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Abstract

With the rapid development of the power infrastructures and the increase in the
number of electric vehicles (EVs), vehicle-to-grid (V2G) technologies have attracted
great interest in both academia and industry as an energy management technology
in 5G smart grid. Considering the inherently high mobility and low reliability of EVs,
it is a great challenge for the smart grid to provide on-demand services for EVs.
Therefore, we propose a novel smart grid architecture based on network slicing and
edge computing technologies for the 5G smart grid. Under this architecture, the
bidirectional traffic information between smart grids and EVs is collected to improve
the EV charging experience and decrease the cost of energy service providers. In
addition, the accurate prediction of EV charging behavior is also a challenge for V2G
systems to improve the scheduling efficiency of EVs. Thus, we propose an EV
charging behavior prediction scheme based on the hybrid artificial intelligence to
identify targeted EVs and predict their charging behavior in this paper. Simulation
results show that the proposed prediction scheme outperforms several state-of-the-
art EV charging behavior prediction methods in terms of prediction accuracy and
scheduling efficiency.

Keywords: Smart grid, Charging behavior, Deep learning, Charging behavior
prediction

1 Introduction
With the constant change of the global climate and the exhaustion of fossil fuels, the

traditional power grid cannot meet the increased demand for energy to support indus-

trial innovation and improvement of people’s living standards [1–3]. Smart grid is

evolving as the next-generation electrical grid for addressing these challenges by com-

bining power infrastructures with advanced information, artificial intelligence, sensor,

and automatic control technologies [4, 5]. Supported by above-varied technologies, the

smart grid can provide reliable, safe, economical, and efficient power services. Now-

adays, the number of electric vehicles (EVs) on the road has risen sharply due to rising

price of oil, global warming, development charging facilities, and advances in battery

technologies of EVs [6]. According to the prediction of the international energy agency

(IEA), the number of EVs on the road will be arising to 125 million by 2030 [7]. Con-

sidering the huge amount of electric energy needed by EVs, smart grid operators need
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to set an optimal electricity price by analyzing the EV charging behavior. From the

charging behavior perspective, EV users can be divided into regular and irregular users

[8]. The charging behavior of ordinary users has a certain regularity. They charge at a

fixed time every day, and the amount of each charge is stable. The charging behavior of

irregular users is not regular. For example, due to insufficient electricity during the trip,

irregular users simply choose a charging station that is nearby to charge and will not

charge at the same charging station for a long time. The charging behavior of ordinary

users has a certain regularity. They charge at a fixed time every day, and the amount of

each charge is stable. The charging behavior of irregular users is not regular. For ex-

ample, due to insufficient electricity during the trip, irregular users simply choose a

charging station that is nearby to charge and will not charge at the same charging sta-

tion for a long time. To provide on-demand services for efficient and intentional use of

energy, the grid operators need to analyze the charging behavior of electric vehicle

users. However, traditional power grids cannot effectively implement resource

optimization and advanced charging service guarantee scheduling due to high transmis-

sion delays and limited computing capabilities [9].

To achieve an efficient EV charging scheme, many proposals have recently intro-

duced the concept of network slicing [10], which can provide dedicated on-demand

services in the case of limited network resources with low operating costs. In [11], the

authors proposed a vehicular delay-tolerant network in smart grid to transmit data to

EVs by using the edge computing technology. However, with the increasing number of

electric vehicles [12–14], the demand for low-latency vehicle-to-grid (V2G) services is

increasing. Recently, edge computing technology has raised many concerns because it

has the potential to provide computing resources for EV users for reducing V2G la-

tency at the edge of the grid [15]. Moreover, edge computing can also enable several

smart city services, such as video monitoring, urban transport, positioning system, and

emergency. In [16], the authors slice the smart grid to provide efficient privacy-

preserving communication and power injection services for EV users. Supported by

network slicing and edge computing technologies, network resources can be allocated

to the customized services while meeting the specific demands of EV users, such as

charging amount, charging rate, and response latency. Despite all these benefits, the

smart grid with network slicing and edge computing still lack the ability to forecast the

EV charging behavior, which is essential for providing the on-demand services to EV

users.

It is well known that deep learning algorithms can be used to predict time series data,

such as network traffic and user behavior [17, 18]. In recent years, scholars have been

trying to use recurrent neural networks (RNNs), which is an important branch of deep

learning, to solve time series prediction problem [19]. In the EV prediction aspect, re-

searchers have found better performance for RNN than traditional deep learning [20].

RNN is an important branch of deep learning used in pattern recognition and time

series prediction; it can model time or sequence-dependent behavior, such as speech

recognition, financial markets, web traffic, and so on. However, traditional RNN models

cannot be ignored on its weakness of long-range dependencies that would cause gradi-

ent vanishes [21]. As the most common variant of RNN, the long short-term memory

(LSTM) is widely used in capturing long-term dependencies. Therefore, LSTM is more

suitable for EV charging analysis. In [22], a deep learning-driven EV scheduling strategy
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is introduced to optimize the EV charging according to the real-time electricity pricing,

thereby decreasing the global EV energy cost. In [23], an RNN-based approach is

adopted to enhance the energy consumption of EVs by predicting trajectory and delay.

However, considering the complex user charging behavior and massive amounts of

EVs, the prediction accuracy of the above works cannot meet the requirements of EV

charging behavior analysis in the 5G smart grid.

In this paper, we propose an EV charging behavior analysis (EV-CBA) scheme based

on hybrid artificial intelligence in the 5G smart grid. The EV-CBA scheme consists of

two steps, the first is a novel three-layer smart grid architecture based on network sli-

cing and edge computing technologies, and the second is the hybrid artificial

intelligence including the K-means-based EV charging behavior clustering, the k-

nearest neighbor (KNN)-based EV charging behavior classification, and the LSTM-

based EV charging behavior prediction. The three-layer smart grid network architecture

is the hardware basis of hybrid artificial intelligent algorithms. The first layer is the slice

layer, which can provide end-to-end network slices of smart grid for charging services.

The second layer is the control layer, which controls network resources of smart grid

and provides suitable resources for charging services from different slices. The third

layer is the infrastructure layer, which can provide wireless access resources for EV

users. This structure can take into account end-to-end computing power and ultra-low

transmission latency of edge computing, thereby ensuring the real-time operation of

hybrid artificial intelligence. Therefore, applying hybrid artificial intelligence to the pre-

diction of EV charging behavior can improve the efficiency of EV charging schedules.

The simulation results and cross-validation evaluation show that the proposed EV-CBA

scheme can efficiently cluster, classify, and predict the EV charging behavior. The over-

all EV traffic scheduling is optimized according to the prediction results.

The rest of this paper is organized as follows. In Section II, we first introduce the

three-layer architecture of the 5G smart grid. Then, in Section III, we present the hy-

brid artificial intelligence in V2G systems for the EV charging behavior analysis. Section

IV gives the relevant simulation results and discussion. Finally, we conclude the article

in Section V.

2 Smart grid network architecture with network slicing and edge computing
2.1 Network slicing and edge computing in 5G smart grid

The network slicing in a 5G network defines logical subnets, which consists of a series

of customized network resources and virtual network functions, such as radio resources

and spectrum resources. This virtual network function allows separate functions from

the smart grid to provide the resources needed for each EV charging service. Therefore,

different EV charging demands can be met for many cases (such as irregular charging

and regular charging). Thus, the optimized resources are allocated without resource

waste. The network slicing technology can achieve virtual network functions on the

physical infrastructure and has the guarantee of customized virtual network resources.

In other words, the network slicing technology coordinates different users to customize

charging services and make sure that adding new users will not affect the customized

virtual network resource. However, in the case of EV charging, the EV charging re-

quirements in the smart grid with low transmission latency is increasing, and the
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explosive number of artificial intelligence services including smart home, smart build-

ings, autonomous vehicles, etc. Thus, to meet the demands of evolving EV charging

services, the smart grid requires the V2G system to be centralized control, intelligent

configurable, and low cost.

In future 5G smart grid, edge computing will play an important role to address ultra-

low charging delay requirements. Edge computing can help the smart grid operators to

provide on-demand services at the edge of the smart grid near the EV users to meet

the low latency transmission requirements. Moreover, for smart grid operators, it is es-

sential to combine and deliver customized network resources for services according to

the demands of EV users. The standard of edge computing has been proposed by ITU-

T, which is the logical isolated network partition (LINP). Considering each slice of the

smart grid is the combination of serval virtual networks based on dynamic requests,

network slicing technology is an important element of edge computing. That means

the edge computing can guarantee extensibility by importing EV charging information

into controllers at the edge of smart grid; thus, we can avoid resource waste and char-

ging wait time that would cause traffic congestion.

To sum up, the combination of network slicing and edge computing can provide on-

demand services and control functions at the edge of the smart grid. They enable cus-

tomized charging services for heterogeneous charging demands by slicing the physical

network to several customized slices at the same time. With edge computing, more

computing and analysis of data may be performed in EVs, edge clouds, or at charging

stations. Meanwhile, the use of edge computing also promotes computing and storage

resources that are very close to the end-use, ensures ultra-low transmission latency and

ultra-high response rates, and offers the potential for calculating at the edge of the

smart grid and providing customized EV charging services.

2.2 Network architecture design

In this subsection, we design a novel smart grid network architecture based on network

slicing and edge computing, which provides a hardware foundation for implementing

hybrid artificial intelligence algorithms.

As shown in Fig. 1, this paper proposes a smart grid network architecture based on

network slicing and edge computing to abstract or share substrate resources. The pro-

posed architecture consists of three layers including the slice layer, the control layer,

and the infrastructure layer. Firstly, the slice layer can provide end-to-end network

slices of the smart grid for charging services. Secondly, the control layer can control

network resources of smart grid and provides suitable resources for charging services

from different slices. Thirdly, the infrastructure layer can provide wireless access re-

sources for EV users. This structure can take into account end-to-end computing

power and ultra-low transmission delay of edge computing, thereby ensuring the real-

time operation of hybrid artificial intelligence. The charging stations in this layer are

used to collect the charging information. The smart grid network architecture based on

network slicing and edge computing is the hardware basis, which is proposed to realize

hybrid artificial intelligent algorithms.

The smart grid network architecture is driven by technologies based on billing ser-

vices, distributed control, and coordinated control theory. The EV charging service is
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based on irregular or regular EV charging requirements and charging information col-

lected from actual networks. Charging data transmission and cross-layer control can be

realized through network visualization and OpenFlow protocol.

The information interaction between EVs and charging stations can be realized via

power line communication (PLC) and wireless communication networks. The charging

behavior information collected from EVs is stored and processed in the edge cloud to

Fig. 1 Three-layer architecture of smart grid with network slicing and edge computing. As shown in this
figure, it provides a smart grid network architecture based on network slicing and edge computing to
abstract or share substrate resources
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optimize the charging schedule. The infrastructure layer can supply a user interface for

EVs to interact with the charging station and obtain the charging behavior data of EVs,

and then upload data to the control layer. The control layer is the bridge of the infra-

structure layer and the slice layer. The control layer can process the EV charging re-

quests, optimize the charging schedule, and globally control the V2G system.

In particular, we collect the charging behavior data by serval different types of sensors

deployed in EVs and charging stations, which includes driving behavior of user col-

lected by EV sensors, battery usage data uploaded by the internally installed sensors,

and EV charging data collected by sensors installed in charging stations. These rich

data sources make it easier for the smart grid to collect EV charging behavior informa-

tion, such as remaining vehicle mileage, availability of charging stations, and battery

charging status. All the charging information can be used to analyze and predict the

EV charging behavior by artificial intelligence algorithms.

After obtaining the prediction charging results, EVs send the charging service requirements

to the controller through the user interface in the infrastructure layer, then the controller up-

dates the EV charging ID in the EV information module and receives information packets

from the EV. When EVs try to access the charging station, the PLC and the controller are re-

sponsible for information interaction, and the charging service requirements are uploaded to

the edge computing module through wireless communication networks. When the EVs are

driving, the data collected by EV sensors and battery sensors are sent to the edge computing

module via vehicular wireless communication networks. When the charging service require-

ments on the EV side changes sharply, the charging station accesses charging data via multi-

cast communication network to obtain the battery usage state, upload the charging service

requirements, and assign the status of charging station in the V2G system.

Considering the heterogeneous environments of the smart grid, edge computing can

provide low latency on-demand charging services at the edge of the smart grid. The

use of edge computing promotes computing and storage resources that are very close

to the end-use, ensuring high data rates.

3 Methods
3.1 Data set introduction and data preprocessing

To ease the burden of EV charging on the power grid, one possible solution is to pre-

dict the charging behavior of EV users. From a macro perspective, EV users can be di-

vided into regular and irregular users. The charging behavior of regular users has a

certain regularity while the charging behavior of irregular users has no regularity. It is

meaningful to predict the charging behavior of regular users, but the charging behavior

of irregular users will increase the prediction error.

Generally, the standard deviation is calculated according to the time and amount of

each charging, and the stability of charging behavior is judged according to the standard

deviation. However, we cannot get a reasonable threshold. To this end, we use a machine

learning method to solve this problem, we choose K-means to classify data sets.

We use one year’s charging record of a charging station in Los Angeles as a data set

for simulation. Each record stores the user ID, charging connection time, charging

completion time, disconnection time, charging amount, and other variables. The data

set contains 26,000 charging records of 318 users.
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Before clustering, we preprocess the dataset. Firstly, for users whose records is less

than 3, we think they are not local users, so we delete them from the dataset. To distin-

guish regular and irregular users better, we choose the average charging time, the

standard deviation of the charging time, and the standard deviation of the connection

time as the clustering vector. As shown in Eq. (1), we use the linear normalization

method to normalize the data.

X� ¼ X−Xminð Þ= Xmax−Xminð Þ ð1Þ

3.2 The K-means-based EV charging behavior clustering

K-means is one of the unsupervised learning algorithms suitable for classifying un-

labeled data sets. It can divide the data into K clusters. There are many methods that

can be used to calculate the distance between vectors, and the most common of which

is the Euclidean distance.

Specifically, the first K clustering objects are randomly chosen from n objects as

the initial points. Then, the distance between n objects and K clustering objects

can be calculated. According to the calculation results, each object with minimum

distance can be classified. Next, the average value of each clustering object is cal-

culated as a new initial point and iteratively is continued until the classification of

each data belongs to remains unchanged. Among them, the update of the nth iter-

ation cluster center is as Eq. (2).

Centerk ¼ 1
Ckj j

X

xi∈Ck

xi ð2Þ

The main drawback of the K-means algorithm is that the random selection of initial

K clustering objects might cause local optimum. Therefore, we use a hybrid artificial

intelligence algorithm to improve the accuracy of the results. After clustering the ob-

jects calculated by the K-means algorithm, we use the machine learning method to re-

fine and relabel the data to get better results. The pseudocode of the K-means-based

EV charging behavior clustering algorithm is shown below.

After clustering, we standardize the results and import the user data into the same

tuple structure, which is shown in Eq. (3).

μ≔ tch arge; σch arge; σconnect
� � ð3Þ

As shown in Fig. 2, machine learning algorithm divides users into three categories.

Through analysis, we believe that the red and blue users have regular and predictable
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charging behavior because their standard deviation is low. On the contrary, some users

have irregular charging behavior, which is classified into green spots in Fig. 2. Such

users have no value in taking part in the centralized scheduling of the power grid be-

cause the standard deviation is large. Therefore, we adopt the hybrid artificial

intelligence algorithm to classify red and blue users into one category and green users

into another.

3.3 The KNN-based EV charging behavior classification

When new users join, they need to be classified based on their behavior. However, it is

a great challenge to re-cluster the whole dataset each period when a new EV accesses

to the charging station. Therefore, we use the k-nearest neighbors (KNN) method to

classify new users based on existing clustering results. KNN is one of the supervised

learning methods used to classify samples by measuring the distance between new ob-

jects and the labeled objects. Inside the KNN algorithm, all the chosen objects have

been accurately classified, the training samples of the first K new objects can be chosen,

and the new chosen objects are assigned to the classification that the largest number of

data categories among the K nearest neighbor belongs. A detailed description of the

KNN-based EV charging behavior classification is shown below.

Fig. 2 The clustering results under K-means-based EV charging behavior clustering algorithm. As shown in
this figure, machine learning algorithm divides users into three categories
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The training error rate is defined as the ratio of the K-nearest training sample marker

to the input marker, which is expressed as follows:

1=K
X

xi∈Nk xð Þ
I yi≠c j
� � ¼ 1−1=K

X

xi∈Nk xð Þ
I yi ¼ c j
� � ð4Þ

Moreover, if we choose the appropriate K value, we can maximize the coefficient in

the training set.

1=K
X

xi∈Nk xð Þ
I yi ¼ c j
� � ð5Þ

3.4 LSTM-based EV charging behavior prediction

The RNN algorithm is adopted to identify nature language because it was able to re-

member a long time sequence. However, as the sequence length increases, the gradient

disappearance problem is highlighted by unfolding RNNs into ultra-deep structures. To

solve the problem of the vanishing gradient, some structures of RNNs with forget units

were proposed like LSTM and GRU. In this way, the memory cells could decide when

it can forget certain charging information and thus determine the optimal charging

time. LSTM was proposed for language models in 1997 and was used for EV aspect

prediction until 2015.

Figure 3 illustrates the typical architecture of the LSTM predictor. A representative

LSTM neural network cell mainly contains four gates with different functions including

the input gate, the input modulation gate, the forget gate, and the output gate. The in-

put gate receives the input training data and processes the new coming information.

The input modulation gate transmits the input data to the output gate for the last iter-

ation. The forget gate selects the value data and decides when to forget the unnecessary

information for the input sequence. The output gate obtains the entire calculation

Fig. 3 The structure of the LSTM predictor. This figure illustrates the typical architecture of LSTM predictor.
A representative LSTM neural network cell mainly contains four gates with different functions including the
input gate, the input modulation gate, the forget gate, and the output gate
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results and creates output for the LSTM model. In our prediction model, a soft-max

layer and a linear regression layer are added to determine the final output of the

LSTM.

We recognize the input data as X = (x1, x2, …, xn), hidden state of LSTM as H = (h1,

h2, …, hn), and output results as Y = (y1, y2, …, yn), and LSTM has the computation as

follows:

ht ¼ H Whxxt þWhhht−1 þ bhð Þ ð6Þ

pt ¼ Whyyt−1 þ by; ð7Þ

in which the weights are denoted as W, and biases are represented as b. The hidden

state of LSTM is calculated as follows:

it ¼ σ Wixxt þWhhht−1 þWicct−1 þ bið Þ ð8Þ

f t ¼ σ Wfxxt þWhhht−1 þWfcct−1 þ bf
� � ð9Þ

ct ¼ f i�ct−1 þ it�g Wcxxt þWhhht−1 þWccct−1 þ bcð Þ ð10Þ

ot ¼ σ Woxxt þWhhht−1 þWocct−1 þ boð Þ ð11Þ

ht ¼ ot�h ctð Þ; ð12Þ

where σ stands for the standard sigmoid function as shown in Eq. (13), * denotes the

scalar product of two vectors or matrices, g and h represent the extend of standing sig-

moid function with the ranges of [–2, 2] and [–1, 1], respectively.

σ xð Þ ¼ 1= 1þ exð Þ ð13Þ

The objective function of our prediction model is given by the following formula:

e ¼
Xn

t¼1

yt−ptð Þ2; ð14Þ

in which y denotes the real value, and p is the predicted results. To reduce the training

error and avoid local optimal, an adaptive learning rate-based stochastic gradient

descent (SGD) optimizer, Adam optimizer, is adopted in back propagation through

time (BPTT) algorithm. Neural networks have been known for their powerful ex-

pressive abilities and are particularly prone to overfitting. Neural network training

has been a difficult problem for long, and a lot of regularization methods have

been proposed to reduce overfitting. In 2012, dropout [24] was proposed as a very

effective algorithm for training neural networks to obtain better image features.

However, due to the recurrent property of RNNs, dropout has been difficult to

apply to language models of RNNs. Until 2014, it was reported that the dropout

methods were successfully applied to RNNs.
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4 Experiments and results
4.1 Data description and experiment design

We use one year’s charging record of a charging station in Los Angeles as a data

set for simulation. Each record stores the user ID, charging connection time, char-

ging completion time, disconnection time, charging amount, and other variables.

The data set contains 26,000 charging records of 318 users. We have divided the

EV users into regular and irregular users through above hybrid artificial

intelligence. The regular users have regular and predictable charging behavior,

while the behavior of irregular users is unpredictable.

In our experiment, we deployed the RNN composed of one LSTM cell to process

the classified EV user’s data. Then, we compared the predicted user charge with

the real user charge to test the performance of our proposed model. Besides, to

test our model prediction accuracy better, we used the mean square error (MSE)

defined as follows:

MSE ¼ 1
n

Xn

i¼1

yi−ŷið Þ2 ð15Þ

4.2 Cross-validation of the hybrid artificial intelligence algorithm

Cross-validation is used to verify the effectiveness of the proposed hybrid artificial

intelligence algorithm. There are 223 user data after filtering; we divided them into 6

groups. The first 5 groups are used for cross-validation, and the last group is used for

final validation, as shown in Fig. 4.

In cross-validation, 4 groups of data are used for training prediction model, and an-

other group of data is used for testing. In addition, the last 48 data are used for valid-

ation. After training, the prediction accuracy is 98.41%.

To fully consider the general performance of the model, we draw a receiver op-

erating characteristic curve (ROC) curve to fitting the number of the partition type.

ROC curve is usually more effective when the classification distribution is not uni-

form. There are two important values inside the ROC curve, the first is the true-

Fig. 4 The demonstration of cross-validation for EV charging behavior grouping. As shown in this figure,
there are 223 user data after filtering; we divided them into 6 groups. The first 5 groups are used for cross-
validation, and the last group is used for final validation
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positive rate (TPR) and the other one is the false-positive rate (FPR). The defini-

tions of them are as shown below:

TPR ¼ TP= TP þ FNð Þ ð16Þ

FPR ¼ FP= TN þ FPð Þ ð17Þ

The area under the ROC curve (AUC) is a widely used indicator of the classification

performance of supervised algorithm. The AUC is calculated the proportion of area

under the ROC curve compared with the total area. The ROC curve of the k-nearest

neighbor (KNN)-based EV charging behavior classification algorithm is shown in Fig. 5.

It is obvious that the ROC curve is close to the upper boundary of the coordinates, and

the AUC is 0.995, which indicates that the classification performance of our model is

effective. Thus, by adopting the KNN-based EV charging behavior classification model,

we can classify the behavior of new users to figure out whether their behavior is regular

or irregular. Electric power companies can use these classification results to predict fu-

ture loads to timely dispatch the grid and enhance the stability of the grid.

4.3 EV charging prediction

In this experiment, the hybrid artificial intelligence-based prediction model is trained,

and the performance is measured. Figures 6 and 7 demonstrate the prediction results

of irregular charging data and regular charging data, respectively. According to the re-

sults, the predicted value of regular users is very similar to the real data, while the

Fig. 5 The demonstration of cross-validation for EV charging behavior grouping. The ROC curve of the k-
nearest neighbor (KNN)-based EV charging behavior classification algorithm is shown in this figure
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Fig. 6 Irregular charging data prediction results. In this figure, the hybrid artificial intelligence-based
prediction model is trained, and the performance is measured

Fig. 7 Regular charging data prediction results. This figure demonstrates the prediction results of irregular
charging data and regular charging data, respectively
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charging behavior of irregular users are difficult to predict. The experimental results

are basically in line with our expectations, which means that our proposed method is

effective. Experimental results show that hybrid artificial intelligence has good perform-

ance on regular charging data, but the irregular charging data are hard to predict.

Therefore, predicting the charging behavior of regular EV users is meaningful to for-

mulate an optimal electricity price, and considering the prediction, the irregular EV

charging data can be neglected.

5 Conclusions
To effectively provide on-demanding charging services for EV users in the 5G smart

grid, we propose an electric vehicle charging behavior analysis (EV-CBA) scheme based

on hybrid artificial intelligence in 5G smart grid. There are two main innovations in

the EV-CBA scheme including a novel three-layer smart grid architecture and a hybrid

artificial intelligence algorithm. The proposed smart grid network architecture adopts

network slicing and edge computing technologies to meet the heterogeneous EV char-

ging demands, such as irregular charging and regular charging, in 5G smart grid. In

addition, the proposed three-layer smart grid architecture is the hardware foundation

for implementing hybrid artificial intelligent algorithms. The hybrid artificial

intelligence is proposed to obtain accurate prediction results of future charging de-

mands, which consists of the K-means-based EV charging behavior clustering, the k-

nearest neighbor (KNN)-based EV charging behavior classification, and the LSTM-

based EV charging behavior prediction. The multi-step hybrid prediction process con-

tributes to analyzing the EV charging behavior. Simulation experiments show that the

proposed EV-CBA scheme can predict EV charging behavior with excellent clustering

capacity and classification performance. The prediction results can be used as the basis

for EV charging scheduling in the 5G smart grid.
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