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Abstract

Reducing the computational complexity of the modern wireless communication systems
such as massive MIMO configurations is of utmost interest. In this paper, we propose
algorithms which can be used to accelerate matrix inversion and reduce the complexity of
common spatial multiplexing schemes in massive MIMO systems. Here, we specifically
investigate the performance of the proposed methods in systems that utilize STBC (Space-
Time Block Code) in the uplink of dynamic massive MIMO systems for different scenarios. A
multi-user system in which the base station is equipped with a large number of antennas
and each user has two antennas is considered. In addition, users can enter or exit the
system dynamically. For a given space-time block coding/decoding scheme, the
computational complexity of the receiver will be significantly reduced by employing the
proposed methods. The first approach is utilizing Neumann series to approximate the
inverse matrix for linear decoders. The second tactic is reducing the computational
complexity of the STBC decoders when a user is added to system or removed from it. In
the proposed schemes, the matrix inversion for ZF and MMSE decoding is derived from
inversing a partitioned matrix and Woodbury matrix identity. Furthermore, the suggested
techniques can be utilized when the number of users is fixed but the CSI changes for a
particular user. The mathematical equations for both approaches are derived and the
complexity of the suggested methods is compared to the direct computation of the
inverse matrix. Moreover, the performance of the proposed algorithms is evaluated in terms
of the system BER (bit error rate). Evaluations confirm the effectiveness of the proposed
approaches.

Keywords: Fast update, Linear decoder, Massive MIMO, Neumann series, STBC, Woodbury
formula

1 Introduction
Massive MIMO (multiple-input multiple-output) has been explored as one of the

underlying technologies for the new generations of wireless communication systems in

recent years [1]. In massive MIMO configuration for cellular communications the BS

(base station) is equipped with a large number of antennas and simultaneously serves

multiple users. In such formations high capacity, energy efficiency as well as high reli-

ability can be achieved via relatively simple signal processing techniques [2].
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Additionally, when the number of antennas at the BS is very large, uplink communica-

tion channels will be asymptotically orthogonal. Therefore, when multiple users trans-

mit signal in the same frequency band and the same time slots, virtual point-to-point

SIMO (single-input multiple-output) links are established in which each user has single

antenna and the BS has multiple antennas. As a result, intra-cell/inter-cell interference

can be largely eliminated utilizing simple linear signal processing methods such as ZF

(zero forcing) or MMSE (minimum mean square error) decoders [3]. Moreover, be-

cause the capacity of the multiple antenna systems is proportional to the minimum

number of transmit and receive antennas [4], using one antenna in the transmitter will

lower the overall throughput of the system. Spatial multiplexing methods can be used

to increase the total capacity of the system. For instance one solution to improve the

diversity gain of each user in the uplink communication is using multiple antennas

along with STBC (space-time block code) at the user side [4–8]. It has been shown that

by using a good space-time block code with full diversity and linear receiver, the inter-

cellular interference problem can be solved to a large extent [4]. For a massive MIMO

system with two antennas at the user terminal, sufficient condition to design a good

STBC with linear receivers is studied in [4]. Also, its performance in terms of attainable

throughput is investigated.

It is worth mentioning that many benefits of various massive MIMO configurations

come at the price of high computational complexity. For example, when the number of

users increases, the linear STBC decoding methods such as ZF and MMSE algorithms

require inverting a matrix with large dimensions. Therefore, computationally efficient

methods must be developed to cope with this challenge and make the hardware imple-

mentation feasible.

In [9–14], researchers have explored ideas that aim to reduce computational com-

plexity in different scenarios. Consider a cellular system with M users that are con-

nected to the BS simultaneously and some of the users are moving with high speed.

Complexity reduction has been investigated for the cases in which a user is added to

the cell or removed from it as well as the case when a user’s CSI (channel state infor-

mation) is changed. In these circumstances, if we calculate the exact inverse of the de-

coder matrix using conventional methods such as Cholesky decomposition, high

computational load will be imposed on the system. In this paper, we propose ap-

proaches to reduce the computational complexity at the receiver. One technique is to

employ methods to approximate the inverse matrix such as Neumann series. Moreover,

we propose calculating the exact inverse matrix by utilizing available information and

matrix inversion identities to update the current inverse matrix.

2 Methods
In this work, the STBC scheme presented in [4] is adopted for a massive MIMO system

and low complexity matrix inversion techniques are proposed and evaluated at the re-

ceiver of the uplink of the considered configuration. In other words, we will explore so-

lutions to recover data from the received signal with lower computational complexity

and without significant performance degradation.

One possible approach is approximating the inverse of the decoder matrix. For example,

Neumann series has been used to calculate the inverse of a matrix at the receiver [10]. In

the same work, it has been demonstrated that as long as the number of BS antennas is
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much larger than the number of users, BLER (block error rate) is similar to the case when

an exact inverse is calculated while the required computations is reduced by one order of

magnitude. Here, we examine the complexity and the BER performance of this method

for the considered system model for the different numbers of terms to be computed for

the series that is referred to as the order of the Neumann series.

The next approach is proposed for a dynamic massive MIMO system. By dynamic we

mean that the users are entering the system or exiting from it. In this situation, it is

not necessary to recalculate the inverse of the linear decoder matrix and the existing in-

verse matrix is updated. For the selected STBC scheme, based on the matrix inversion

lemmas such as the inverse of a partitioned matrix and the Woodbury formula [15], we

propose and evaluate low-complexity methods to speed up STBC ZF and MMSE de-

coders. Update equations are derived for the cases that a user is added to or removed

from the system as well as the case in which the channel estimate of a user is changed.

Algorithms are evaluated and compared in terms of BER performance and computa-

tional complexity. The proposed algorithms need fewer computations which naturally

leads to reduction in the run time of a SDR (software-defined radio) program or the

complexity of implemented hardware for the. Not only can these algorithms be used in

a slow fading environment by switching active users, but also could be used in fast fad-

ing channels with frequent changes to the user channel estimates.

3 System model
Consider the uplink of a cellular multi-user massive MIMO system in which the BS is

equipped with N antennas and serves M user (M <N) such that each independent user

has two antennas, as illustrated in Fig. 1. The channel is supposed to follow Rayleigh

small fading and large scale path loss and shadowing model.

Fig. 1 A cellular multiuser massive MIMO system. In this system, each independent user has two antennas
and BS is equipped with N antennas that serve M users(M < N)
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The channel gain between the jth antenna of the mth user and the nth antenna of

the BS is formulated as βnmjhnmj (1 ≤ n ≤N, 1 ≤m ≤M, j = 1, 2), where βnmj is related to

the large scale path loss and shadowing and hnmj denotes the small scale fading. It is as-

sumed that βnmj = βm for n = 1, …, N and j = 1, 2. In addition, to normalize the average

power, we assume that β1 = 1 and β1 ≥ β2 ≥… ≥ βM. Based on the Rayleigh fading model,

hnmj is assumed to be an i.i.d (independent and identically distributed) zero mean, cir-

cularly symmetric complex Gaussian random variable with unit variance. Furthermore,

the fading coefficients and the large scale channel gains from the mth user to the BS

are expressed as Hm = [hnmj]N × 2 and Lm = βmI2 respectively.

Suppose STBC is adopted by each subscriber in the cell, and the code of the mth user

is expressed as Xm with the size of 2 × S. With these assumptions, the received signals

in the base station over S time slots, YN × S , is written as follows:

Y¼
XM

m¼1

ffiffiffi
ρ
2

r
HmLm ~Xm þW

¼
ffiffiffi
ρ
2

r
HL~XþW:

ð1Þ

where H = [H1 H2…HM], L = diag (L1, L2,…, LM) is a block diagonal matrix, and ~X¼
½~XT

1 ;
~X
T
2 ;…; ~X

T
M�T with energy restriction Eftrð~X~X

HÞg ¼ 2S , superscripts T and H rep-

resent the matrix Transpose and Hermitian operators, respectively. Also, ρ demon-

strates the received SNR and
ffiffiffiffiffiffiffiffi
1=2

p
is used to normalize the transmitted signal energy

to be “1” per time slot. WN × S represents the noise whose entries are i.i.d. taken from

the zero-mean, circularly symmetric complex Gaussian random variables with unit vari-

ance. Next, we explain the STBC coding and decoding algorithms.

3.1 Coding matrix for each user

The transmitted signal matrix ~X is a STBC which is sent from two transmit antennas

over S time slots. In this paper, we choose S = 2 and the corresponding STBC for the

mth user ~Xm is designed as follows:

~Xm ¼ am xm1 þ bmxm2ð Þ γmam xm3 þ bmxm4ð Þ
cm xm3 þ bmxm4ð Þ cm xm1 þ dmxm2ð Þ

� �
ð2Þ

where xm = [xm1, xm2, xm3, xm4]
T is the transmitted symbol vector of the mth user and

am, bm, cm, dm, γm are constants that are determined to satisfy the orthogonality of the

code. Denoting Hm = [hm1 hm2] and substituting (2) into (1) and taking the vector form

of Y we have

vec Yð Þ ¼
XM

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ
2
βm ~Hmxm

r
þ vec Wð Þ; ð3Þ

where

~Hm ¼ amhm1 ambmhm1 cmhm2 cmdmhm2

cmhm1 cmdmhm2 γmamhm2 γmambmhm2

� �
ð4Þ
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For linear decoders such as ZF and MMSE filters, when N is large enough, it is de-

sired that the columns of ~Hm are asymptotically orthogonal. Applying the orthogonality

criterion and energy constraint, i.e., Eftrð~X~X
HÞg ¼ 4, it is shown that the coding con-

stants are obtained as follows [4]:

am ¼ 1þ j 1−bmð Þð Þ=
ffiffiffiffi
5;

p
bm ¼ 1þ

ffiffiffi
5

p� �
=2

cm ¼ 1þ j 1−dmð Þð Þ=
ffiffiffi
5

p
; dm ¼ 1þ j 1−dmð Þð Þ=

ffiffiffi
5

p
γm ¼ j

ð5Þ

3.2 Linear decoding for each user

Let us define ~G as a matrix with dimensions of 2N × 4M and x as a 4M-dimensional

vector:

~G ¼ ½β1 ~H1 β2 ~H2 … βM ~HM� ;
x ¼ xT1 ; xT2 ; … ; xTM

� �T
:

ð6Þ

Hence, we can rewrite Eq. (3) as

vec Yð Þ ¼
ffiffiffi
ρ
2

r
~Gxþ vec Wð Þ: ð7Þ

Let QZF and QMMSE be the ZF and MMSE decoder matrices, respectively, we will

have

QZF ¼ ~G
H ~G

� �−1
~G
H
; ð8Þ

QMMSE ¼ 2I4M
ρ

þ ~G
H ~G

	 
−1
~G
H
: ð9Þ

Multiplying (7) by these matrices from the left, we have

Qvec Yð Þ ¼
ffiffiffi
ρ
2

r
Q ~GxþQvec Wð Þ; ð10Þ

where Q=QZF or Q=QMMSE. The lth transmitted symbol of the mth user x̂ml is esti-

mated as

x̂ml ¼ arg min
x

j Qvec Yð Þ½ �4 m−1ð Þþl−ffiffiffi
ρ
2

r
~q4 m−1ð Þþl;4 m−1ð Þþl x j ; l ¼ 1; 2; 3; 4:

ð11Þ

where the minimum is over the signal constellation of the mth user, [Qvec(Y)]p is the

pth element of the vector Qvec(Y), and ~qu;v ¼ ½Q ~G�u;v.

4 Proposed algorithms
It is noted that the computational load of Eqs. (8) and (9) mostly lies within the inverse

matrix calculation. Conventional methods to compute the inverse matrix, such as Cho-

lesky decomposition, impose high computational complexity on the system and re-

quires O(M3) operations which would be difficult to implement [16, 17]. Therefore, we
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investigate matrix inverting methods which have less computational complexity and

lead to feasible receiver for a massive MIMO system.

4.1 Inverse matrix approximation using Neumann series

From Eqs. (8) and (9), it can be seen that decoding of the received signal involves com-

puting the inverse of the following matrix:

Z ¼
~G
H ~G for ZF ;

2I4M
ρ

þ ~G
H ~G for MMSE:

8<
: ð12Þ

where ~G is a 2N × 4M dimensional matrix which contains the coding constants as well

as the channel coefficients, however, from now on, for brevity it will be called the chan-

nel matrix. Considering that the matrix Z, with dimensions of 4M × 4M, is almost diag-

onal, an efficient algorithm in terms of hardware constraints is used to approximate the

inverse [18]. It is proven in [19] that if Z is decomposed as Z =D + E where D is a di-

agonal matrix with diagonal entries of Z and E is the corresponding hollow, then the

Neumann series can be used to calculate its inverse as follows:

~Z
−1
R ≈

XR−1
r¼0

−D−1E
� �r

D−1; ð13Þ

where R is the number of terms to be computed in the series and ~Z
−1
R is the R-term ap-

proximation of Z−1. The convergence of (13) is only guaranteed if the maximum modu-

lus of the eigenvalues of matrix (I −D−1Z) is less than 1 and the approximation

approaches equality as R→∞ [19]. Moreover, the lower the eigenvalues, the faster the

convergence; which holds true when the ratio α =N/M is high. The minimum value of

this ratio for a high probability convergence of the method is 5.83 [9]. Here, given that

each user is equipped with two antennas, the above ratio is half of the single antenna

case. For example, if N = 640, the maximum of 55 double-antenna users can simultan-

eously communicate with the BS whereas for a system with single-antenna users the

Neumann series converges for the number of users as high as 110.

Neumann series is a low complexity iterative method. Therefore, contrary to conven-

tional inverse computation methods, it is hardware friendly [19]. As an example, for R

= 3, we have the approximation as follows:

~Z
−1
3 ≈ D−1− D−1E

� �
D−1 þ D−1E

� �
D−1ED−1
� �

: ð14Þ

The number of computations for the first part is M divisions. While calculating the

second and the third terms requires 3M2 − 3M and 16M3 − 2M real-valued multiplica-

tion, respectively. These values tapping out the existence of zeros in the diagonal and

the fact that each part of (14) is Hermitian.

Now, let us define matrix W=D−1E and rewrite (13) as

~Z
−1
R ≈

XR−1
r¼0

−Wð ÞrD−1: ð15Þ

For Neumann series with R = 3, and substituting (8) and (9) in (10), we will have
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Qvec Yð Þ ≈ ~Z
−1
R t

¼ ð
XR−1
r¼0

−WÞrD−1
� �

t

¼D−1t−W D−1t
� �þW W D−1t

� �� �
:

ð16Þ

Where t ¼ ~G
H
vecðYÞ is a 4M-dimensional vector. As can be seen, the first term is

obtained by multiplying diagonal matrix D−1 in vector t and the approximation is im-

proved by adding each additional term while the computational complexity is slightly

increased.

In Section 5, the efficiency of this approach will be examined in terms of system BER

and its computational complexity.

4.2 Inverse matrix updating

In some situations, the decoding can be done without recalculating the inverse of the

decoder matrix Z. For example, a user may be added to or removed from the system or

the channel estimate changes for a particular user. Under such conditions, the compu-

tational complexity can be greatly reduced by updating the inverse matrix instead of re-

calculating it. The proposed solutions are based on the inverse of a partitioned matrix

and the Woodbury matrix identity. Suppose matrix Z is partitioned as

Z ¼ A B
C D

� �
; ð17Þ

where A and D are square matrices. The inverse of Z is given as

Z−1 ¼ A B
C D

� �−1
¼ F11 F12

F21 F22

� �
; ð18Þ

where

F11 ¼ A−BD−1C
� �−1

;

F12 ¼ −F11BD−1;
F21 ¼ −D−1CF11;

F22 ¼ D−CA−1B
� �−1

:

ð19Þ

In addition using the Woodbury formula, we have

A‐BD‐1C
� �‐1 ¼ A‐1 þ A‐1B D‐CA‐1B

� �‐1
CA‐1; ð20Þ

Hence, equations given in (19) can be equivalently written as

F22 ¼ D−CA−1B
� �−1

;

F11 ¼ A−1 þ A−1BF22CA−1;
F12 ¼ −A−1BF22;
F21 ¼ −F22CA

−1:

ð21Þ

Next, the algorithms for updating ZF and MMSE decoder matrices are described in

different scenarios.
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4.2.1 Adding a user

Let us examine the case where a user is added to the cell covered by the BS. Suppose

that the initial channel matrix is ½~G�2N�4M , and let the channel matrix of the user which

enters the system be [Ga]2N × 4. The new inflated matrix is denoted as Ge ¼ ~G Ga

� �
.

Thus, the ZF decoding matrix defined in (12) is given as

Ze ZFð Þ ¼ GH
e Ge ¼ ~G

H

GH
a

� �
~G Ga

� �

¼ ~G
H ~G ~G

H
Ga

GH
a
~G GH

a Ga

� � ð22Þ

Thus, the resulting matrix has a dimension of 4(M + 1) × 4(M + 1). Using (21), the in-

verse of the decoding matrix is calculated as follows:

Z−1
e ZFð Þ ¼

~G
H ~G ~G

H
Ga

GH
a
~G GH

a Ga

� �−1
¼ F11 F12

F21 F22

� �
; ð23Þ

where

F22 ¼ GH
a Ga−BHZ−1

o ZFð ÞB
� �−1

;

F11 ¼ Z−1
o ZFð Þ þ Z−1

o ZFð ÞBF22BHZ−1
o ZFð Þ;

F12 ¼ −Z−1
o ZFð ÞBF22;

F21 ¼ −F22BHZ−1
o ZFð Þ:

ð24Þ

where Z−1
oðZFÞ ¼ ½~GH ~G�−1 is the inverse matrix before updating and B ¼ ½~GH

Ga�4M�4. As

it is observed, in this algorithm we only need to calculate the inverse of F22 which is a

4 × 4 dimensional matrix and the rest of the computations are matrix multiplication.

However, direct calculation of decoding matrix needs the inversion of a matrix with di-

mensions of 4(M + 1) × 4(M + 1). Similarly, for the MMSE decoder we have

Ze MMSEð Þ ¼ ~G
H ~Gþ 2=ρð ÞI4M ~G

H
Ga

GH
a
~G GH

a Ga þ 2=ρð ÞI4

� �
; ð25Þ

and

Z−1
e MMSEð Þ ¼

F11 F12
F21 F22

� �
;

F22 ¼ D−BHZ−1
o MMSEð ÞB

� �−1
;

F11 ¼ Z−1
o MMSEð Þ þ Z−1

o MMSEð ÞBF22BHZ−1
o MMSEð Þ;

F12 ¼ −Z−1
o MMSEð ÞBF22;

F21 ¼ −F22B
HZ−1

o MMSEð Þ:

ð26Þ

where Z−1
oðMMSEÞ ¼ ð~GH ~Gþ ð2=ρÞI4MÞ

−1
is the inverse matrix before updating, B

¼ ½~GH
Ga�4M�4, and D ¼ GH

a Ga þ ð2=ρÞI4:

4.2.2 Removing a user

Now we consider the scenario in which a user is removed from the cell. The current

channel matrix is indicated as ~G ¼ G f Gr
� �

where Gr is the channel matrix of the
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user to be removed and Gf is the channel matrix after the removal of the user. In this

case, updating the ZF decoding matrix involves calculating Z−1
f ðZFÞ ¼ ðGH

f G f Þ−1 . Using
the inverse of a partitioned matrix, before the user is removed we have

Z−1
o ZFð Þ ¼ ~G

H ~G
h i−1

¼ GH
f G f GH

f Gr

GH
r G f GH

r Gr

� �−1

¼ F11 F12

F21 F22

� �

¼
T − GH

f G f

� �−1
BF22

−F22BH GH
f G f

� �−1
F22

2
64

3
75;

ð27Þ

where

T ¼ GH
f G f

� �−1
þ GH

f G f

� �−1
BF22BH GH

f G f

� �−1
;

and B ¼ GH
f Gr , hence we can write

F11 ¼ Z−1
f ZFð Þ þ Z−1

f ZFð ÞBF22B
HZ−1

f ZFð Þ
¼ Z−1

f ZFð Þ þ F12F22
−1F21;

ð28Þ

which means to update the inverse of the ZF decoding matrix, we partition the current

inverse and find the updated inverse as

Z−1
f ZFð Þ ¼ F11−F12F22

−1F21; ð29Þ

Also, for the MMSE decoder, we need to compute Z−1
f ðMMSEÞ ¼ ðGH

f G f þ ð2=ρÞI4ðM−1ÞÞ−1.
Before the user is removed, we hav:

Z−1
o MMSEð Þ ¼

GH
f G f þ 2=ρð ÞI4 M−1ð Þ GH

f Gr

GH
r G f GH

r Gr þ 2=ρð ÞI4

� �−1

¼ F11 F12
F21 F22

� �
;

ð30Þ

Therefore, similar to what we derived for the ZF decoder, we have

Z−1
f MMSEð Þ ¼ F11‐F12F22−1F12: ð31Þ

Where F11, F12, F21, and F22 are obtained from partitioning the current inverse

matrix.

4.2.3 Updating a user

When a new channel estimate is obtained for a particular user, i.e., its CSI is updated,

the number of rows and columns of the channel matrix remains the same. In this case

a two-step approach is suggested. In the proposed method, first the rows and columns

associated with the updated user are deleted by utilizing the proposed algorithm for re-

moving a user. Then, using the proposed algorithm for adding a user, we apply the new

channel coefficients and update the inverse matrix. In other words, in ZF decoding, we

first use Eqs. (28) and (29) to remove the rows and columns of the specific user. Then,

we use (23) and (24) for the final update of the inverse matrix. Clearly, for the MMSE
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decoder equations (30) and (31) are used first, and then (26) is applied to find the in-

verse of the updated channel matrix.

In the next section, we evaluate the proposed techniques in different scenarios.

5 Numerical results and discussion
In this section, we evaluate and compare the computational complexity of the proposed

algorithms as well as the BER performance of the system in the assumed configura-

tions. The next two sub-sections include the computational complexity of the ZF STBC

decoder in the uplink of a massive MIMO system and the system BER performance

when the proposed algorithms are utilized. It should be noted that similar results can

be obtained for the case of MMSE decoder.

5.1 Complexity analysis

For a massive MIMO system with N = 320 antennas at the BS and M = 8, 16, 24, 32

users, the computational complexity is studied in terms of the number of arithmetic

operations. We consider scenarios in which a user is added to or removed from the sys-

tem as well as the case that the channel estimate of a user has changed. Assuming that

the matrix whose inverse needs to be updated is 4M × 4M dimensional, and K is the

number of rows and columns that are added to or removed from the matrix, the num-

ber of computations needed for the ZF decoder is summarized in Table 1. The second

and the third row of this table shows the computational complexity of the decoder

when the inverse matrix is approximated using Neumann series. Also, inflated channel

matrix refers to the case that a user is added to the system (Mnew= M + 1) and deflated

matrix represents the case that a user is removed from the system (Mnew =M − 1). It is

clear that for the signal model and the STBC scheme used in this paper K = 4. The 6th

row of Table 1 corresponds to the case in which a new channel estimate is obtained for

a particular user. For the case that a user enters the system complexity of the decoder

is compared for different number of users and different methods of inverse matrix cal-

culation in Table 2. Moreover, in Table 3, complexity reduction is compared when a

user exits the system. Table 4 compares computational complexity of the two-stage up-

date algorithm with exact algorithm and inverse matrix approximation algorithm.

Table 1 Computational complexity of the proposed algorithms for the ZF STBC decoder

Computational complexity

Direct inverse 8Mnew(4N + 4Mnew − 1)
+2(4Mnew)

3/3 + 5(4Mnew)
2/6 − 7(4Mnew)/6

Neumann series approximation with R = 2 (4Mnew)(4N − 1) + 8Mnew + 4Mnew(8Mnew − 1)

Neumann series approximation with R = 3 (4Mnew)(4N − 1) + 12Mnew + 8Mnew(8Mnew − 1)

Update inflated K3 + K2(12M + 1) + (4K + 1)(4M)2

+4Mnew(4N − 1)
+8Mnew(8Mnew − 1)

Update deflated K3 + K2(4M) + (K + 1)(4M)2

+4Mnew(4N − 1)
+8Mnew(8Mnew − 1)

Updating new CSI 2K3 + K2(16M − 3)
+(K + 1)(4(M − 1))2 + (4K + 1)(4M)2

+4M(4N − 1)
+8M(8M − 1)
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As it can be seen, in all three scenarios applying the proposed update techniques for

matrix inversion results in considerable reduction in the computational complexity. In

addition, inverse matrix approximation method has lower computational complexity

compared to the updating method. This complexity reduction is obtained at the cost of

BER performance degradation which will be examined in the next section.

5.2 Simulation results

In this section, we present the simulation results to evaluate and compare the proposed

algorithms in terms of decoder BER. For update scenarios, ~Z
−1
3 is used as the initial in-

verse matrix. In the simulations, we use BPSK modulation and assume that the channel

model is flat fading.

In the first simulation, we examine the efficiency of utilizing Neumann series in the

given system. Here, the number of antennas in the BS is set to N = 320 and the number

of users is M = 16. The BER performance of the system is evaluated by changing the

order of the Neumann series, i.e., R = 2, 3, 4. As it can be seen in Fig. 2, utilizing higher

order of Neumann series exhibits

better BER performance. However, it should be noted that each additional term in

the series will increase the computational complexity by an order of O(M2).

For the simulation of the proposed updating algorithms one user is added to or re-

moved from the system. The number of antennas at the BS is set to N = 320 and the

number of current users is equal to M = 8, 16 resulting in the ratio α≫ 1, which guar-

antees the convergence of (13) with very high probability. In all subsequent simulations,

three decoding algorithms are used:

I. Calculating the exact inverse of the current matrix and then utilizing update

algorithms,

II. Approximating the current matrix inverse with Neumann series and then applying

update algorithms,

Table 2 Numbers of complex-valued operations required for the ZF STBC decoder: a user is added
to the system

Number of users (M) 8 16 24 32

Direct inverse 126822 396587 950683 1920182

Proposed update 70180 178116 329060 523012

Complexity reduction (updating) 45% 55% 65% 72%

Inverse approximation R = 3 51264 105536 168000 238656

Complexity reduction (approximation) 60% 73% 82% 87%

Table 3 Numbers of complex-valued operations required for the ZF STBC decoder: a user is
removed from the system

Number of users (M) 8 16 24 32

Direct inverse 88447 307610 778335 1631695

Proposed update 44588 112588 199020 303884

Complexity reduction (updating) 50% 63% 74% 81%

Inverse approximation R = 3 38976 91200 151616 220224

Complexity reduction (approximation) 55% 70% 80% 87%
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III. Using Neumann series without applying update algorithms.

Figure 3 shows BER performance after adding a user to the system. As it can be seen

in Fig. 3a, utilizing Neumann series as well as the proposed algorithm for calculation of

inverse matrix in the system with M = 8 users have a subtle performance loss compared

to the exact case and they almost overlap. It is also seen in Fig 3-b, that when the num-

ber of simultaneous clients is increased, i.e., for M = 16, the performance loss of the ap-

proximation method will be more noticeable.

Simulation results for the case where a user is removed from the system is depicted

in Fig. 4. As it can be seen in this figure, the number of users has a direct effect on the

performance of the approximation method. This means that by comparing simulations

(a) and (b), it is observed that BER performance of the system with M = 8 users is

Table 4 Numbers of complex-valued operations required for the ZF STBC decoder: new channel
estimation for a user

Number of users (M) 8 16 24 32

Direct inverse 106565 350005 861392 1771797

Proposed update 68416 189920 364672 592672

Complexity reduction (updating) 36% 46% 58% 67%

Inverse approximation R = 3 45056 98304 159744 229376

Complexity reduction (approximation) 57% 71% 81% 87%

Fig. 2 BER performance of the system by utilizing Neumann seriesBER performance is evaluated by
changing the order of the Neumann series, i.e., R = 2, 3, 4. The BS is equipped with N = 320 antennas that
serves M = 16 users. As it can be seen, the system performance improves with adding more terms to the
approximation series and gradually gets closer to the exact inversion performance
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nearly overlapped for all decoding methods, but for M = 16 users the BER performance

of the approximation method is reduced compared to the exact inverse calculation.

In Fig. 5, which corresponds to matrix update without adding or removing a user,

similar to previous simulations, by increasing the number of users, the BER perform-

ance of the approximation method is reduced compared to the exact algorithm.

Fig. 3 BER performance comparison for inflation update and the number of current users M = 8, 16.BS is
equipped with N = 320 antennas that serves M = 8, 16 users. In the event that a user is added to the
system, the proposed algorithms are used to update the inverse matrix for decoding. The results for M = 8
is shown in simulation (a). Simulation b demonstrates the comparison results for M = 16 after a user is
added. It is observed that using Neumann series to approximate the inverse matrix will degrade the BER
performance compared to the exact matrix inverse update
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Notice that for the cases that a user is added or removed, the decoding algorithm II

has a better BER performance than III whereas for updating the channel matrix of a

specific user, algorithm III has a slightly better performance than II because the update

algorithm is performed twice, and since the initial decoding in II is the Neumann series

approximation, error propagation occurs and algorithm III in this case has a better

performance.

Fig. 4 BER performance comparison for deflation update and the number of current users M = 9, 17. BS is
equipped with N = 320 antennas that serves M = 9, 17 users. Assuming that a user is removed from the
system the proposed algorithm is used to update the inverse matrix for decoding. The results for M = 9 is
shown in simulation a and simulation b demonstrates the comparison results for M = 17 after a user exits
the cell. As it is predictable, the BER performance of the exact inverse matrix update algorithm is better
than the approximation method
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6 Conclusions
In this paper, methods for efficient calculating and updating inverse of a matrix in de-

coding of the space-time codes in large-scale MIMO systems were evaluated. At the re-

ceiver, Neumann series are used to approximate the inverse of a matrix with large

dimensions. Moreover, by utilizing matrix inversion identities, efficient algorithms are

proposed to update the inverse matrix for the ZF and MMSE STBC decoders when

users are entering or exiting the system as well as the case in which a new channel

Fig. 5 BER performance comparison for updating the CSI of 1 user for the number of users M = 8, 16.BS is
equipped with N = 320 antennas that serves M = 8, 16 users. This simulation studies the case in which the
channel estimation in changed for a particular user while the total number of users remains constant.
Simulations (a) and (b) corresponds to the BER performance of the system with 8 and 16 users, respectively
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estimation is obtained for a user. For STBC ZF decoding, the proposed methods are in-

vestigated from two perspectives: reduction of the computational complexity and the

BER performance of the system. Based on the complexity analysis and the simulation

results, the update algorithms have better BER performance compared to the approxi-

mation method while approximation of the inverse matrix imposes less computational

complexity on the system. It is worth mentioning that similar approach will also be ap-

plicable when more users are added to or removed from the system. However, as the

number of users to be added to or removed from the system increases, the reduction in

computational complexity decreases.

Last, but not least, it should be noted that although the proposed methods are inves-

tigated for the case of STBC, they can be generalized for common spatial multiplexing

schemes in massive MIMO systems.
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