
RESEARCH Open Access

A dynamic taint tracking optimized fuzz
testing method based on multi-modal
sensor data fusion
Qianmu Li1,2,3* , Yaozong Liu2, Shunmei Meng1,4, Hanrui Zhang1,4, Haiyuan Shen3 and Huaqiu Long2

* Correspondence: qianmu@mail.
njust.edu.cn
This work was supported in part by
the 2019 Industrial Internet
Innovation and Development
Project from Ministry of Industry
and Information Technology of
China, 2018 Jiangsu Province Major
Technical Research Project
“Information Security Simulation
System,” Fundamental Research
Funds for the Central Universities
(30918012204).
1School of Cyber Science and
Engineering, Nanjing University of
Science and Technology, Nanjing
210094, China
2Intelligent Manufacturing
Department, Wuyi University,
Jiangmen 529020, China
Full list of author information is
available at the end of the article

Abstract

The safety of the Industrial Internet Control Systems has been a hotspot in the
information security. To meet the needs of communication, a large variety of
proprietary protocols have emerged in the field of industrial control. The protocol
field is often trusted in the implementation of industrial control terminal code. If
attackers modify the data of these fields using the protocol defect, the operation of
the program can be controlled and the entire system will be affected. To cope with
such security threats, academia and industry generally adopt fuzz test methods.
However, the current industrial control protocol fuzz test methods generally have
low code coverage, where unified description models are missing and test cases are
not targeted. A method of fuzzification processing combined with dynamic multi-
modal sensor communication data is proposed. To track the program execution, the
dynamic pollution analysis is used to search for the input fields that affect the
execution of the conditional branch and capture the dependencies between the
conditional branches to guide the grammar generation of test cases, which can
increase the chances of executing deep code. The experimental results show that
the proposed method improves the validity and code coverage of test cases to a
certain extent and greatly increases the probability of anomaly detection in the
protocol implementation.

Keywords: Fuzz test, Dynamic taint analysis, Dependence relationship, Grammar
generation

1 Introduction
The IIS (Industrial Internet System) was implemented by a variety of automation com-

ponents to achieve data acquisition, control, monitoring, and other functions. A typical

industrial Internet communication architecture generally consists of a three-layer

structure, from high to low, respectively, the Enterprise Network, Monitoring Network,

and Control System Network [1, 2]. Figure 1 shows a typical Industrial Internet Con-

trol System architecture.

The IIS refers to the system composed by the computer equipment and the indus-

trial production control unit, mainly including the SCADA (Supervisory Control and

Data Acquisition), the DCS (distributed control system), the PCS (process control

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Li et al. EURASIP Journal on Wireless Communications and Networking
 (2020) 2020:110
https://doi.org/10.1186/s13638-020-01734-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01734-0&domain=pdf
http://orcid.org/0000-0002-0998-1517
mailto:qianmu@mail.njust.edu.cn
mailto:qianmu@mail.njust.edu.cn
http://creativecommons.org/licenses/by/4.0/

system), the PLC (programmable logical controller), and the FCS (Fieldbus Control Sys-

tem) [3].

In the electric IIS, for example, each link, from electricity generation to electricity

utilization, has the corresponding electric IIS terminal, such as the PLC, the intelligent

substation equipment, the monitoring, and control device and other types, for data ac-

quisition, instruction scheduling, remote control, and so on. The transmission of con-

trol flow and data flow between the IIS terminal and the main station is realized

through industrial Internet protocols. The program component running in the terminal

is responsible for analyzing and processing industrial Internet protocols.

In recent years, with the rapid development of various emerging information tech-

nologies, industrialization, and informatization are more closely integrated. More mod-

ern information technology has been applied to traditional IIS. Meanwhile, various

standardized communication protocols and network switching architectures have been

popularized in IIS. Due to the addition of advanced information technology and com-

munication network technologies (such as Ethernet), the openness of Industrial Inter-

net Control Systems has been greatly enhanced, and it has also exposed it to more

security risks. In 2010, Iranian nuclear facilities were attacked by Stuxnet [4], causing

the delay of uranium enrichment. Using the vulnerability of Siemens’ SIMATIC

WinCC/Step7 control system, Stuxnet broke into the SCADA successfully, injected the

malicious code into the PCL, and hided perfectly to destroy the centrifuge while getting

the control power of turbine for the purpose of destruction. As of September 2010, 0.1

million host computers worldwide have been infected by the virus with a strong de-

structive effect. In 2011, DUQU, Stuxnet’s variant [5], forged digital signatures through

Fig. 1 A typical Industrial Internet Control System architecture

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 2 of 21

Microsoft’s vulnerability MSII-087 to avoid the detection of security components of

system and then stole various information on system and returned it to the attacker. In

2015, Ukrainian electric power system was attacked by malicious software Black Energy

[6] which got the remote access and control power of system and thus caused the crash

of power grid’s SCADA host system and then an electricity black-out in a large area. In

2017, security manufacturer ESET announced a tool win32/Industroyer attacking elec-

tric IIS directly. The tool can cause the blackout from transformer substation by con-

trolling the breaker. In 2018, a lot of warning messages of illegal intranet access

appeared on a provincial electric IIS monitoring platform in China. After an analysis,

people found the reason was the manufacturer ran and maintained the product server

remotely by opening the function of file sharing and thus exposed the system in the

public network for a long time, which brought serious hidden dangers. In the past 10

years, many security incidents and potential and possible dangers made the security

situation of IIS increasingly serious. Figure 2 shows the statistic of IIS security incidents

in recent years, and the data came from IS-CERT (The Internet Systems Cyber Emer-

gency Response Team) [7–13].

During the realization of protocols by the industrial Internet terminal codes, protocol

fields are generally credible, but the attacker can control the running of program by

changing the data values of the fields using the defects of protocols and then affect the

whole system. For example, the skip instruction’s destination address parameters gener-

ally come from credible data sources in the program rather than externally incredible

input such as the incoming data from an industrial Internet protocol. However, the at-

tacker can overwrite the instruction’s destination address through system vulnerability

and then control the running process of IIS. Professor Jonathan M. Garibaldi proposed

an indistinguishable conceptual framework as a key component of the evaluation of

computerized decision support systems. Case studies show that human experts are not

Fig. 2 An example of dynamic taint analysis

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 3 of 21

perfect, and there are techniques that allow fuzzy systems to simulate human-level per-

formance, including variability. He demonstrated the necessity of “fuzzy intelligence”

from two aspects: (a) fuzzy methodology (in the technical sense of Zade fuzzy sets and

systems) is necessary as a knowledge-based system to represent and reason for uncer-

tainty; (b) when evaluating intelligent systems, ambiguity (in a non-technical sense) is

required and imperfect performance is accepted [14].

This paper is inspired by these ideas and has carried out related research. In this con-

text, to solve the problem of low rate of code coverage caused by the repeated execu-

tion of test cases on the same path, starting from the level of system program in the

realization of industrial Internet protocols and in the premise of acquirable source pro-

gram codes or executable binary file, the paper proposes a method combined with the

dynamic multi-modal sensor communication data in the program for fuzzy processing.

The method tacks the program execution of protocol realization, finds the input fields

affecting conditional branches through dynamic taint analysis, and captures the de-

pendence relationship between conditional branches to guide the generation of test

cases pertinently.

1.1 Security analysis of industrial control protocols

The industrial control system is to directly communicate with the underlying

equipment or the data acquisition converter using the protocol agreed by the com-

municating parties. At first, most industrial control protocols were implemented

only between a closed network and trusted software through a dedicated serial

port. But in order to meet the increasingly complex requirements of industrial con-

trol systems, dedicated lines are gradually being replaced by TCP or wireless links.

At the beginning of the design of industrial control protocols did not fully consider

the necessary conditions to protect users’ security such as encryption and authenti-

cation, and many protocols currently rely on TCP/IP. In this case, the data trans-

mitted through the protocol cannot guarantee its security. An attacker only needs

to master the protocol specifications and penetrate into the industrial control net-

work to tamper with any data of the target device. The security flaws of common

industrial control protocols are analyzed as follows.

1. The Modbus protocol has no authentication mechanism. It establishes

communication on the basis of TCP/IP. Therefore, as long as the attacker obtains

the device’s network IP, he can successfully connect using port 502 directly. If the

function code carried by the application data unit is supported by the Modbus

device, a legal Modbus session can be established. In addition, there is no message

check in the Modbus/TCP protocol. The checksum is generated at the transport

layer instead of the application layer, so it is easier to fake the command. At the

same time, for anyone, as long as they can connect to the target Modbus device,

they can perform the functions of the Modbus device without permission to

distinguish. Moreover, the data encapsulated in Modbus is transmitted in clear

text, and an attacker can obtain the message data by using a network packet

capture tool. Finally, the most dangerous aspect of Modbus is its programmability.

Attackers can inject malicious code into RTU or PLC to achieve control.

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 4 of 21

2. IEC 60870-5-101/104 is a widely used protocol in power industrial control systems,

used to implement communication data transmission between MTU and RTU in

industrial control systems. First, the checksum mechanism cannot guarantee the

integrity of the transmitted data. The IEC-101 protocol only has a 1-byte check-

sum. There is a possibility of a checksum overflow, and the exact value of this

checksum cannot be determined by using a single-byte checksum, so the integrity

of the data cannot be guaranteed. IEC-104 defaults to the default checksum. Its in-

tegrity is completely dependent on the underlying layer, and data values can be eas-

ily changed. Secondly, in the data transmission layer, the limited bandwidth limits

the transmission length of the packet frame. The IEC-101 and IEC-104 protocols

can only send 255 8-bit bytes when used at the same time, so it is not possible to

add security bits during the data transmission. Although IEC 62351 was introduced

to add security features to the IEC 60870-5 series of protocols, it is only focused on

the application layer and does not involve the security mechanism of the data link

layer.

3. DNP3 is a standard formulated by IEEE PES on the basis of IEC. Its security is

mainly reflected in the absence of authorization and encryption mechanisms, and

its function codes and data types have been clearly defined, which makes it easier

for attackers to tamper with DNP3 session content.

4. The OPC protocol is a set of interface specifications conforming to industrial

control requirements formulated by the OPC Foundation for protocol conversion

and data sharing. The OPC protocol is implemented in a Windows environment,

so an attacker can use Windows system vulnerabilities to attack it. Although most

OPC hosts have the authentication mechanism enabled, the weak passwords,

coupled with the opening of many system-independent services, make unnecessary

running processes and development ports vulnerable to attack. OPC’s reliance on

Microsoft’s authorization services is also outdated, and these security policies are

too fragile and vulnerable.

5. Ethernet/IP is more modern than Modbus, but there are still security issues. For

example, when using UDP to broadcast data in real time, it lacks any built-in net-

work layer mechanism to ensure communication reliability and data integrity. At-

tackers can easily inject false data or use IGMP control messages to manipulate

transmission paths.

1.2 An industrial Internet protocol fuzz test method based on dynamic analysis

In view of the serious damages caused by IIS’ vulnerability, researchers have proposed

many vulnerability discovery technologies, such as the dynamic analysis, the symbolic

execution, and the fuzz test [15, 16]. Comparing with other technologies, the fuzz test

requires only a little knowledge of target, but can expand to large application program

easily with good reusability and thus has become the most popular vulnerability discov-

ery solution currently, especially in the IIS.

With regard to network protocols, the most representative fuzzifier is SPIKE [17]. Its

principle is describing the protocol as a block sequence model and making the data

variation in blocks, and then partitioning the message’s data structure and making stat-

istic of field length after the variation automatically, thus improving the effectiveness of

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 5 of 21

test cases significantly, but the fuzzifier shows an inadequate descriptive power for the

constrained relationship in protocol messages. Later, Sulley [18] and Peach [19] ex-

tended the data model based on SPIKE and added more descriptions on the depend-

ence relationship between data blocks. In order to provide a more flexible and accurate

fuzzy framework, AFL [20] tracked the path coverage of each input through the light-

weight instrumentation in source program and allocated ID randomly to the basic

blocks on the path using the Hash mechanism to determine whether where is any new

path generated, and then used the input generating a new path as the seed. Combining

with the detailed information in the program, the method improves the code coverage

rate, but the Hash method may have collision cases easily and thus cause the problem

of false negatives even though the input has reached a new path. Gan et al. proposed

CollAFL [21] which allocated the ID value to each basic block using the greedy algo-

rithm and other methods to ensure the Hash value is difference in each side and thus

avoided Hash collision and realized a more accurate judgment of path coverage. Be-

sides, the method uses the number of neighbor branches of paths as the weight to sort

seeds and prompts the fuzzifier to probe the paths that have not been reached. Sanjay

et al. proposed VUzzer [22]. The method requires no prior knowledge of application

program or input format, and mainly uses the control flow and data flow characteristic

of static and dynamic analyses to assist in variation and selecting seed files, and

prompts the program to execute on a deeper level by giving the specific weight to each

basic block.

With regard to the industrial Internet protocol, most research achievements were

realized by improving and extending existing network protocol fuzz test methods

or tools. For instance, Roland et al. proposed ProFuzz [23] specific for the Profinet

protocol stack. ProFuzz is mainly based on the fuzz test tools developed by Scapy

fuzzer [24], and also contains Sullley’s fuzzer module, supporting five types includ-

ing cyclic real-time execution, device discovery, configuration acquisition, applica-

tion request, and accurate time control protocol. With regard to Wurldtech

Company’s BlackPeer test framework [25], its key to constructing anomalous data

is, in the premise of given initial sample data, defining protocol messages with the

extended Backus-Naur form and generating corresponding test data grammar and

then realizing the variation of protocol data units using interactive semantIIS. On

the basis, Yafeng Zhang et al. [9] improved the BNF grammar. They parsed the in-

dustrial protocol samples into the variation tree by introducing a tree-shape struc-

ture and traversed all nodes in the tree for the purpose of variation. McCorkle

et al. [26] made a fuzz test to the upper computer software of IIS, constructing

anomalous data by making the variation operation to response messages and keep-

ing the communication state of protocol by forging check codes and count values.

SecuriTeam added the DNP3 protocol into the test tool beSTORM [27] and found

the vulnerability of denial of service attack specific for DNP3 during the fuzz test

to Wireshark. The Mu suite launched by Mu Dynamic Company [28] is applicable

to protocols of IEC 61850, Modbus/TCP and DNP3, which constructs abnormal

message data with the structured grammar analysis method and can also extend

the industrial Internet protocols with unknown specifications using the additional

function Studio Fuzz. Lzfuzz [29] is used for the specific DCADA protocols with

unknown grammar, of which the basic idea is deducing message tokens using the

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 6 of 21

Lempel-Ziv compression algorithm and, combined with token information, making

the variation processing to samples, but the method can hardly be used for the

protocols with complicated input grammar.

From the research above, we summarize the problems of fuzz test methods ap-

plying to industrial Internet protocols currently as follows: (a) The low code cover-

age: Many bugs can be triggered only in the case of a large path coverage rate.

Although some methods have used the dynamic multi-modal sensor communica-

tion data processed in the program, it is not reflected in the generation of test

cases directly, causing that most cases are executed repeatedly on the same paths

as input data and only cover a few paths. (b) No unified description models. Proto-

cols, even of the same type, have different forms of messages, but current methods

require building different data models, thus increasing the construction workload

of model. (c) Insufficient pertinence of test cases. It is hard for test cases to pass

the program verification, thus causing too many invalid tests. The design of vari-

ation strategy without taking the characteristic of industrial Internet protocols into

full consideration may cause the redundancy of case in the case of a lot of sample

data and then affect test efficiency.

1.3 Dynamic taint analysis

The dynamic taint analysis proposed by Newsome [30] is a method tracking informa-

tion flow during the running of program, i.e., tracking the transmission of data slots to

be analyzed in the system and gaining target program’s detailed processing process for

the data. In the method proposed, we use the technology to get the dynamic multi-

modal sensor communication data in the program to provide the basis for the further

fuzz test.

The dynamic taint analysis method involves two parts, namely taint data identifica-

tion and taint transmission path monitoring [31]. The core of taint data identification

is defining taint data. If the data source is suspect, the data generated by it are taint

data, which, as the input, shall be tracked and analyzed in the running process of binary

code, and then the message data constructed in the fuzz test can be considered as

suspect.

During the running of program, the transmission of taint data is completed through

instructions and taint data may participate in the operation as the source operands in

the arithmetical operation instruction or the parameters of data movement instruction,

of which the operation output is generally related to taint tracking data and thus should

be identified as the taint attribute. Figure 2 shows a simple example of dynamic analysis

process. In the figure, a1 and a2 are taint data; the arrow means the operation execu-

tion; the leading end represents the source operand; and the tail end represents the op-

eration output. During the running of program, variables V1~V8 are affected by taint

data a1 and a2. If A, as the set of taint source of each variable, is empty, we can consider

that the variable is not tainted. From the figure, we can see that the set of taint source

of V8 which is the last output is the union set of taint source sets of operation operands

V3 and V6.

Using the dynamic taint method, we mainly aim to analyze the data flow and the con-

trol flow, also known as the explicit flow and the implicit flow, during the execution of

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 7 of 21

binary codes. The former refers to data dependence relationship, i.e., variable V1’s taint

information is sent to V2 directly through the assignment or arithmetic operation, as

shown in Fig. 2; the latter corresponds to the control and dependence relationship of

conditional branches, i.e., variable V1’s taint information is sent to V2 indirectly through

the associated condition expression. For the purpose of understanding, we make a sim-

ple analysis using the example of sample code shown in Fig. 3.

In the example above, the function of code implementation experiences the input of

variable x, the generation of message msg and the submission through post. In the

process, x is identified as the taint datum, and according to the analysis method of data

flow, msg is assigned as constant “a” or “b” directly. The constant would not be tainted,

so msg is identified as the untainted attribute. However, the value of msg also depends

on whether conditional branches x==a and x==b are true or false, i.e., msg and x have

a control and dependence relationship, which belongs to the implicit taint of flow. In

practical applications, such codes have a security risk when used for the communica-

tion realization of network protocols.

When msg is submitted, the attacker may intercept msg and then deduce the value

of input x, so msg is definitely a taint datum and thus should be tacked and monitored.

There will be false negatives without considering the control and dependence

Fig. 3 Example code for dynamic analysis

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 8 of 21

relationship of msg. On the contrary, url’s value is independent of branches L3 and L7,

so there is no harm even if it is identified as the untainted datum.

1.4 Method and principle

According to the industrial Internet protocol realization program, the section gets re-

lated dynamic multi-modal sensor communication data through dynamic taint analysis

to guide the generation of test cases. Figure 4 shows the specific test process of the

method. The method proposed uses many protocol messages as the input to avoid the

problem of insufficient test cases caused by single sample datum.

Definition 1 The dynamic interactive fields: In the given program execution, then for

conditional branch xi (the ith execution of conditional branch x), there is DIF(xi) =

{Fj|Fj is the protocol field affecting the execution of xi} in which DIF(xi) is the set of

protocol fields.

Definition 2 The dependence and control relationship: In the given program execu-

tion, then if there is a conditional branch yi deciding whether to execute xi, we can say

xi depends on yi’s dynamic control and express it as CDC(xi) = {yj,T|F} in which

CDC(xi) is the set of branches meeting the condition, and Constraint(xi) represents the

constraint of conditional branch xi.

Definition 3 Dynamic control flow diagram: For each program input, its execution

path can be expressed with the dynamic control flow diagram, in which conditional

branch xi, is the node, DIF(xi) is the dynamic interactive field of node, and CDC(xi) is

the side representing the dependence relationship of conditional branches.

We define the input protocol fields affecting conditional branches through the dy-

namic taint analysis, make the taint identification processing to each protocol input

field, and track the tainted data flow in the execution of program. With regard to the

Fig. 4 Industrial Internet protocol fuzz test process based on dynamic analysis

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 9 of 21

dependence and control relationship of program, we capture it with the algorithm pro-

posed in ref. [32]. It should be noted that for industrial Internet protocols, the fields

generally have the checksum (like the CRC) which will cause the deluge of taint data if

transmitted in control information flow. Because of all fields used as checksums, most

conditional branches will be identified as taint data, in which case, it is hard to directly

find the specific field affecting conditional branches. Besides, due to the dependence

and control relationship, the fuzzy method proposed considers the transmission taint

in control flow indirectly. Therefore, when using the dynamic taint analysis method, we

only focus on the transmission taint in the data flow rather than tracking the transmis-

sion taint in the control flow.

Algorithm 1 introduces the fuzzy method proposed in details. The main function

dynamicFuzz can execute program P, Protocol G, and protocol message I as the in-

put, to process much protocol input, and the output is the abnormal information

triggered. Lines 1~2 of algorithm initialize the data structure to be stored. The test

cases generated which will also be used as the new input are put in the queue for

storage for convenience of recursion execution. Line 5 combined with two parame-

ters, program, and protocol input, gets the sets of DIF(xi) and CDC(xi) of each

conditional branch in each program using the dynamic taint analysis method, and

then constructs the corresponding dynamic control flow diagram using DIF(xi) as

the node and CDC(xi) as the side. Line 6 makes the fuzzy operation from the start

point of executable path in the control flow diagram. Line 8 deduces Constraint(xi),

the corresponding constraint condition of node xi, as the parameter of test case

generation algorithm.

Line 16 of algorithm means that after the generation of test case, we need to use the

test case as the new input to replace the value of protocol field in set DIF(xi) of original

input and modify all fields related to Constraint(xi) to meet the constraint condition.

To ensure the test case will be executed on a deeper level in the program and improve

the probability of finding new execution paths, the rest of protocol fields which are un-

related to DIF(xi) and Constraint(xi) should also be kept valid according to protocol

grammar. For instance, in the protocol input, the values of two fields start address and

end address shall change from original 1 and 2 into 3 and 6. Even if there is no con-

straint condition, the corresponding fields of address data shall be regenerated based

on the original normal size (increasing from 1 to 3), but if the two address change into

the invalid test cases of 6 and 3 after the fuzzification (start address < end address), the

fields unrelated to DIF(xi) and Constraint(xi) still keep the normal values.

Lines 17~20 monitors whether there is any abnormal state such as the crash or mem-

ory leak in the execution of test case. Although the test case is used as the new input,

in consideration of the expenses caused by program execution, the method proposed

does not get the dynamic multi-modal sensor communication data of each conditional

branch repeatedly. In the execution of test case, lines 21~24 store the code paths tra-

versed, put the conditional branches unparsed into the input queue and then decide

the priority ranking according to the quantity of new branches. Line 25 of algorithm

stores the dynamic multi-modal sensor communication data sequence of each node for

lines 9~13 to judge whether current node generates the test case. When the list has a

dynamic multi-modal sensor communication data sequence and the test case generated

which correspond to current node xi’s DIF(xi) and Constraint(xi), respectively, then the

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 10 of 21

algorithm will skip the test case generation of the node directly. Line 29 of algorithm

stores the dynamic control flow diagrams as the paths probed in the queue after com-

pleting the code paths of program.

To reflect the dynamic multi-modal sensor communication data extracted from the

program into the construction of test case directly, the method proposed focuses on

the generation technology assisted with the variation and guides the generation of test

case grammar specific for node xi by combining with corresponding dynamic multi-

modal sensor communication data. Algorithm 2 describes the specific process. The test

case generation function makeTestCases considers protocol field fields, i.e., the element

in set DIF(xi) in Definition 1, rule constraint c and protocol G as the input, and the out-

put is the set of test cases tcList. The key to the function is generating test cases by ac-

quiring the efficient grammar of each node and the reversed grammar. Line 2 has only

one valid grammar for protocol fields, i.e., deducing the grammar of each protocol field

in the constraint condition according to parameters as the valid grammar of the node.

The feasibility is the valid grammar applied to node xi definitely is the subset of proto-

col grammar G, because according to Definition 3.2, i.e., in the constraint condition of

Constraint(xi), the valid grammar can apply to all the protocol fields in DIF(xi). Line 3

means when the protocol field has much valid grammar, constructing much grammar

through the combinations of the valid grammar and storing the grammar in the set of

test cases. For instance, for node xi, there is DIF(xi) = {Fa,Fb}, and the valid grammar

deduced in Constraint(xi) is Fa = (0|1), Fb = 2, and then the grammar combined is (Fa
= 0, Fb = 2) and (Fa = 1, Fb = 2). Next, lines 4~9 of algorithm reverses the valid gram-

mar corresponding to each filed of valid grammar in the premise of meeting constraint

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 11 of 21

condition Constraint(xi) and then combine them with other fields’ valid grammar for

fuzzified grammar and add the grammar to the set of test cases.
When there is no applicable test grammar found in DIF(xi), the case data shall be

generated through variation with methods like random bit flip, extreme substitution,

and boundary value substitution.

2 Methods and experimental
We use the Modbus protocol as an example. Figure 5 shows the simplified format of

Modbus protocol. The fields include the protocol identity, the length of information,

the field of function code, the start address, the end address, the data field determined

according to function code, and the CRC (Cyclic Redundancy Check). The figures in

brackets represent the sizes of fields. The values of CRC calculation and other check-

sum algorithms as the mechanisms completing protocol communication are generally

imbedded into protocol specifications to identify potential broken data. Although the

verification mechanism of Modbus/TCP is realized in the transmission frame of TCP

and the protocol formats do not include the CRC, the CRC verification generally exists

in Modbus RTU and other industrial Internet protocols. If the CRC received by the

program fails to match the CRC obtained through calculation, the data of correspond-

ing case may be ignored directly. It is a very important mechanism to ensure security

and functionality, but if CRC’s value is not updated when protocol fields change, the

fuzz test shall be blocked, so the CRC is also considered as an important field.

Figure 6 describes some program codes processing protocol realization. Line 3 condi-

tional branch of program checks whether the protocol identity meets specifications and

verifies the validity of input message data. The protocol messages failing to meet speci-

fications shall be abandoned directly without any processing. Line 8 is the CRC. Simi-

larly, the messages failing to pass the check shall also be abandoned directly. If the

conditional branches above are passed, the next operation is reading the function code.

The example program only offers two typical function codes of Modbus protocol: read-

ing and writing, i.e., function code 0x05 supported represents the writing operation,

and 0x01 represents the reading operation. The example code has two bugs, and these

anomalies shall be triggered only in the case of meeting specific conditional branches.

Fig. 5 An example of industrial Internet protocol input format

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 12 of 21

Line 22 describes the typical heap overflow bug which means the program fails to

check whether the size of data from the start address to the end address is consistent

with the size of actual message and thus causes the problem of heap overflow when the

length of data exceeds the size of actual data. Lines 24~26 are the bugs embedded de-

liberately, which shall be triggered only if a specific value (KEY) is written into a spe-

cific address (TRIG_POINT). We can see clearly that for the test case input, the bug

may be triggered only through the protocol identity and CRC. It is difficult for the fuzz

test method based on random variation which does not know the grammar actually ex-

ecuted by the target protocol in the program and thus cannot reach the conditional

branches may trigger the anomaly and also causes a lot of invalid test data. According

to the algorithm above, we analyze the protocol input format in Fig. 5 and the protocol

program example in Fig. 6. For the convenience of description, we call the protocol

fields as I, L, F, S, E, D, and C for short.

Figure 7 shows the control flow diagram and execution paths of the first input. It is a

dynamic control flow diagram constructed through a valid input executing the writing

function, of which the right half part shows the paths actually covered by the input dur-

ing the running of example program and the dotted part shows the new execution

paths discovered in each node. According to Definition 3, in the figure, the start node

31 represents the first execution of the conditional branch corresponding to the 3rd line

of example code; the elements in braces represent DIF(31), the field affecting the 3rd

line conditional branch; the side with arrow represents the dependence and control

Fig. 6 An example of industrial Internet protocol code realization

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 13 of 21

relationship CDC(31). The control flow diagram shown in Fig. 8 is the test case gener-

ated by choosing the combinations of function code 0x05 and n data fields in the case

node 241 is true in the first input execution, and is considered as the second input.

Suppose the start node 31 does not depend on any node, considers protocol identity

field I as the dynamic interactive field, and has the only true value of 0x0000, and then

get the corresponding two test grammar after fuzzification with the algorithm. Node 31
actually is a conditional branch to identify whether the field is true or false according

to the protocol, so according to each test grammar, it is easy to deduce that the con-

straint condition making node 31 true is I ≠ 0x0000. Briefly speaking, the condition

making the conditional branch of line 3 executable is I ≠ 0x0000, while the constraint

making the conditional branch false is I = 0x0000. In this case, for the next node 81,

Fig. 7 Control flow diagram and execution paths of the first input

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 14 of 21

according to its CDC(81), deduce Constraint(81) is the constraint making 31’s condi-

tional branch false, i.e., I = 0x0000. The cyclic redundancy filed, as the only grammar

check field applicable to the whole field, generates two test grammar I = 0x000∧crc(I, L,

F, S, E, D) = C and I = 0x000∧crc(I, L, F, S, E, D) ≠ C in a similar way. On the basis, go

on getting the constraint condition of node 81, and then, in the similar manner, solve

each node.

It should be noted that according to the algorithm description, the test grammar gen-

erated in node 131 has decided whether node 141 is true or false, so there is no corre-

sponding test grammar generated in node 141. Similarly, skip nodes 211, 212, 222, 242,

and 213. According to Algorithm 1, when the test grammar is generated, the dynamic

flow diagram is stored into the queue as the probed path. In this case, if there is the

probed path, when searching paths in the control flow diagram, we can get the parti-

tion node generating different paths by comparing the paths and consider the node as

a start node. All nodes before the node have the same dynamic multi-modal sensor

Fig. 8 Control flow diagram and execution paths of the second input

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 15 of 21

communication data and thus can be extracted directly to avoid the repeated gener-

ation of test cases. Table 1 gives an example of the test case generation grammar of the

first input obtained with Algorithm 2.

We make an experiment using the most popular Modbus/TCP protocol as an ex-

ample. Figure 9 shows the test environment created.

Table 2 gives the equipment involved in the Fig. 10. The experiment is made with

Ubuntu 14.04, so we choose the open source library libmodbus to realize the Modbus/

TCP protocol communication in Linux system. The fuzzy method proposed is realized

with Symfuzz [33], a tool developed based on BAP [34] open-source binary system ana-

lysis framework, which can convert executable files into the intermediary language ap-

plicable to program analysis, and combined with PIN to execute dynamic binary system

instrumentation to the target program to get the dynamic interactive fields and de-

pendence and control relationship required by the method to guide the generation of

subsequent test case. We choose AFL-fuzzer as the fuzzy tool in the comparison

experiment.

The Modbus slave station (libmodbus server) waits for the request messages from

other main stations. In the experiment, we set that the main station messages send 5,

10, and 15 request messages, as test input, to the slave station, respectively, and makes

the fuzzy processing to Modbus slave station program and monitors whether the target

program has any anomaly.

To evaluate the performance of the fuzz test method proposed, we make a compari-

son in terms of the quantity of test cases, the total number of execution paths, the code

coverage rate, and the test time with the same number of samples.

The experiment makes the statistic on the number of test cases generated using two

fuzz test methods with 5, 10, and 15 sample data. The number of test cases refers to

the total number of samples generated after the crash of program or the complete exe-

cution of samples. Figure 10 shows that with the increase in the number of samples,

the test data generated with the method proposed are significantly less than the test

Table 1 Test case generation grammar rules

Node xi DIF(xi) CDC(xi) Constraint(xi) Valid grammar Grammar after fuzzification Test grammar

31 I ø ø I = 0x0000 I ≠ 0x0000 I = 0x0000
I ≠ 0x0000

81 I~C (31,F) I = 0x0000 Crc(I ~ D) = C Crc(I ~ D) ≠ C Crc(I ~ D) = C
Crc(I ~ D) ≠ C

131 F (81,F) I = 0x0000
crc(I ~ D) = C

F = 0x01 F ≠ 0x01 F = 0x01
F ≠ 0x01

141 F (131,F) I = 0x0000
crc(I ~ D) = C
F ≠ 0x01

Skip Skip Skip

171 S, E (141,T) I = 0x0000
crc(I ~ D) = C
F = 0x05

S ≤ E S > E S ≤ E
S > E

211 S, E (171,F) I = 0x0000
crc(I ~ D) = C
F = 0x05
S ≤ E

Skip Skip Skip

211 L, S, E (211,T) I = 0x0000
crc(I ~ D) = C
F3 = {1},
F4 ≤ F5

Input size is valid Input size is valid Input size is valid

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 16 of 21

data generated with AFL-fuzzer, because the method proposed constructs test cases

using the generation-based technology in which case the test cases generated are defin-

itely less than those of AFL-fuzzer using the variation strategy. Besides, we can see the

number of test cases generated by AFL-fuzzer grows steadily as the number of samples

increases, because Afl-fuzzer prunes input samples in consideration of that users may

offer low-quality initial samples and thus cause the possible data redundancy in some

types of variations. Although depending more on the number of samples, the method

proposed adopts a more pertinent generation strategy [35–49].

Figure 11 shows the coverage rate of code. The calculation principle is that the in-

strumentation can help capture the coverage rate of branch and detect the rough hit

count of branch execution. The code coverage rate does not necessarily have any con-

nection with the probability of finding anomalies, but undoubtedly, for a test case, an

execution path failing to reach the program’s conditional branch on a deep level cer-

tainly will not trigger any potential anomaly. So, we can see that the method proposed

realizes a higher rate of code coverage compared with the AFL-fuzzer.

Table 3 shows the statistic when the target program crashes. The process of guiding

test case generation by combining with program dynamic multi-modal sensor commu-

nication data pays the price of test time for solving conditional branch constraint and

generating test grammar, compared with the variation strategy. However, it significantly

increases the number of execution paths and the code coverage rate, indicating in the

running of program, the more execution paths are found by the conditional branches

traversed, the bigger the probability that test cases reach the deep level and trigger

anomalies is, and the stronger the pertinence is. Therefore, in the case the program has

anomalies, although scarifying some test time, the method proposed is superior to the

AFL-fuzzer in terms of realizing Modbus-TCP protocol test.

3 Conclusion
The work proposes a fuzzy processing method combined with dynamic multi-modal

sensor communication data from the level of system program in industrial Internet

Fig. 9 Test environment

Table 2 Network equipment in the test environment

Equipment Quantity Use

Modbus main station 1 The Modbus client side to realize writing and reading operation

Modbus slave station 1 The Modbus server to respond to data request

Fuzzer 1 The fuzz test tool to construct anomalous data

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 17 of 21

protocol realization. The paper first expounds the theory of dynamic taint analysis and

then gives the definition of dynamic multi-modal sensor communication data required

and proposes the fuzz test method combined with dynamic multi-modal sensor com-

munication data. The method proposed tracks program execution, finds the input fields

affecting conditional branches through the dynamic taint analysis, and captures the de-

pendence relationship of conditional branches to guide test case grammar generation

pertinently, thus increasing the opportunity of executing codes on the deep level. The

results of comparison experiment prove that the method improves the validity of test

cases and the coverage rate of codes to some extent and also increases the probability

of finding the anomalies in protocol realization.

However, follow-up research needs to deepen around the following areas:

Fig. 10 The numbers of test cases with different numbers of samples

Fig. 11 Code coverage rates with different numbers of samples

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 18 of 21

1. The method in this paper is a dynamic and targeted test from the perspective of

the program under test. Dynamic analysis of the program also causes a large cost.

So, in the next step, we consider combining the static analysis technology of the

program to reduce the burden of dynamic analysis and at the same time use the

obtained dynamic information to adjust the position of the blur and the

combination strategy.

2. The industrial control protocol model in this article only describes the data format

level. In actual production, it is necessary to consider that the protocol has state

implementation. Therefore, the description of the industrial control protocol state

machine needs to be studied in depth to establish the association between the

protocol format and the protocol state transition.

Abbreviations
DCS: Distributed control system; FCS: Fieldbus Control System; IIS: Industrial Internet System; PCS: Process control
system; PLC: Programmable logical controller; SCADA: Supervisory Control and Data Acquisition

Acknowledgements
We want to thank the authors of the literature cited in this paper for contributing useful ideas to this study.

Authors’ contributions
Qianmu Li, Yaozong Liu, Shunmei Meng, Hanrui Zhang, Haiyuan Shen, and Huaqiu Long have written this paper and
have done the research which supports it. Qianmu Li, Yaozong Liu, Shunmei Meng, and Hanrui Zhang have
collaborated in the conception, research, and design of the paper. The authors read and approved the final
manuscript.

Authors’ information
Qianmu Li received the BSc and PhD degrees from Nanjing University of Science and Technology, China, in 2001 and
2005, respectively. He is currently a full professor with the School of Cyber Science and Engineering, Nanjing University
of Science and Technology, China. His research interests include information security and data mining. He received the
China Network and Information Security Outstanding Talent Award in 2016 and Education Ministry Science and
Technology Awards in 2012.
Yaozong Liu received the Ph.D. degree from the Nanjing University of Science and Technology, China, in 2016. He is
currently a Lecturer with the Intelligent Manufacturing Department, Wuyi University, China. His research interests
include data mining and network security.
Shunmei Meng received her PhD degree in the Department of Computer Science and Technology from Nanjing
University, China, in 2016. Now, she is an assistant professor of the School of Computer Science and Technology,
Nanjing University of Science and Technology, Nanjing, China. She has published papers in international journals and
international conferences such as TPDS, ICWS, and ICSOC. Her research interests include recommender systems, service
computing, and cloud computing.
Hanrui Zhang received the BSc. degree from Nanjing University of Science and Technology, China, in 2017. She is now
a Ph.D. student at Nanjing University of Science and Technology. Her research interests include data mining and
network security.
Haiyuan Shen was born in 1984 and has master’s degree. After graduating with a master’s degree in 2009, he became
a software engineer. He also serves as the director of Zhongtian Software. He works in Jiangsu Zhongtian Technology
Co., Ltd. His research interests include service computing and cloud computing.
Huaqiu Long received his BSc degree from the Intelligent Manufacturing Department, Wuyi University, in 2019. He
currently works in the Cyber Security Lab of Wuyi University. In 2019, he was admitted to a part-time master’s degree.
His research interests include information security, computing system management, and data mining.

Funding
This work was supported in part by the 2019 Industrial Internet Innovation and Development Project from Ministry of
Industry and Information Technology of China, 2018 Jiangsu Province Major Technical Research Project “Information
Security Simulation System,” Fundamental Research Funds for the Central Universities (30918012204).

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Table 3 Comparison results of experiment

Test method Number of test
cases

Number of execution
paths

Code coverage
rate

Test time
/h

Anomaly

Method
proposed

16247 2896 50.90% 4.19 1

AFL-fuzzer 38652 1057 41.85% 3.35 1

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 19 of 21

Competing interests
The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Author details
1School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
2Intelligent Manufacturing Department, Wuyi University, Jiangmen 529020, China. 3Jiangsu Zhongtian Internet
Technology Co., Ltd., Nantong 226463, China. 4Jiangsu Graduate Workstation of Nanjing University of Science and
Technology, Nanjing Liancheng Technology Development Co., Ltd., Nanjing 210008, China.

Received: 11 February 2020 Accepted: 20 May 2020

References
1. Q. Li, Y. Tian, Q. Wu, Q. Cao, H. Shen, H. Long, A Cloud-Fog-Edge closed-loop feedback security risk prediction method.

IEEE Access 8(1), 29004–29020 (2020)
2. Ericd, Knapp et al., Industrial Network Security: Smart Power Grids, SCADA and other IIS Key Infrastructures, CA: NDIP,

2014, pp.18-26.
3. Qianmu Li, Shunmei Meng, Shuo Wang, Jing Zhang and Jun Hou. CAD: command-level anomaly detection for vehicle-

road collaborative charging network. IEEE Access, Vo.7, pp. 34910–34924, 2019.
4. Yao Dong, Xiaohua Yang & Shubin Jin, An analysis on Stuxnet’s influence on IIS’ security, Report of Times (Academic

Edition), no.1, pp. 64, 2013.
5. Qianmu Li, Shunmei Meng, Sainan Zhang, Ming Wu, Jing Zhang, Milad Taleby Ahvanooey and Muhammad Shamrooz

Aslam. Safety risk monitoring of cyber-physical power systems based on ensemble learning algorithm. IEEE Access, Vol.
7, pp. 24788–24805, 2019

6. S. Raval, Black Energy a threat to Industrial Control Systems network security, International Journal of Advance Research
in Engineering. Sci Technol 2, 31–34 (2015)

7. IIS-CERT. Information products [EB/OL], https://IIS-cert.us-cert.gov/, 2018.
8. China National Vulnerability Database. Vulnerability of Industrial Internet Industry [EB/OL], http://IIS.cnvd.org.cn/, 2018.
9. Yafeng Zhang, Zheng Hong, Lifa Wu, et al., Paradigmatic-grammar-based Industrial Protocol Fuzzing Test Technology,

Application Research of Computer, vol.33, 2016.
10. S Wan, M Li, G Liu, C Wang, Recent advances in consensus protocols for blockchain: a survey. Wireless Networks, 1-15,

2019.
11. Ndiaye M A A, Petin J F, Camerini J, et al., Performance assessment of Industrial Internet System during pre-sales

uncertain context using automatic Colored Petri Nets model generation, in International Conference on Control, Belfast,
2016.

12. Banerjee S, Großmann I D., An Electronic Device Description Language based approach for communication with DBMS
and file system in an industrial automation scenario, in IEEE International Conference on Emerging Technologies &
Factory Automation, 2016.

13. Chang Luo, Research on IIS Information Security Protection System’s Application in Electric Power System, Mechanical &
Electrical Engineering Technology, vol.12, 2016.

14. J.M. Garibaldi, The need for fuzzy AI, IEEE/CAA J. Autom. Sinica 6(3), 610–622 (2019)
15. Liu B, Shi L, Cai Z, et al., Software vulnerability discovery techniques: a survey, in Fourth International Conference on

Multimedia Information Networking & Security. IEEE, 2013.
16. Cui Baojiang, Zhang Xiangqian, Zhang Tianxin, Zhang Qin. Embedded system vulnerability mining technology based on

in-memory fuzzing test. The 13th International Conference on Broadband, Wireless Computing, Communication and
Applications. Taichung, Taiwan. 439-449. https://doi.org/10.1007/978-3-319-69811-3_40. October 27-29, 2018

17. Aitel D., An introduction to SPIKE, the fuzzer creation kit [EB/OL], http://www.blackhat.com/presentations/bh-usa-02/bh-
us-02-aitel-spike.ppt, Accessed, 2014-01-06.

18. Devarajan G.Unraveling, SCADA protocols: using Sulleyfuzzer [EB/OL], http://www.defcon.org/html/defcon-15/dc15
speakers.html, 2015-06-21.

19. Peach. [EB/OL]. http://www.peachFuzzer.com, 2015-07-21.
20. Zalewski, American fuzzy lop [EB/OL]. http://lcamtuf.coredump.cx/afl/, 2017-12-25.
21. S. Gan, C. Zhang, X. Qin, et al., CollAFL: path sensitive fuzzing, in 2018 IEEE Symposium on Security and Privacy (SP) (IEEE

Computer Society, San Fransisco, CA, USA, 2018), pp. 660–677
22. S. Rawat, V. Jain, A. Kumar, et al., Vuzzer: application-aware evolutionary fuzzing, in Proceedings of the Network and

Distributed System Security Symposium (NDSS) (SanDiego, CA, USA, Internet Society, 2017)
23. Koch R. Profuzz [EB/OL]. https://github.com/HSASec/ProFuzz, 2015-06-21.
24. Philippe Biondi. Scapy, python interactive packet manipulation framework [EB/OL]. https://www.secdev.org/projects/

scapy/, 2012.
25. Byres E J , Hoffman D , Kube N., On shaky ground-a study of security vulnerabilities in control protocols, in 5th

American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human
Machine Interface Technology, American Nuclear Society, 2006.

26. Michael Toecker: response fuzzing [EB/OL]. http://www.digitalbond.com/blog/response-Fuzzing/, 2013-05-08.
27. Qianmu Li, Shunmei Meng, Sainan Zhang, Jun Hou, Lianyong Qi. Complex attack linkage decision-making in edge

computing networks. IEEE Access, Vo. 7, pp. 12058 – 12072, 2019.
28. DynamIIS M. Mu test suite [EB /OL]. http://www.mudynamIIS.com /products/mu-test-suite.html, 2015-06-21.
29. Shapiro R, Bratus S, Rogers E, et al., Identifying vulnerabilities in SCADA systems via fuzz-testing, in Critical Infrastructure

Protection V-ifip Wg 1110 International Conference on Critical Infrastructure Protection, 2011.
30. J. Newsome, D. Song, Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on

commodity software. NDSS 5, 3–4 (2005)
31. L. Chen, S. Liu, D. Xiao, et al., A Cisco IOS heuristic fuzz test method. Comput Eng 40, 68–73 (2014)

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 20 of 21

https://iis-cert.us-cert.gov/
http://iis.cnvd.org.cn/
https://doi.org/10.1007/978-3-319-69811-3_40
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
http://www.defcon.org/html/defcon-15/dc15speakers.html
http://www.defcon.org/html/defcon-15/dc15speakers.html
http://www.peachfuzzer.com
http://lcamtuf.coredump.cx/afl/,%202017-12-25
https://github.com/HSASec/ProFuzz
https://www.secdev.org/projects/scapy/
https://www.secdev.org/projects/scapy/
http://www.digitalbond.com/blog/response-Fuzzing/
http://www.mudynamiis.com

32. Q. Li, Y. Wang, P. Ziyuan, S. Wang, W. Zhang, A time series association state analysis method in Smart Internet of electric
vehicle charging network attack. Transport Res Record 2673, 217–228 (2019)

33. S.K. Cha, M. Woo, D. Brumley, Program-adaptive mutational fuzzing, in 2015 IEEE Symposium on Security and Privacy, San
Jose, CA (2015)

34. Brumley D , Jager I , Avgerinos T , et al., BAP: a binary analysis platform, in International Conference on Computer Aided
Verification, Berlin, Heidelberg, 2011, pp. 463-469.

35. L. Qi, X. Zhang, W. Dou, Q. Ni, A distributed locality-sensitive hashing based approach for cloud service
recommendation from multi-source data. IEEE Journal on Selected Areas in Communications 35(11), 2616–2624 (2017)

36. Hanwen Liu, Huaizhen Kou, Chao Yan, Lianyong Qi. Link prediction in paper citation network to construct paper
correlated graph. EURASIP Journal on Wireless Communications and Networking, 2019.DOI: https://doi.org/10.1186/
s13638-019-1561-7.

37. L. Qi, X. Zhang, W. Dou, C. Hu, C. Yang, J. Chen, A two-stage locality-sensitive hashing based approach for privacy-
preserving mobile service recommendation in cross-platform edge environment. Future Generation Computer Systems
88, 636–643 (2018)

38. Wenwen Gong, Lianyong Qi, Yanwei Xu. Privacy-aware multidimensional mobile service quality prediction and
recommendation in distributed fog environment. Wireless Communications and Mobile Computing, vol. 2018, Article ID
3075849, 8 pages, 2018.

39. Wan, S., Li, X., Xue, Y. et al. Efficient computation offloading for Internet of vehicles in edge computing-assisted 5G
networks. J Supercomput (2019). https://doi.org/https://doi.org/10.1007/s11227-019-03011-4

40. Lianyong Qi, Xuyun Zhang, Shancang Li, Shaohua Wan, Yiping Wen, Wenwen Gong. Spatial-temporal data-driven service
recommendation with privacy-preservation. Information Sciences, 2019. DOI: https://doi.org/10.1016/j.ins.2019.11.021.

41. S Wan, L Qi, X Xu, C Tong, Z Gu. Deep learning models for real-time human activity recognition with Smartphones,
mobile networks and applications, 1-13, 2019.

42. S Ding, S Qu, Y Xi, S Wan. Stimulus-driven and concept-driven analysis for image caption generation, Neurocomputing,
2019

43. S Wan, Y Xia, L Qi, YH Yang, M Atiquzzaman. Automated colorization of a grayscale image with seed points
propagation. IEEE Transactions on Multimedia. PP. 1-1. https://doi.org/10.1109/TMM.2020.2976573. 2020

44. Hou, J., Li, Q., Cui, S. et al. Low-cohesion differential privacy protection for industrial Internet. J Supercomputing. vol. 7,
pp. 1-23, 2020.

45. J Hou, Q. Li, R. Tan, S. Meng, H. Zhang and S. Zhang, An intrusion tracking watermarking scheme, IEEE Access, vol. 7, pp.
141438-141455, 2019.

46. S. Wan, Z. Gu, Q. Ni, Cognitive computing and wireless communications on the edge for healthcare service robots.
Comput Commun 149, 99–106 (2020)

47. Z Gao, HZ Xuan, H Zhang, S Wan, KKR Choo. Adaptive fusion and category-level dictionary learning model for
multiview human action recognition. IEEE Internet of Things Journal 6 (6), 9280-9293, 2019

48. S. Ding, S. Qu, Y. Xi, S. Wan, A long video caption generation algorithm for big video data retrieval. Future Generation
Computer Systems 93, 583–595 (2019)

49. S. Wan, Y. Zhao, T. Wang, Z. Gu, Q.H. Abbasi, K.K.R. Choo, Multi-dimensional data indexing and range query processing
via Voronoi diagram for internet of things. Future Generation Computer Systems 91, 382–391 (2019)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Li et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:110 Page 21 of 21

https://doi.org/10.1186/s13638-019-1561-7
https://doi.org/10.1186/s13638-019-1561-7
https://doi.org/10.1007/s11227-019-03011-4
https://doi.org/10.1016/j.ins.2019.11.021
https://doi.org/10.1109/TMM.2020.2976573

	Abstract
	Introduction
	Security analysis of industrial control protocols
	An industrial Internet protocol fuzz test method based on dynamic analysis
	Dynamic taint analysis
	Method and principle

	Methods and experimental
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

