wireless sensor based on compressed sensing. The sensor node obtains the signal, after
sparse change, samples sparse signal with the sampling matrix, and then transmits it to the central node
for recovery
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vector with the same length as the original signal vector as the initial vector. In the

process of algorithm execution, the selection of convergence threshold ε determines the

execution time and accuracy of the algorithm. Here, we use the optimal convergence

threshold ε = 0.015 obtained by T. blumensath and others in the literature [27]. When using

the linear contraction operator to calculate the k-step approximation solution, its step tk de-

pends on the step tk-1, tk = ((tk− 1 − 1)2 + ε)p/2− 1 of the last iteration, where p is 0.21 [28].

The algorithm is executed iteratively until the convergence threshold condition is satisfied.

6 Simulation experiment
In the experimental design, 100 sensor nodes are randomly distributed in the area of

100 × 100, and the center of the area is the center node. The target signals (sources) to

be detected are randomly distributed in the region. The experiment assumes that the

sensor node collects the signal in a period of time, and each sensor processes the signal

sparsely, compresses the sample, and then transmits it to the central node.

For the sensor node to acquire the signal, the weak signal on a certain sensor node

may be a strong signal at other nodes, and a signal strength threshold may be set, and

the signal below the threshold is no longer acquired; so to the extent that weaker sig-

nals are avoided, they are filtered out as noise during the recovery phase. In order to

verify the performance of PRG algorithm in wireless sensor network, we introduce or-

thogonal matching tracking (OMP) [29], basis pursuit (BP) [30], and subspace tracking

(subspace), subspace pursuit, (SP) [32] algorithm, and compressive sampling matching

(COSAMP) [33] algorithm to compare and analyze the reconstruction accuracy of dif-

ferent algorithms. According to the theory proposed by Candes et al., the number of

times of compression sampling, that is, the line m of the sampling matrix satisfies m ≥

C ⋅ μ2(Φ,Ψ) ⋅ r ⋅ log n, where r represents the sparseness of the signal after sparse pro-

jection, n represents the signal length, Φ is the perceptual matrix, and Ψ represents the

sparse basis matrix. If Φ, Ψ is irrelevant [34], ideally the coherence factor μ(Φ,Ψ) = 1,

then m ≥ C ⋅ r ⋅ log n, most experimental results show that m ≥ 4r is the best value. In

the experiment in this paper, the sparse basis matrix uses a 1024 × 1024 discrete cosine

transform matrix, so the sensor accepts the signal with a length of 1024 bits for seg-

mentation. The sampling matrix is constructed using (24). In order to more clearly

demonstrate the resilience of the PRG algorithm and other algorithms, we use the

signal-to-noise ratio (SNR) of the reconstructed signal and the original signal to repre-

sent the recovery effect. The definition is as follows:

SNR Xtrue;Xrecð Þ ¼ 20 log
Xtruek k2

Xtrue−Xreck k2
ð50Þ

where Xture represents the original signal from the source, and Xrec represents the sig-

nal that is compressed and then reconstructed.

7 Results and discussion
The signal reconstruction by PRG algorithm is a process of successively approximating

the optimal solution. To quantitatively analyze the performance of the PRG algorithm,

the experiment is performed at a sampling rate of 400. In Eq. (46), the parameter λ is

0.35 [35]. It can be seen from Fig. 3 that the reconstruction effect of the PRG algorithm

tends to be stable after 10 iterations, and the number of iterations is further increased,
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and the signal reconstruction effect is not improved much. Therefore, the number of it-

erations of the PRG algorithm is unified to 10 times in subsequent experiments.

Figure 4 shows the recovery ability of OMP, SP, BP, CoSaMP, and PRG algorithm in

wireless sensor network without noise interference. For the sampling matrix con-

structed by formula (24), the sub matrix is constructed by randomly selecting row vec-

tors of the matrix to undersample, and the number of row vectors is the sampling rate.

It can be seen from the observation in Fig. 4 that the resilience of different algo-

rithms is not much different in a noise-free environment. Under the condition of

low sampling rate, the recovery ability of these algorithms is not good. This is be-

cause the low sampling rate cannot guarantee the main characteristic information

of the sensor to obtain the signal, and it is difficult to achieve perfect reconstruc-

tion of the signal, that is, the SNR value is low. As the sampling rate is further

Fig. 3 PRG algorithm iteration number and reconstruction effect. The SNR of the reconstructed wireless
sensor signal by PRG algorithm, in which iterations involve 5, 10, 15, 20, 25, 30, and 35

Fig. 4 Reconstruction of sensor signals without noise. The SNR of the reconstructed wireless sensor signal
by PRG, OMP, SP, BP, and COSAMP. The sampling rates 100, 150, 200, 250, 300, 350,and 400, respectively
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increased, it can be seen that the SNR value is increasing and tends to be stable,

that is, the signal can be accurately reconstructed.

In order to further analyze the influence of noise interference on the signal col-

lected by the sensor, we add Gaussian white noise and sinusoidal signal plus nar-

rowband Gaussian noise with a signal-to-noise ratio of 10, 20,...100 to the original

signal. These are two common noises in wireless sensor networks .Then, compare

the reconstruction capabilities of the four algorithms OMP, SP, BP, COSAMP, and

PRG. In this experiment, the number of samples is 400, the discrete cosine trans-

form is used to construct the base matrix, and the SNR values of the signal and

noise are gradually increased. Figures 5 and 6 show the resilience of the algorithm

under Gaussian white noise and sinusoidal signal plus narrowband Gaussian noise.

In the case of low signal-to-noise ratio, it means that the noise energy and the sig-

nal energy are equivalent. In order to better reduce the noise influence, this puts

high requirements on the reconstruction ability of the algorithm. In fact, the noise

is relatively strong. In most cases, most algorithms are difficult to reconstruct the

signal perfectly. As the SNR value increases, the situation improves. It can be seen

whether Gaussian white noise or sinusoidal signal plus narrowband Gaussian noise,

the PRG algorithm exhibits better resilience than other algorithms in the SNR

value of 40–90, and since 90 is relatively large in signal energy relative to noise,

most algorithms can reconstruct the signal better. Moreover, compared with the

Gaussian white noise, PRG algorithm has a good recovery effect under sinusoidal

signal plus narrowband Gaussian noise. Therefore, it can be concluded that the

PRG algorithm exhibits better reconstruction performance under non-strong noise

interference and can effectively restore the original signal.

Further, we built a real wireless sensor network system, which is composed of 30

temperature sensor nodes. Every nodes support 802.11 and 2.4 GHz network bands.

Fig. 5 Sensor signal reconstruction under Gaussian white noise. The SNR of the reconstructed wireless
sensor signal by PRG, OMP, SP, BP, and COSAMP. The SNR of noise is 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100, respectively
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The wireless sensor nodes are separated by 5 m, and the central node is directly re-

placed by PC. A stable heat source was randomly placed in the experiment, and then

the temperature of the heat source was measured. Since the current hardware-based

sensing matrix design is still not perfect, we add a module to each sensing node, imple-

ment the sparse and compressed sampling by software, and then transmit temperature

data by compressed sampled to center node. Signal of temperature was refactored in

the center node. The experiment still uses the discrete cosine transform to construct

Fig. 6 Sensor signal reconstruction under sinusoidal signal plus narrowband Gaussian noise. The SNR of the
reconstructed wireless sensor signal by PRG, OMP, SP, BP, and COSAMP. The SNR of noise is 10, 20, 30, 40,
50, 60, 70, 80, 90, and 100, respectively

Fig. 7 Temperature sensing reconstruction error based on compressed sensing
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the base matrix, and other parameters are the same as the previous experiments. We

randomly placed the heat source at 10 locations and repeated 10 experiments to com-

pare the reconstruction capabilities of the reconstruction algorithms OMP, SP, BP,

COSAMP, and PRG, as shown in Fig. 7. The relative error between the actual

temperature of the heat source and the temperature calculated by the central node is

used to represent the reconstruction accuracy.

From Fig. 6, it can be observed that under the same conditions, the reconstruction

accuracy of the PRG algorithm is generally better than other algorithms, but its recon-

struction performance is not as stable as the BP and OMP algorithms. In the experi-

ment, we further analyzed that the reconstruction time of the temperature sensing data

of the PRG algorithm is consistent with the OMP algorithm, which is lower than the

SP, COSAMP, and BP algorithms, and the rapid reconstruction capability is also im-

portant for reducing the energy consumption of the wireless sensor network.

Fig. 8 Reconstruction time of heat source signals under Gaussian white noise
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In order to study the time complexity of algorithm reconstruction, we compare the

time overhead of various algorithms for heat source signal reconstruction. In theory,

the algorithm’s reconstruction time for the signal increases as the number of iterations

increases. In the experiment, we tested the time to reconstruct the heat source signal in

the case where the interval of the number of iterations is [1, 12], and the SNR values of

the noise are 20, 40, 60, and 80, respectively. As shown in Figs. 8 and 9, it can be seen

that whether Gaussian white noise or sinusoidal signal plus narrowband Gaussian

noise, the time increases with the increase of iteration times, and it is obvious that the

iterative calculation increases the time overhead. The noise also has a significant impact

on the reconstruction time. The higher the noise, the longer the time required to re-

construct the signal. This is because the noise introduces extra data, and the noise is

non-sparse signal. The compression is relatively small, which makes the overall calcula-

tion of the algorithm increase. Lead to increased time complexity. The PRG algorithm

proposed in this paper has lower time overhead than other algorithms. In particular,

when SNR = 60, the time cost is significantly lower than other algorithms. In the sinus-

oidal signal plus narrowband Gaussian noise, we further find that the recovery time of

the heat source signal pair is less than that of the Gaussian white noise.

8 Conclusion
The advantage of compressed sampling is that it acquires the complete signal at a lower

cost. The wireless sensor network needs this facility. Since wireless sensor networks are

susceptible to noise, signal reconstruction of undersampled data becomes difficulty.

Based on multi-path channel transmission model for wireless sensor networks, an ap-

proximate gradient descent algorithm is proposed to recover compressed signal under

Fig. 9 Reconstruction time of heat source signals under sinusoidal signal plus narrowband Gaussian noise
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noise. The algorithm can get the optimal solution of the constraint equation through

stepwise iterative approximation, and then restore the original signal. Compared with

OMP, SP, BP, and COSAMP algorithm, PRG algorithm shows better reconstruction

performance under noisy environment. In the test of temperature sensing networks,

the result shows that the PRG algorithm has certain advantages in both reconstruction

accuracy and time. However, the following limitations of the PRG algorithm need to be

further studied:

1. Although the overall convergence time of PRG algorithm is short, it is found that

the convergence time of single iteration of PRG algorithm is more than the other

three algorithms in the experiment. In the follow-up research, we need to further

optimize the linear contraction step model to reduce time complexity of the algo-

rithm, reconstruction time, and energy consumption of the sensor network.

2. The determination of the weight λ between the sparsity of signal x and the error is

based on the weight selection method .This method is a fast shrinkage threshold

algorithm proposed by Beck et al. It is not clear for adaptability of PRG algorithm

to the reconstruction of wireless sensor signal. Therefore, it is necessary to further

analyze from mathematical inference.
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