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Abstract

The open and shared nature of the Automatic Dependent Surveillance Broadcast (ADS-B) protocol makes its
messages extremely vulnerable to various security threats, such as jamming, modification, and injection. This paper
proposes a long short-term memory (LSTM)-based ADS-B spoofing attack detection method from the perspective of
data. First, the message sequence is preprocessed in the form of a sliding window, and then, an LSTM network is used
to perform prediction training on the windows. Finally, the residual set of predicted values and true values is
calculated to set a threshold. As a result, we can detect a spoofing attack and further identify which feature was
attacked. Experiments show that this method can effectively detect 10 different kinds of simulated manipulated
ADS-B messages without further increasing the complexity of airborne applications. Therefore, the method can
respond well to the security threats suffered by the ADS-B system.
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1 Introduction
With the significant increase in airspace density, tradi-
tional surveillance technologies such as primary surveil-
lance radar (PSR), secondary surveillance radar (SSR), and
multilateration (MLAT) technology will have increasing
difficulty meeting the future need for the development
of air traffic management (ATM) systems. Because ADS-
B technology has the advantages of high accuracy, large
coverage, support for data sharing, and air surveillance,
it has become an important part of the next-generation
(NextGen) air transport system. However, the extensive
application of data-driven related technologies in the area
of cloud computing [1, 2], Internet of Things [3, 4], ser-
vice recommendation [5, 6], blockchain [7], etc. provides
attackers with powerful hardware and software support
and richer attack methods, which makes aviation com-
munity lost the considerable technical advantage that
protected its communication. Since the protocol of ADS-
B has the characteristics of open sharing, its security
faces great challenges. Specifically, the protocol does not
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provide any relevant data encryption and authentication,
and its messages are broadcast in a simple and open
format, which is very vulnerable to eavesdropping, jam-
ming, modification, and injection. In addition, authorized
aircraft and air traffic controller (ATC) stations do not
perform identity authentication before sending ADS-B
messages, and the protocol cannot distinguish authorized
entities from unauthorized ones. All these factors make
the ADS-B system extremely vulnerable to various spoof-
ing attacks. At present, many studies have successfully
verified the possibility of attacking the ADS-B system
[8, 9]. Therefore, concerns about its safety will continue to
increase with the development of air traffic and the further
popularization and application of ADS-B.
This paper proposes an ADS-B spoofing attack detec-

tion method based on an LSTM network [10]. We have
noticed that the idea of prediction is widely used in vari-
ous fields, such as web service quality prediction, link pre-
diction in recommender system, and web traffic anomaly
detection [11–13], which leads to the core idea of the
method used in this paper, namely prediction. Specifically,
the ADS-B message sequence data are first preprocessed
in the form of a sliding window, and then a neural network
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composed of LSTM units is used for predictive training.
Finally, a threshold is set by calculating the predicted data
residual set to determine whether there is an anomaly in
the ADS-B data. By setting corresponding thresholds for
different features, we can further identify the specific fea-
tures under attack. In this paper, anomaly data (anomaly)
refer to data that have been manipulated and need to be
detected. The main contributions of this paper are the
following:

1 By analyzing the ADS-B attacks, we construct a
neural network made up of LSTM units to detect
different types of anomalous data we simulate.
Compared with the existing machine learning
methods [14, 15], our method does not require
complicated feature engineering.

2 We set different thresholds for different features, so
that we can determine the specific features
containing anomalies. In addition, the experiments
show that when a single feature is attacked, it can
trigger the overall anomaly threshold and does not
affect the abnormal scores of other features. In actual
applications, the overall threshold can be used to
determine whether an anomaly occurs first, and then
use the thresholds of different features to determine
the specific features that contain anomalies.

The rest of the paper is organized as follows. In Section 2,
we introduce the related work. Then, in Section 3, we
describe the process and detailed steps of the anomaly
detection method. Using this method, we perform detec-
tion experiments on different simulated anomalous data,
and analyze and discuss the results in Section 4. Finally,
we conclude in Section 5.

2 Related work
2.1 Research status
In recent years, researchers have carried out related
research on the security issues of the ADS-B system
and have given suggested security measures and solu-
tions, mainly including the following aspects: (1) Prevent
eavesdropping and modification by encrypting ADS-B
messages [16]. Because this method needs to change the
existing ADS-B protocol structure, it is difficult to imple-
ment. (2) An aircraft is authenticated through a challenge
response [16], and additional sensors are added in the
airspace to verify the security of the transmitted data [8,
17, 18]. However, the ADS-B system has been deployed on
most aircraft, and software and hardware installations and
changes require strict airworthiness certifications, so they
are difficult to implement at this stage. (3) Position-based
verification methods [19–22]: these methods usually per-
form a secondary check on the position claimed by the air-
craft or other ADS-B users. The principle is to establish a

mechanism that can find the exact position of the message
sender, which is essentially different from the verification
of the broadcast source and the message. The advantage
of this method is that it can be used as a primary navi-
gation system or even a Global Positioning System (GPS)
backup system because it can generate additional posi-
tion data, which can be combined with ADS-B and radar
systems. However, such methods usually require synchro-
nization of multiple ground stations or receiving devices,
and the complexity is high. (4) Methods of antenna verifi-
cation Direction of Arrival (DOA) [23–25]: these methods
can avoid problems such as time synchronization and data
fusion and do not need to change the existing ADS-B
protocol. However, this approach requires spatial search
direction finding, has high computational complexity, and
is sensitive to array errors. (5) From the perspective of
data, a machine learning method is used to reconstruct
the ADS-B message sequence, and the reconstruction
error is used to detect anomalous messages. Based on
the original features contained in an ADS-B message,
Habler et al. calculated the distances from all points on
the track to four special nodes and the distances between
two adjacent track points, for a total of 5 parameters, as
additional training features to perform anomaly detection
[14]. Our research group statistically expands the origi-
nal features based on the strong temporal correlation of
ADS-B messages so that the model can better capture the
time dependence of the data [15]. Although such methods
can detect anomaly data, they cannot further determine
the specific cause of the anomaly, that is, which data items
(features) in the ADS-B message have been modified.
In addition, these methods need to further expand the
features of the original data to a certain extent, that is, per-
form more complicated feature engineering. These data
processing steps undoubtedly increase the complexity of
the application in the actual process.

2.2 Types of ADS-B attacks
The ADS-B system is a new paradigm of air traffic control
and does not require manual operation or inquiries. It can
automatically obtain parameters from relevant airborne
equipment and broadcast the flight status information of
the aircraft to other aircraft or ground stations for con-
trollers. According to the direction of aircraft information
transmission, the system functions can be divided into
two categories: ADS-B IN and ADS-B OUT [26]. The
former is an optional service that enables the aircraft
to receive and display detailed information broadcast by
other aircraft operating in the same area. The latter is the
basic function of the on-board ADS-B equipment. It sends
the aircraft’s position information and other additional
information to other aircraft or controllers at a certain
period, mainly including aircraft identification informa-
tion, speed, heading, and climb rate. Ground stations
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Fig. 1 ADS-B protocol with massage length of 112 bits

Table 1 ADS-B packet attack types

Serial number Attack type Purpose of attack Way of attack

Eavesdrop operating status Obtain ADS-B data of

1 Eavesdropping information of aircraft corresponding airspace

(aircraft reconnaissance) through ADS-B IN device

Jam the transmission of an

ADS-B message in By using an ADS-B

2 Jamming a specific airspace transmitting device

(ground station with sufficiently high

flood denial, transmit power in

aircraft flood denial) the relevant frequency band

By using a transmitting

Inject fake aircraft device with sufficient

3 Message into specific flight scenarios, high transmit power in

injection confusing air traffic the relevant frequency

control systems band and capable of

(aircraft target generating correct

ghost injection/flooding) modulation and conforming

to the ADS-B

message format

Delete some or all By implementation at

4 Message of the information the physical layer

deletion contained in a message through constructive or

(aircraft disappearance) destructive interference

Realized by overshadowing

5 Message Modify the information and bit-flipping at the

modification contained in a message physical layer of the system

(virtual trajectory and can also be achieved by

modification) combining two attack methods:

false message injection

and message deletion
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Fig. 2 Overall process of the method

can monitor air traffic by receiving this information. The
ADS-B protocol format is shown in Fig. 1.
The risks faced by the ADS-B system are essentially

derived from the broadcast nature of radio frequency
communications and the fact that messages are broad-
cast as unencrypted plain text [27]. The importance and
strong attackability of the aircraft operating status infor-
mation that these messages contain make them the main
target for malicious attackers. At present, the types of
attacks that exist for the ADS-B system are mainly divided

into eavesdropping, jamming, message injection, message
deletion, and message modification [28] (Table 1). Among
them, eavesdropping will not directly harm the air traf-
fic control system, so the impact is minimal. Message
deletion will have an impact on the surveillance system,
causing the aircraft to temporarily disappear from the
ATC map, but it can be identified by surveillance sys-
tems such as radar and multilateration systems. Message
modification is a typical spoofing attack. For example,
if an attacker continuously changes the aircraft position
information in ADS-B messages by small amounts, that is
considered a “frog boiling”-type spoofing attack [29]. At
this time, other surveillance technologies (such as radar
surveillance systems) and positioning technology will have
difficulty detecting these small differences due to accuracy
issues, resulting in incorrect guidance to air traffic con-
trollers or delaying the response of the collision avoidance
system. This has a great impact on the ATC system.

3 ADS-B spoofing attack detectionmethod
3.1 Overall process
Figure 2 shows the overall flowchart of the method pro-
posed in this paper. First, we proceed from the original
ADS-B data, process the data into a sliding window com-
posed of ADS-B vectors, and then input the data into a
neural network composed of LSTM units for prediction
training. After that, additional data (not the training set)
is selected and input into the trained model, and the over-
all anomaly threshold and the threshold corresponding
to each feature are determined by calculating the resid-
ual of the predicted value and the true value set. When
performing anomaly detection, we can first determine
whether an anomaly occurs through the overall threshold.
If an anomaly occurs, we can further compare whether the
anomaly score of each feature exceeds the corresponding
threshold. Features with abnormal scores exceeding the
threshold may belong to the attacked features.

3.2 Data preprocessing
Before model training, the dataset needs to be prepro-
cessed according to the steps shown in Fig. 3. First, the
features related to the aircraft operating status informa-
tion are extracted from the ADS-B message, including the
aircraft’s longitude, latitude, altitude, speed, heading, and
climb rate. Then, the data are sorted according to the
International Civil Aviation Organization (ICAO) code
(the unique identifier of each aircraft) so that the dataset
is sorted according to different flights; the form is shown

Fig. 3 Data preprocessing steps from raw ADS-B time series
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Fig. 4 Dataset arrangement according to different flights

in Fig. 4. Next, the dataset is normalized so that the scal-
ing transformation of different feature dimensions makes
the features comparable between different measures with-
out changing the distribution of the original data. Finally,
the data are processed into window form according to
the time-dependent relationship betweenADS-B data fea-
tures.

3.3 Sliding window
Define an n-dimensional time series S = {S1, S2, ..., Sc}
to represent the ADS-B sequence window, which is com-

posed of a series of n-dimensional vectors, where C is
the length of the time series. Si = {s1, s1, ..., sn} is an n-
dimensional vector, and each dimension corresponds to
a feature. Specifically, S represents a window composed
of continuous C pieces of an ADS-B message, and each
vector Si contains the features extracted from the corre-
sponding ADS-B message, namely the longitude, latitude,
altitude, speed, heading, and climb rate. Considering the
time correlation of ADS-B data, the data are processed
into the form of a sliding window. For example, a win-
dow with a length of 10 is selected, and the training phase
first uses the data with the serial number [1,10] to predict
the 11th data; then, by sliding the window, the data with
the serial number [2,11] are used to predict the 12th data,
and the rest of the data all follow this pattern. Figure 5
shows a schematic diagram of the sliding window, includ-
ing the timestamp, ICAO, latitude, longitude, altitude,
speed, heading, and climb rate from left to right. From top
to bottom, different colored boxes correspond to different
sliding windows, with model input on the left and model
output on the right. The data are in comma-separated
values (CSV) format.

3.4 Model structure and parameter settings
This paper uses an LSTM network to predict an ADS-B
sequence. Considering that the input data is not of high
dimension and has obvious change rules, the shallow neu-
ral network structure can be used to learn the internal
connection of the data. The model is built by the keras
framework. The specific structure is shown in Fig. 6.
The network is a sequential model consisting of a layer

of LSTM units and a fully connected layer. The num-
ber of LSTM units is 14, and the number of fully con-
nected layer units is 7, which is the dimension of the
ADS-B vector (ICAO is used for flight sequencing and
does not participate in model training). In fact, an LSTM
unit is a memory unit for learning long-term patterns,
including the current state and three nonlinear gates: a
forget gate, input gate, and output gate. The forget gate
is responsible for determining how much information
to remember. It is determined by a nonlinear function

Fig. 5 Illustration of sliding window. First uses the data with the serial number [1,10] to predict the 11th data; then, by sliding the window, the data
with the serial number [2,11] are used to predict the 12th data, and the rest of the data all follow this pattern
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Fig. 6Model structure diagram. At the LSTM layer, each circle
represents an LSTM unit, and the down arrows in this layer represent
that the cell status and output of each unit will be passed to the next
unit

and outputs a number between 0 and 1, where 0 means
forgetting all the information in memory and 1 means
keeping all the information in memory. The input gate is
responsible for deciding how to update the old unit sta-
tus; that is, the new information is selectively recorded
into the unit status. The output gate is responsible for
deciding how much memory information is passed to the
next unit.
During the training process, the ADS-B data is input

into the neural network one by one in the form of a slid-
ing window, and the training output is the next data in the
input window. In addition, the loss function for training
uses the mean square error.

3.5 Threshold setting
The total dataset is defined as M, and M is divided into
three subsets,M1,M2, andM3, where the ratio is approxi-
mately 8:1:1. Among them,M1 is used for model training,
M2 is used for determination of thresholds, and M3 is
modified according to the descriptions of different attack
types; then, the model is tested. After the model is trained,
M2 is input into it to obtain a set of predicted values P. The

Table 2 ADS-B attack data simulation method

Attack type Simulation data Simulation method

Jamming Random noise Multiply the flight value obtained in
the original

ADS-B message by a random value
between 0 and 2.

Injection Route replacement Given certain route information,

inject different correct route infor-
mation to replace

the sequence for the selected ADS-
B sequence segment.

Fixed offset (+) Increase the flight value

(except time characteristics)

obtained in the ADS-B message by
10%.

Fixed offset (−) Decrease the flight value

(except time characteristics)

obtained in the ADS-B message by
10%.

Modification

Height offset (+) Use 400 ft as multiples to gradually
change

the altitude characteristics of ADS-B
messages.

In the selected ADS-B sequence,
increase the

altitude feature of the first vector by
400 feet,

the second by 800 feet, and so on.

Height offset (−) Decrease the

altitude feature of the first vector by
400 ft,

the second by 800 ft, and so on.

Speed offset (+) Use 20 knots as multiples to gradu-
ally change

the speed characteristics of ADS-B
messages.

In the selected ADS-B sequence,
increase the

speed feature of the first vector by
20 knots,

the second by 40 knots, and so on.

Speed offset (−) Decrease the

speed feature of the first vector by
20 knots,

the second by 40 knots, and so on.

Heading change Change the value of the heading

information contained in the ADS-B
message

to the opposite of the original value.
Climb rate change Change the value of the climb rate

information contained in the ADS-B
message
to the opposite of the original value.
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Fig. 7 Abnormal score figures. Abnormal score figures of different kinds of attack data where the abscissa is the data serial number and the ordinate
is the abnormal score

set of true values corresponding to P is V, and the residual
set of P and V is defined as D. For di ∈ D, we have:

di = ∣
∣pi − vi

∣
∣

where pi ∈ P, vi ∈ V , and i is the index coefficient. Then,
the mean and standard deviation of set D are calculated

and recorded as μ and σ ; that is, E(D) = μ and D(D) =
σ 2. Then, we can define the threshold as follows:

t = 3σ

In the test phase, the corresponding residual set D′ is
obtained by using the model and the dataset M3 in the
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Fig. 8 Effect of sliding window length. Effect of sliding window length on the detection effect for five representative types of anomaly data

same manner as described above. The abnormal score can
be defined as:

a = ∣
∣d′

i − μ
∣
∣

where d′
i ∈ D′ and μ is the mean of set D.

It is worth noting that the anomaly thresholds of dif-
ferent features are different, which are three times their
corresponding standard deviations (it can also be changed
according to different needs, if you need to reduce the
false alarm rate, you can also set to σ or 2σ ). The over-
all anomaly threshold is the average number of anomaly
thresholds for all features. Similarly, the definition of
abnormal score also corresponds to the same situation.
In practical applications, the average threshold of all fea-

tures can be used first to determine whether an attack has
happened. Furthermore, if the predicted residual of a cer-
tain feature exceeds the corresponding threshold, it can be

Table 3 Average precision, recall, and F1-scores

Attack type Precision Recall F1-score

Random noise 0.9136 0.8902 0.8932

Fixed offset+ 0.9667 0.8655 0.9109

Fixed offset− 0.9674 0.9242 0.9415

Route 0.9772 0.5751 0.6844

Height offset+ 0.8656 0.5947 0.6824

Height offset− 0.8518 0.5284 0.6316

Speed offset+ 0.9768 0.5841 0.7311

Speed offset− 0.9809 0.5530 0.7058

Heading 0.9788 0.4583 0.5914

Climb rate 0.8698 0.1856 0.3032

determined that an anomaly has occurred in this specific
feature.

4 Results and discussion
4.1 Attack data simulation
The data used in the experiments in this paper were
obtained from a GitHub project [30]. The data were
decoded from real ADS-B messages with a total length of
approximately 220,000. This paper focuses on 10 differ-
ent types of attack data for jamming, modification, and
injection, as shown in Table 2. The starting point of the
anomaly data simulation method is as follows:

1 It can be achieved at the technical level.
2 Try to simulate more realistic data that is not easy to

be discovered by the air traffic controller.

The paper [10] gives us a good example of simulation, and
our experiment simulates a richer type of anomaly based
on it.

Table 4 Average precision, recall, and F1-scores (after changing
the detection target)

Attack type Precision Recall F1-score

Random noise 0.9136 1.0000 0.9548

Fixed offset+ 0.9667 1.0000 0.9830

Fixed offset− 0.9674 1.0000 0.9834

Route 0.9772 1.0000 0.9885

Height offset+ 0.8656 1.0000 0.9280

Height offset− 0.8518 1.0000 0.9200

Speed offset+ 0.9768 1.0000 0.9883

Speed offset− 0.9809 1.0000 0.7058

Heading 0.9788 1.0000 0.5914

Climb rate 0.8698 0.8958 0.3032
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4.2 Results visualization
An independent flight or sequence segment is selected,
and the sequence segments with serial numbers [100, 105]
are injected with the different types of attacks described
in Table 2. Figure 7 shows the abnormal score for a cer-
tain flight after modification, where the abscissa is the
data serial number and the ordinate is the abnormal score.
Different subgraphs represent attacks against different
features in the following order: random noise, fixed offset
(+), fixed offset (−), route replacement, altitude offset (+),
height offset (−), speed offset (+), speed offset (−), head-
ing change, and climb rate change. It can be seen that for
different data features, the method can effectively detect
the attack using the corresponding threshold.

4.3 Evaluation metrics
To evaluate the method more accurately, this paper uses
precision, recall, and the F1-score as metrics. They are
defined as follows:
Precision: precision is the ratio of correctly predicted
positive observations to the total predicted positive
observations.

P = TP/(TP + FP)

Recall: recall is the ratio of correctly predicted positive
observations to all observations in the actual class.

R = TP/(TP + FN)

F1-score: the F1-score is the weighted average of preci-
sion and recall.

F1 = 2 × (R × P)/(R + P)

TP, FP, and FN refer to true positive, false positive,
and false negative, respectively. We might fail to detect
potential anomalies if we only pay attention to precision.
However, some false positives might be received when
we focus only on recall. The F1-score provides a balance
of precision and recall and is therefore used as the main
evaluation metric in our experiments.

4.4 Effect of sliding window length
Before statistical analysis of all attack detection results, we
first study the effect of different sliding window lengths
on the detection effect. We selected five representative
types of anomaly data (random noise, fixed offset, route
replacement, altitude offset, and speed offset) to test the
effect of sliding window length on the detection results.
Figure 8 shows the F1-scores of these types of anomalies
under different window parameters. For the dataset used
in this paper, the detection result is best when the sliding
window length is 9. By continuing to increase the win-
dow length, the detection effect gradually becomes worse
because a longer window will mask the time change in a
short time.

4.5 Comprehensive test results
In the test set composition, 20 flight segments are
selected, and attacks are injected into two sequence seg-
ments, [100,105] and [140,145], for different flight phases.
A training model with a window length of 9 is selected
to test various attack types, as shown in Table 3 for the
comprehensive test results.
As shown in Table 3, this method has a low recall

rate in regard to some more difficult attacks (warm-water

Fig. 9 Triggering effect of latitude change on the average threshold of all features
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Table 5 Trigger rates of various anomalies

Attack type Trigger rates F1-score

Random noise 1.0000 0.9548

Fixed offset+ 1.0000 0.9830

Fixed offset− 1.0000 0.9834

Route 1.0000 0.9885

Height offset+ 0.9621 0.8928

Height offset− 1.0000 0.9200

Speed offset+ 0.8958 0.8853

Speed offset− 0.9167 0.6470

Heading 0.8542 0.5052

Climb rate 0.9792 0.2969

boiled frog attacks). This is because the results are calcu-
lated from separate points when calculating these metrics.
For example, in Fig. 6, for attacks such as “height offset,”
although the attacked data were successfully detected,
only one point located in the attacked sequence segment
exceeded the threshold. In this case, the recall rate is
only 1/5 = 0.2. However, in the actual situation, the data
enter themodel in the form of sliding windows. Therefore,
when an anomaly point is detected, we reasonably suspect
that all sliding windows containing that point have the
possibility of containing the attacked data. If further anal-
ysis is performed, the attacked sequence segment can be
accurately detected. The specific method is to change the
statistical unit of the recall rate to the number of attacks;
that is, the detection target becomes two sequence seg-
ments. In this way, the recall rate index is significantly
improved. Table 4 shows the results after changing the
statistical method.

4.6 Consideration of influencing factors
Figure 9 presents the triggering effect of modified lat-
itude on the average threshold of all features. Similar
tests for each feature modification show that a single fea-
ture modification will exactly trigger the overall threshold;
that is, in practical applications, we can set the overall
threshold first, and if anomaly data are detected using
this threshold, then the specific feature threshold is used
to identify the exact manipulated feature in a further
step.
Statistics on the trigger rates of various anomalies are in

Table 5, where the F1-score is the result of multiplying the
trigger rates.
In addition, this paper also considers whether an attack

on one feature will affect other features when attacked,
that is, whether it will increase the false alarm rate.
Figure 10 shows the latitude abnormal score graph when
the altitude is modified. Figure 11 presents a partially
enlarged view of the latitude abnormal score.
Figures 10 and 11 show that the latitude anomaly score

exhibits only a small fluctuation in the attacked sequence
segment ([100,105]), and the magnitude is much smaller
than the anomaly threshold. Tests show that when a
feature is attacked, it can successfully trigger the over-
all threshold, and at the same time, it will not affect the
abnormal score of other features, which will reduce the
complexity of the method for anomaly detection.

4.7 Discussion
In this work, we use public datasets in evaluation. It is
possible that they contain a small degree of noise. Further-
more, their data volume is also limited. We will experi-
ment with larger scale datasets in our future work. For the
simulated anomaly data, the modified granularity needs

Fig. 10 Latitude abnormal score
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Fig. 11 Partially enlarged view of latitude anomaly

to be further refined. Besides, this method can only find
anomalies from a data perspective and cannot further lock
the attacker.
Since the ADS-B data changes differently in different

flight phases, in the follow-up research, we will consider
to divide the dataset according to different flight phases,
and train the corresponding models for the data in differ-
ent phases (parallel process). Then, set the corresponding
parameters to improve the correlation between the model
and the data to further deal with more complex attack
types. In addition, we will also pay attention to the idea
of crowdsourcing [31, 32] and further study it on ADS-B
system.
On the other hand, although the proposed method can-

not completely solve the security problem of the ADS-B
system, it will certainly increase the difficulty for attackers
to attack the system. Moreover, this method can be easily
extended to other aeronautical data, such as GPS signals
and radar data.

5 Conclusion
Addressing typical security threats that ADS-B systems
may currently suffer, this paper proposes a method for
detecting ADS-B spoofing attacks based on LSTM. We
use a neural network composed of LSTM units to pre-
dict an ADS-B message in the form of a sliding window
and set a threshold value by calculating the residual of
predicted values and true values to further detect attack
data. The detection of 10 kinds of simulated attack data
in ADS-B messages shows that this method can effec-
tively detect attack data and further identify the spe-
cific features under attack. Since this method does not
require complicated feature engineering, the participation
of additional nodes, and modification of the existing
protocol, it has strong operability in future practical
applications.
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