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Abstract

It is very difficult to deal with the problem of error correction in random network
coding, especially when the number of errors is more than the min-cut of the
network. We combine a small field with rank-metric codes to solve this problem in
this paper. With a small finite field, original errors are compressed to propagated
errors, and their number is smaller than the min-cut. Rank-metric codes are
introduced to correct the propagated errors, while the minimum rank distance of the
rank-metric code is hardly influenced by the small field. It is the first time to correct
errors more than the min-cut in network coding with our method using a small field.
This new error-correcting algorithm is very useful for the environment such as a
wireless sensor network where network coding can be applied.
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1 Introduction
The nature of combining information in intermediate nodes makes network coding

very susceptible to transmission errors. How to control and correct the errors in ran-

dom network coding is therefore of great interest to researchers. This problem natur-

ally motivates the topic of network error correction (NEC), pioneered by Yeung and

Cai [1]. Since then, a variety of models were presented to combat the problem. For a

determined network, its topology is stable over time, Guang et al. [2–4] proposed sev-

eral NEC construction algorithms for correcting propagated errors in it based on the

Hamming metric. For random networks, changing their topologies over time, original

errors can be spread to the down-stream nodes in the networks and cause the decod-

ing failure when the Hamming metric is used. To solve the issue, Kotter [5] introduced

a subspace/rank-metric-based method and developed an elegant approach. However,

the capacity has reached the theoretical upper-bound of NEC (C − 2t), where C and t

are the min-cut of the network and the number of corrupted links in the network, re-

spectively. That is to say, t , the number of errors to be corrected is no more than C/2,

here t = (C ‐ R)/2 and R is the transmission rate of the code. Guruswami et al. [6] gen-

eralized the rank-metric code to its list-decoding version. The method can correct
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nearly C errors when the transmission rate R is close to zero. In order to correct more

errors, Guo et al. [7] introduced a nonlinear operation to network coding and proved

that the transmission rate can be bigger than (C − t) in her method. But she did not

show her concrete construction and corresponding decoding algorithm about the

method in the paper we also noticed. The operations in the method have exponential

complexity. So far, there are few practical methods that can correct more than C errors

in the related literature. However, in the real communication environments, the num-

ber of original errors is usually larger than min-cut C, since the number is directly pro-

portional to total links in the networks.

In random network coding, the transport process can be depicted by Y = T ⋅G ⋅ u +

TZ→ Y ⋅ Z, where u is the original message intended to be transmitted. In a source node

of a multicast network, u is encoded to G ⋅ u by a code Ω with its generate matrix G.

Then, G ⋅ u is sent to the network and encounters a transfer matrix T, which represents

the effect of network coding upon G ⋅ u. Simultaneously, the error Z occurred on the

links also encounter their own transfer matrix TZ→ Y, and then, TZ→ Y ⋅ Z are injected

into the messages Y received in the sink node. In the existing NEC models, packets

must be collected enough to guarantee that T is a full-rank matrix. By multiplying T‐1

to both sides of the equation Y = T ⋅G ⋅ u + TZ→ Y ⋅ Z, we can obtain T‐1 ⋅ Y =G ⋅ u + T‐

1 ⋅ TZ→ Y ⋅ Z. Based on the code Ω with its generated matrix G, we can further get the

original message u. Denoted by Z, the original error, as the effect of network coding,

there are several variations of Z such as T‐1 ⋅ TZ→ Y ⋅ Z, TZ→ Y ⋅ Z, and they are called

“propagated errors.” In essence, the existing NEC methods focused their aims on com-

pressing the number of “propagated errors.” With respect to the determined network

[2–4], the Hamming weight of the propagated error T‐1 ⋅ TZ→ Y ⋅ Z is compressed to

the Hamming weight of the original error Z. The spread effect of the original error Z is

compressed by the NEC method. But for a random network, it is difficult to compress

the spread of original error from the perspective of the Hamming metric. However,

from the view of the rank metric, the rank of propagated error T‐1 ⋅ TZ→ Y ⋅ Z is no

more than the rank of the original error Z, and the spread of error in network coding

is compressed naturally [5]. Once the list-decoding method is introduced, the range of

the number of original errors that can be corrected increases from the interval (0, C/2)

to (C/2, C), see [5] or [6] for a reference. In order to guarantee T is a full-rank matrix,

the size of the finite field should be big enough [6]. The rank of propagated error T‐1 ⋅

TZ→ Y ⋅ Z could not be compressed to a smaller one than C when the rank of the ori-

ginal error Z is bigger than C. Even if the list decoding of rank-metric code [6] has a

strong decoding ability, it still cannot correct the propagated errors based on the ra-

tionale of coding theory when the rank of propagated error T‐1 ⋅ TZ→ Y ⋅ Z is bigger

than C.

In this paper, we propose a new method, which can correct more than C errors. In

our experiments, we test and verify that if the size of a finite field for network coding is

smaller than a threshold number, the rank of TZ→ Y ⋅ Z can be smaller than C. But T

unfortunately is usually not full rank, so we cannot use the decoding algorithm of code

Ω with the generated matrix G to decode u, where the corresponding decoding equa-

tion is T‐1 ⋅ Y =G ⋅ u + T‐1 ⋅ TZ→ Y ⋅ Z. For T is not full rank in a small field, we decode

u based on the equationY = T ⋅G ⋅ u + TZ→ Y ⋅ Z. We will use the new code Ω’ with it

generates matrix, T ⋅G, instead of G to decode u. Here, the rank of TZ→ Y ⋅ Z is smaller
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than C. Now, the only question remaining is how much the minimum rank distance of

code Ω’ declines, compared to the minimum rank distance of code Ω. If the minimum

distance of code Ω’ declines too much, we still cannot correct the propagated error

TZ→ Y ⋅ Z with the list-decoding algorithm of rank-metric code, just like that in [7].

Fortunately, based on our experiments to be shown in Section 5, we found that the

minimum distance of T ⋅G is very close to the minimum distance of G even if T is not

full rank when a small field is used. In the traditional research paradigm of network

coding, we use a big field to make sure T is full rank. In our work, we deal with the

problem by using a small field way to compress the spread of original error based on

the rank metric. Even the number of non-zero components in original error Z is far lar-

ger than C, the rank of propagated error TZ→ Y ⋅ Z also can be compressed to a smaller

number than C as long as the size of the field is small enough. Our method not only

can correct more than C errors in random network coding, but also can correct lots of

errors valuable to practical applications of network coding.

The rest of this paper is organized as follows. We first introduce the related works in-

cluding rank-metric codes and list decoding briefly in Section 2. Then, we present our

method in Section 3. In Section 4, we give the experiment results and make a detailed

theoretical analysis based on a combinatorial theory of probabilities and simulation. Fi-

nally, we draw a conclusion about our work in Section 5.

2 Related works
In this section, as the background of our work, we first introduce the rank-metric codes

and the list-decoding technique. Then, we explain a model about NEC, in which list de-

coding of rank-metric codes is involved.

2.1 Rank-metric codes

Denote the set of all n ×m matrices over Fq by Fn�m
q and suppose a rank-metric code,

Ω, is a subset of Fn�m
q . Define the distance between X∈Fn�m

q and Y∈Fn�m
q as rank(X −

Y). Obviously, we can also take the matrix X∈Fn�m
q as a vector x∈ðFqmÞn in the field

Fqm , and this means there is a bijection between the vector set of Fqm and the matrix

set of Fn�m
q . We further define rank(x) = rank(X).

2.2 List decoding of rank-metric codes

In the traditional decoding method of linear block codes, the solution is unique, and

the number of errors that can be corrected is less than the half-size of the codeword.

With the method of list decoding, we can correct errors more than half of a codeword

size, but the solutions of list-decoding method are not unique. Based on the rank codes,

Guruswami in [6] proposed the list decoding of rank codes and approximate the num-

ber of the corrected errors to the word size when the transmission rate approximates

zero. We can utilize the method with its strong error-correcting ability to correct the

propagated error in network coding, where the codeword size is exactly the min-cut C.

2.3 Graph model about network coding

Consider an acyclic directed graph G ¼ fV ;ℰg , where V is a node set and, ℰ is an

edge set whose elements represent network channels. A channel e = (i, j) is a directed
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edge starting from node i and ending at node j, i.e., tail(e) = i and head(e) = j. For a

nodei, the collection of incoming channels is In(i) {e : e ∈ ℰ, head(e) = i} and the collec-

tion of outgoing channels is out(i) = {e : e ∈ ℰ, tail(e) = i}. Each channel has a unit cap-

acity in the network. NEC is specified by the related encoder at the source, encoders at

intermediate nodes, and decoders at sink nodes. The coding and decoding operations

for messages are performed over the field Fqm , and the network coding is Fq.

3 Proposed methods
3.1 Some claims based on numerical experiments

In this section, we give a set of numerical experiment results to be used in our method.

The results are summed up in our three claims. The experiment details will be given in

the next section. The three claims establish the base of our method in Section 3. Our

claims are based on plenty of experiments rather than rigorous mathematical deducing.

However, we also give out auxiliary mathematical analysis about the claims in Section

4.

Claim 1:

Suppose ∣Fq ∣ ∈ {2, 3, 4, 5}, there is rank(TZ→ Y ⋅ Z') <C with a high probability,

where Z ' ∈ (Fq)
t ×m, TZ→ Y ∈ (Fq)

C × t, and t > 0.

Claim 2:

For rank-metric code Ω with the generated matrix G and minimum rank distance

dmin, if rank(T) =C ‐ k, then dmin ' = dmin − k is the minimum rank distance dmin' of

code Ω’ with the generated matrix T ⋅G, where T ∈ (Fq)
C × C, 0 < k <C.

Claim 3:

If ∣Fq ∣ ∈ {2, 3, 4, 5}, we have rank(T) = C − 1, where T ∈ (Fq)
C ×C with high

probability.

3.2 Data collection strategy with delay constraint

In this section, we formally propose our method. The method is specified by its en-

coder at the source, encoders at intermediate nodes, and decoders at sink nodes. The

coding operation is over the field Fq.

3.2.1 Source

A source message u∈ðFqmÞR is encoded with a rank-metric code Ω equipped with the

generated matrix G∈ðFqmÞC�R, where m ≥ C and 0 < R <C. The coded message is a vec-

tor x∈ðFqmÞC ¼ G � u. Then, x is then sent to the network from the source. The mini-

mum rank distance of Ω is dmin.

3.2.2 Coding at intermediate nodes

Every intermediate node combines its received packets from incoming edges with its

own local coding kernel in field Fq, creates a new packet, and sends the packet to its

successors via outgoing edges. At a more macroscopic level, the network coding at that

time leads that messages encounter a so-called transfer matrix [8]. In our method, the

messages x∈ðFqmÞC ¼ G � u encounter a transfer matrix T ∈ (Fq)
C ×C and the error Z∈

ðFqmÞt encounters a corresponding transfer matrix TZ→ Y ∈ (Fq)
C × t, where t is the num-

ber of edges, on which errors occur. Roughly speaking, the received messages Y in the
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sink can be expressed as Y = T ⋅G ⋅ u + TZ→ Y ⋅ Z, if T is not polluted by errors. T is got-

ten from the global coding kernels in the packets. However, if errors occur, the global

coding kernels may also be polluted. At this case, T is then naturally polluted and it is

unknown. Though T is unknown, the polluted version of it, denoted by T̂ , is known.

The transmission procedure can be expressed by a more delicate equation Y ¼ cT �G � u
þTZ→Y � ðZ−L � G � uÞ . Here, L ∈ (Fq)

t ×C is a matrix, formed by grouping the global

coding kernel vectors together.

3.2.3 Decoding in the sink

Let T̂ � G as the generated matrix of the newly formed rank-metric code Ω' with a

minimum rank distance of dmin' and Y as the received messages, and the errors can be

evaluated as TZ→ Y ⋅ (Z − L ⋅G ⋅ u). We utilize the list-decoding method of rank-metric

codes [6] to perform decoding and get u, as long as rank(TZ→ Y ⋅ (Z − L ⋅G ⋅ u)) <C and

dmin' is not smaller than dmin too much. This means ud, corresponding to Yd ¼ arg
Yd∈Ω0

min rankðYd−Y Þ, is the estimate of u. So, ud is the solution of the decoding algorithm

for the original message. In the list decoding, ud is not unique.

3.2.4 The feasibility of the decoding

We discuss the feasibility of our method here. The feasibility depends on claims 1 to 3.

As mentioned in Section 2, the model in [6] to correct the errors is based on the equa-

tion T̂
−1 � Y ¼ G � uþ T̂

−1 � TZ→Y � ðZ−L � G � uÞ in the random network coding. T̂
−1

�Y ¼ G � uþ T̂
−1 � TZ→Y � ðZ−L � G � uÞ is induced by multiplying T̂

−1
on both sides of

the equation Y ¼ cT �G � uþ TZ→Y � ðZ−L � G � uÞ , and T̂
−1

is invertible in the field Fq.

We use the decoding algorithm of code Ω with its generated matrix G to perform list

decoding. The list-decoding produce can correctly work as long as rankðT̂−1 � TZ→Y � ð
Z−L � G � uÞÞ < C . It is a dilemma to make a choice, using a bigger field size or using a

smaller field size in the context of random network coding. If T̂
−1

is invertible, the size

of field Fq would be big enough, and it is usually ∣Fq ∣ ≥ 256 [9]. On the other hand,

claim 1 shows rankðT̂−1 � TZ→Y � ðZ−L � G � uÞÞ > C if ∣Fq∣ is bigger than 5. In this

case, the decoding certainly fails if the list-decoding method [6] is used.

As discussed above, we use code Ω' with the generated matrix cT �G to perform list

decoding, where the corresponding error is TZ→ Y ⋅ (Z − L ⋅G ⋅ u) rather than T̂
‐1

�TZ→Y � ðZ−L � G � uÞ . The two preconditions for successfully decoding are that

rank(TZ→ Y ⋅ (Z − L ⋅G ⋅ u)) < C and dmin' is not smaller than dmin too much, respect-

ively. The first condition, rank(TZ→ Y ⋅ (Z − L ⋅G ⋅ u)) <C, can be naturally satisfied, and

it is necessary according to the inherent nature of the linear block code. For the second

condition, if dmin' is not smaller than dmin too much, we can consider that the code Ω'

has a nearly identical error-correcting ability with the code Ω. When rank(TZ→ Y ⋅ (Z −

L ⋅G ⋅ u)) <C, we also perform list decoding of rank-metric just like done in [6]. If dmin'

is smaller than dmin too much, the error-correcting ability of code Ω' declines sharply,

compared with code Ω. In this case, it becomes un-meaningful in practice, even if code

Ω' can correct nearly C errors in theory. After the theoretical analysis, we explain that

Zhang et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:116 Page 5 of 12



the two preconditions can be met in the following case if ∣Fq ∣ ∈ {2, 3, 4, 5}. In order to

obtain better results, we set ∣Fq ∣ = 2 in this paper.

Based on claim 1, rank(TZ→ Y ⋅ (Z − L ⋅G ⋅ u)) is smaller than C if ∣Fq ∣ = 2. In essence,

rank(TZ→ Y ⋅ (Z − L ⋅G ⋅ u)) ≤ rank(TZ→ Y ⋅ Z) because rank(Z − L ⋅G ⋅ u) ≤ rank (Z).

Based on claims 2 and 3, it can be guaranteed that dmin' is not smaller than dmin too

much. In most cases, dmin ' = dmin or dmin ' = dmin − 1, and in a few cases, dmin ' = dmin

− 2. The specific situation depends on the sizes of C and m. The details of it will be in-

troduced in the experiment section.

3.2.5 Advantages and disadvantages

The advantages of our method are as follows: (1) More than C errors can be cor-

rected with list decoding of rank-metric codes in a random network coding, when

we adopt a small network coding field, for example, ∣Fq ∣ = 2. (2) Our method has

the ability of correcting the original more than min-cut C errors, and it is very im-

portant in the real applications of network coding. (3) The small field can avoid a

low computational burden. In the rank-metric code for network coding, we can

make the extension field Fqm big enough to get a bigger dmin. In this case, m is

usually bigger than min-cut C [10]. In [9], ∣Fq∣ is set more than 256 to guarantee

T̂ is invertible. Naturally, a bigger Fqm obviously lead to a heavy computation. In

our approach with a small field, Fqm should be smaller because ∣Fq∣ is very small,

and a small Fqm can lead to a serious computational burden. (4) The disadvantage

of our approach is that the transmission rate is a little smaller than the rate in [6]

because dmin' is 1 or 2 and it is smaller than dmin. But the problem can be allevi-

ated as C becomes bigger because 1 or 2 is a few ratios of C. In this case, dmin' is

also sufficient to successfully decode. On the other hand, the more components

about the original error Z, i.e., t, the bigger the rank of the propagated errors TZ→

Y ⋅ (Z − L ⋅G ⋅ u) it takes. In this case, the transmission rate is usually low.

4 Experimental results and discussion
In this section, we give a set of experiments to support claims 1 to 3 in Section 3. We also

give corresponding theory analysis about experiments. Because many mathematical opera-

tions are performed in the finite field, we design our program about the finite field math-

ematical operation based on MATLAB, such as inversing a matrix, computing the inverse

of a number in the finite field, and computing rank of a matrix in the finite field. In the

experiments, we use newly designed finite operation methods to verify claims 1 to 3.

4.1 Experimental results

4.1.1 Claim 1

Assume the min-cut C = 5 ∗ ∣ Fq∣.

In Fig. 1, the different numbers of original errors are illustrated by different curves.

We can find that, if ∣Fq ∣ = 2, the rank of the propagated errors TZ→ Y ⋅ (Z − L ⋅G ⋅ u)

can be compressed to 0.7 ∗ C, even if t = 20 ∗ C, where t is the number of original errors

Z. In this case, the list decoding of rank-metric codes can correct the propagated errors

TZ→ Y ⋅ (Z − L ⋅G ⋅ u) easily. This character is good for correcting the dense errors in

the random network coding.
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Because it is difficult to do finite field programming with MATLAB when the size of the

finite field is even, we use C programming language to do finite field programming. Like

Fig. 1, where the size of the finite field is odd, Fig. 2 shows how the errors are propagated in

the finite field when the size of the finite field is even.

We now analyze the experimental results theoretically and find that there is a satisfac-

tory coincidence with the theory and the experiment results. The transfer matrix TZ→

Y ∈ (Fq)
C × t is known in advance, where t is the number of edges on which errors occur,

and (Z − L ⋅G ⋅ u) takes its value in ðFqmÞt . Based on the theory of the extension field and

the base field, we can take the vector (Z − L ⋅G ⋅ u) in field Fqm as a matrix (Fq)
t ×m in field

Fq [10]. TZ→ Y ⋅ (Z − L ⋅G ⋅ u) means that when we multiply two matrices together in the

field Fq, they should satisfy (C ⋅ t) × (t ⋅m) = (C ×m). Finally, we can assert TZ→ Y ⋅ (Z − L ⋅

G ⋅ u) ∈ (Fq)
C ×m. Obviously, no matter how big the value t is, the rank of TZ→ Y ⋅ (Z − L ⋅

G ⋅ u) is no more than C. The reason is that a small field Fq usually makes rank(TZ→ Y

⋅ (Z − L ⋅G ⋅ u)) ≤C, no matter how big the value of t is. If the Hamming metric is

adopted, no matter how small the size of Fq is, we cannot compress Hamming weight of

TZ→ Y ⋅ (Z − L ⋅G ⋅ u) to the number smaller than C. Naturally, we cannot correct the

propagated errors even though the list decoding is used based on the Hamming metric.

4.1.2 Claim 2

According to the experiments we have done, we found that claim 2 always holds on all

the parameter combinations. So far, no counterexample has been found to claim 2 in

our work.

Fig. 1 Normalized rank of propagated error TZ→ Y ⋅ (Z − L ⋅ G ⋅ u) based on claim 1 when the size of finite

field is odd. Legend: The vertical axis value is rankðTZ→Y �ðZ−L�G�uÞÞ
C . A smaller field size implies a smaller value

about normalized rank of propagated error, when t (the number of original error) is fixed
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4.1.3 Claim 3

In Table 1, we show several examples about the decline of the rank of T. We can see

the declined amount is 0, 1, or 2.

In Fig. 3, we illustrated the ratio of the declined amount of the rank of T in a small

field to the full rank. We can find the ratio very low, which means dmin' is very close to

dmin when the size of the finite field is odd.

Because it is difficult to do finite field programming with MATLAB when the size of

the finite field is even, we use C programming language to do finite field programming.

Like Fig. 3 where the size of the finite field is odd, Fig. 4 shows how the rank reduced

in the finite field when the size of the finite field is even (Table 1).

Whether T is a full rank depends on the size of the finite field. Figure 5 shows the

probability that T ∈ (F2)
C × C is a full rank in field F2.

5 Discussion
Consider the rank of a square matrix T in the finite field Fq. The probability that

T ∈ (Fq)
C ×C is a full rank in field Fq is (1 − |Fq|

−C) × (1 − |Fq|
−(C − 1)) ×⋯(1 ‐ |Fq|

−2) × (1 ‐

|Fq|
−1) [9]. For the first selected row of T, the probability that this row is a nonzero

vector is 1 − |Fq|
−C. For the second selected row of T, the probability this row is linearly

Fig. 2 Normalized rank of propagated error TZ→ Y ⋅ (Z − L ⋅ G ⋅ u) based on claim 1 when the size of a finite

field is even. Legend: The vertical axis value is rankðTZ→Y �ðZ−L�G�uÞÞ
C . A smaller field size implies a smaller value

about normalized rank of propagated error, when t (the number of original error) is fixed

Table 1 Several examples about the decline of T. For example, the rank of T is 3 (C − 2) when C =
5 and the field size is 2. In this case, the declined amount about the rank of T is 2.

Field size 2 3 5 7 11

C = 5 2 0 0 0 0

C = 20 1 1 0 0 0

C = 50 1 2 1 0 0
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independent with the first selected row is 1 − |Fq|
−(C − 1). The rest rows can also be con-

sidered in a similar way. Consider the case that ∣Fq ∣ = 2 and C approximate infinity,

the probability that T is a full rank is about 0.289 based on [9]. The probability rank of

T that declines no more than 2 is (1 − 2−C) × (1 − 2−(C − 1)) ×⋯(1 ‐ 2−3), where (1 ‐

2−2) × (1 ‐ 2−1) is not included. If C approximates infinity, (1 − 2−C) × (1 − 2−(C − 1)) ×

Fig. 3 Normalized decreased rank based on claim 3 when the size of a finite field is odd. Legend: Denote
declined amount about rank of T is by ∂, and the vertical axis characters are ∂/C. In this case, matrix
dimension T is C × C, and its rank is C ‐ ∂

Fig. 4 Normalized decreased rank based on claim 3 when the size of a finite field is even. Legend: Denote
declined amount about rank of T is by ∂ and vertical axis characters are ∂/C. In this case, matrix dimension T
is C × C, and its rank is C ‐ ∂
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⋯(1 ‐ 2−3) is about 0.7707. In Fig. 2, when ∣Fq ∣ = 2 and C = 50, the normalized de-

clined amount about rank is very low. So, the rank of T also did not decline too much

when ∣Fq ∣ = 2, and then, it means dmin' is very close to dmin.

This work mainly depends on information methods, if we adopt the methods from

the machine learning field [11–14], we may correct more errors. The methods in [15–

18] are also worth learning for the network coding error correction.

6 Conclusions and future work
With a small field ∣Fq ∣ = 2, the number of original errors can be compressed to less

than the min-cut of the network when their number is far more than the min-cut of

the network. The minimum distance of the newly formed rank-metric code in the small

field also did not decline sharply. So, the propagated errors can be corrected by the list-

decoding method of the newly formed rank-metric code. Our scheme can correct more

than the min-cut errors in network coding. A small field is also useful to reduce the

computational burden compared to the bigger fields.

In our future research, we will try to optimize the scheme in real scenarios. We also

will combine deep learning methods with network coding to improve the effectiveness

of this method.
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