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Abstract

This paper addresses the traditional issue of restoring a high-resolution (HR) facial
image from a low-resolution (LR) counterpart. Current state-of-the-art super-resolution
(SR) methods commonly adopt the convolutional neural networks to learn a non-linear
complex mapping between paired LR and HR images. They discriminate local patterns
expressed by the neighboring pixels along the planar directions but ignore the intrinsic
3D proximity including the depth map. As a special case of general images, the face
has limited geometric variations, which we believe that the relevant depth map can be
learned and used to guide the face SR task. Motivated by it, we design a network
including two branches: one for auxiliary depth map estimation and the other for the
main SR task. Adaptive geometric features are further learned from the depth map and
used to modulate the mid-level features of the SR branch. The whole network is
implemented in an end-to-end trainable manner under the extra supervision of depth
map. The supervisory depth map is either a paired one from RGB-D scans or a
reconstructed one by a 3D prior model of faces. The experiments demonstrate the
effectiveness of the proposed method and achieve improved performance over the
state of the arts.
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1 Introduction
Human-centered image and video analysis have gained ever-increasing attention in both
academic and industrial areas worldwide in recent years. Since face is a key character of
human, machine-aided facial analysis becomes a popular issue in various applications.
For example, the manufactories of mobile devices are highly interested in developing both
hardware and software systems for the collection of facial images. This paper addresses a
traditional issue, i.e., face super-resolution (SR) in the field of facial image analysis.
Face super-resolution, also known as face hallucination for heavily blurred images, aims

at recovering a high-resolution (HR) facial image from a low-resolution (LR) one. It is
fundamental in a number of applications for facial analysis, such as face alignment [1, 2],
face recognition [3, 4], and E-commerce platforms [5]. When the acquired facial images
are of very low resolutions especially in the surveillance videos, it becomes extremely
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difficult for machines as well as humans to identify useful information therein. Face SR
alleviates this problem to some extent by restoring the missing pixels.
Face SR is a sub-problem of the general image SR. It is an ill-posed traditional problem

that attracts a lot of academic studies and has straightforward applications in the pho-
tographic industry. Recently, the advancement of convolutional neural networks (CNNs)
has activated a lot of studies on both general image and face SR. The state-of-the-art
methods [6–11] commonly adopt a well-customized CNN structure to learn a complex
non-linear mapping between many pairs of LR and HR images. The structure of the CNN
tends to be deeper and wider, with increasing data to feed. The prior knowledge is recently
used in the form of facial landmarks [1], parsing maps [12], or facial component heatmaps
[13] for the special task of face SR. In this paper, we explore another form of information,
i.e., the depth map of face, which can be incorporated to assist the face SR task.
Themotivation originates from understanding the basic convolutional operation for the

SR task. A deep CNN structure in fact learns to interpolate themissing pixels based on the
local patterns of the input image. The convolution is a translation invariant operation that
deals with the neighboring pixels in the 2D image coordinates. For example, the cascade of
several convolution layers’ receptive field for a given pixel p is shown in Fig. 1a. However,
the intrinsic 3D proximity of the neighboring pixels within the receptive field is not equal
to the 2D proximity of them, as shown in Fig. 1b. This is generally ignored in the literature
and may lead to blurry effect on the edges of the faces. We argue that a network for face
SR should also consider the 3D proximity of neighboring pixels, which can be inferred
from a facial depth map (Fig. 1c).
In this paper, we propose an SR network architecture guided by the depth map to

enhance the face SR performance. While it is not easy to learn the depth map for a gen-
eral image, the face has limited geometric variations to infer a relatively accurate shape.
The proposed network includes two branches: one for auxiliary depth map estimation
and the other for the main SR task. Adaptive geometric features are further learned from
the depth map and used to modulate the mid-level features of the SR branch. The whole
network is end-to-end trainable, with a common SR reconstruction loss and an extra loss
of depth supervision. During training, the supervision of paired depth map is involved.
During testing, only raw LR input image is required. The experiments are carried out
on two publicly available datasets FRGC v2.0 [14] and FFHQ [15] and demonstrate the
effectiveness of the proposed method.

Fig. 1 Receptive field of 2D and 3D cases for input image. Illustrations of a the receptive field and b the
difference of 2D and 3D neighbors for a given pixel p, and c the corresponding depth map
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The main contributions of this paper are as follows: (1) we first propose to incorporate
depthmap for the face SR task. The depthmap is either a matched one from RGB-D scans
or a reconstructed one by a 3D prior model of faces. (2) We build a tailored network to
estimate the depthmap and to assist themain SR task.We use adaptive geometric features
to modulate the mid-level features for face SR. The modulation operation is new and
complementary to the general convolutional operations for SR tasks. (3) The proposed
method leads to sharper edges for super-resolved images, which is a desirable goal for
face SR.
This paper is organized as follows. Section 2 reviews the related works. Section 3 elab-

orates the proposed network architecture, the loss for training the network, and the way
to prepare training data. Section 4 presents the experiments for the validation of the pro-
posed method. Section 5 discusses limitations and future directions for this work. We
conclude this paper in Section 6.

2 Related work
Since face SR belongs to the larger class of general image SR, this section reviews the
related works in both image SR and face SR. We also focus on the state-of-the-art deep
learning-based methods.

2.1 Image super-resolution

The advancement of CNNs has activated a lot of studies on image SR. Dong et al. [16]
first introduce a three-layer CNN to learn a non-linear mapping between many pairs of
LR and HR images. Then, Kim et al. [17] propose a deep CNN with 20 layers to learn
the residuals between the paired LR and HR images. Early works focus on improving the
performance of SR in terms of quantitative metrics such as the peak signal to noise ratio
(PSNR) and structural similarity index measure (SSIM).
It is later found that minimizing the mean square error (MSE) prefers high PSNR/SSIM

but lacks high-frequency details. Ledig et al. [6] introduce a perceptual loss which is a
combination of an adversarial loss and a pixelwise MSE loss in a high-level feature layer
of the VGGnet [18] pretrained by the imageNet classification task. Parts of their work,
also known as SRResNet, use an advanced CNN structure [19] at that time to achieve
better PSNR/SSIM. Since then, many works on image SR focus not only on PSNR/SSIM
but also on better visualized results that contain high-frequency details. However, there
is a trade-off between them since the loss function is usually a combination of sev-
eral terms. While the earlier works evaluate the results by visualizing the super-resolved
images, the current works propose quantitative metrics such as the perceptual index
(PI) [20]. In this work, we focus on enhancing the performance of face SR in terms of
PSNR and SSIM, since this will also set a higher baseline for results of good perceptual
qualities.

2.2 Face super-resolution

Exploiting facial prior in face SR, such as the spatial locations of landmarks is the key
difference from general image SR. There are many existing works dedicated to face SR
using the prior knowledge of face. Before the coming of deep learning-based methods,
early works [21, 22] attempt to learn the super-resolved faces in some low-dimensional
representations. This reduces the dimensions of the original ill-posed problem, thus leads
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tomore realistic restored facial images. Although thesemethods only deal with the frontal
pose, they provide clues to learn the face SR from the intrinsic facial structures.
The recent CNN-based face SR methods [1, 12, 13, 23, 24] have progressed a lot, in

terms of both quantitative metrics as PSNR/SSIM and perceptive visual qualities. The
CNN-basedmethods do not replace the classical methods totally, but rather seem to com-
bine and re-implement the old ideas, with the powerful new tool now. Meanwhile, the
CNN-based face alignments have also progressed a lot, reducing the difficulties of face
SR under pose variations. Song et al. [24] propose a facial structure generation network
to restore a coarse HR face and use exemplar HR faces for detail enhancement. Zhu et
al. [25] super-resolve unaligned faces with very low resolutions in a task-alternating cas-
cade framework. Since more accurate face alignment promotes better SR results and vice
versa, the task-alternating framework leads to improvements on both SR and face align-
ment. More recent works [1, 12, 13] implement some multitask networks and train in
an end-to-end manner. They use either facial landmarks, parsing maps, or facial compo-
nent heatmaps which are in fact different forms of face alignment. The aforementioned
methods belong to single image-based SR. Contrary to that some other works [26, 27]
super-resolve a facial image with the help of a high-quality guided image. In this work,
we propose to use the facial depth map, which is an intrinsic property of face to assist the
face SR task.

3 Proposedmethod
In this section, we introduce the detailed network architecture, loss for training the
network, and ways to prepare supervisory depth maps.

3.1 Network architecture

The architecture of the proposed network is illustrated in Fig. 2, and the detailed struc-
tures of the reused units are specified in Fig. 3 in different colors. The output channel size
(n), the kernel size (k), and the stride (s) are indicated for each convolutional layer. We do
not mark out the input channel sizes since they can be deduced by comparing the out-
put channel sizes of two neighboring layers. The input and output layers should also be
compatible with the input and output images. In summary, the network consists of three
sub-blocks: the main SR block, the depth estimation block, and the modulation block,
with the detailed architectures concluded in Table 1.
The main SR block is designed based on the basic network architecture of SRResNet

[6]. We adopt the residual unit as the basic element of the network. The residual unit has
two main advantages: (1) it makes the network deeper with minor computational cost, (2)
the skip connection (residual) helps to solve problems of vanishing and exploding gradi-
ents and enables the network easier to be trainable. We also take the two improvements
from [28] and [29]: removing the batch normalization layers and adding rescaling for the
residual unit (see Fig. 3), which can enhance the performance of the network. In addition,
the designed network learns the global residual in two stages rather than one as in [6].
The purpose is to maintain the full information for the mid-level features from the input
image for modulation, while still keeping the local and global residual structures as in [6].
The depth estimation block adopts an hourglass architecture inherited from the well-

known Unet [30]. The feature concatenations in different feature expansions enable the
network to learn the depth map in different level of features and in a more robust manner.
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Fig. 2 Network architecture. The basic network structure with the depth block, the modulation block, and
the SR block. The input and output channel sizes are commonly annotated in Fig. 3 for each convolutional
layers specified in different colors. In the special cases for the input and output layers that take the 3-channel
images as inputs or outputs, the input and output channel sizes should be modified to be compatible with
the input and output images

We design this architecture to estimate the depth map from an RGB image. This task is
commonly difficult for general images in an uncontrolled environment. However, it is a
popular issue worthy of study for indoor sceneries [31] because of the limited geometric
variations. The face has also limited geometric structure which we believe that the depth
can be learned from the RGB image.

Fig. 3 Network units. The basic units of the network in Fig. 2. The output channel size (n), the kernel size (k),
and the stride (s) are indicated for each convolutional layer. The input channel size can be deduced by
comparing the output channel sizes of two neighboring layers



Fan et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:149 Page 6 of 15

Table 1 Architectures of the proposed network including three sub-blocks

Network architecture

The main SR block The depth estimation block The modulation block

Conv: [3 × 3, 3, 64] Conv: [3 × 3, 3, 64]

Conv: [3 × 3, 1, 64]

Residual: [3 × 3, 64, 64] × 8 Downsample: [3 × 3, 3, 64] × 3

Feature addition Residual: [3 × 3, 64, 64] × 5

Feature multiplication Upsample: [3 × 3, 64, 64]

Residual: [3 × 3, 64, 64] × 8 Feature concatenation

Feature addition Upsample: [3 × 3, 64, 64]

Conv: [3 × 3, 64, 64] × 3

Conv: [3 × 3, 64, 64] Feature concatenation

Upsample: [3 × 3, 64, 64] × 2 Upsample: [3 × 3, 64, 64]

Conv: [3 × 3, 64, 3] Feature concatenation

Output image Conv: [3 × 3, 64, 1]

Building blocks are shown in brackets (see also Figs. 2 and 3), with the numbers of blocks stacked. Downsampling is performed by
convolution with a stride of 2. Upsampling is performed by convolution followed by pixel shuffle. The convolutional layer
parameters are denoted as “<convolutional kernel size>, <input channel size>, and <output channel size>” within square
brackets. The ReLU activation function is not shown for brevity

Themodulation block uses a cascade of several convolutional layers (followed by ReLU
[32] activation) to learn adaptive geometric features from the depth map. The learned
features are then fed into a mid-level layer of the main SR block. The mid-level feature
layer is used for modulation because it has a medium size of receptive field to include the
local image patterns. The modulation is implemented as element-wise products between
the two feature maps. Since each individual convolutional feature can be seen as (non-
linear) combinations of neighboring pixels within the receptive field, the modulation in
fact weights the individual convolutional features differently. The purpose is to adaptively
adjust the convolutional features according to the geometric features learned from the
depth map. This gives access to blend the useful 3D geometric information into the main
SR task.

3.2 Loss for training the network

Recently many state-of-the-art works [1, 6, 28, 33, 34] on SR focus not only on reducing
the mean square error (MSE) between the reconstructed and HR images, but also on
better visualized results containing high-frequency details. As a result, they use different
kinds of loss functions, e.g., the perceptual loss [6] and the adversarial loss [35]. However,
there is a trade-off [20] between these pursued goals. In this work, we aim to enhance the
performance of face SR in the sense of MSE, since this will also set a higher baseline for
balancing results of good perceptual qualities.
Depth guided loss. The depth guided loss is used for the reconstruction of the guiding

depth map. We employ the pixelwise MSE loss as:

Ldepth =
∥
∥
∥Idepth − Îdepth

∥
∥
∥

2

F
= ∥

∥Idepth − D(ILR)
∥
∥2
F , (1)

where Idepth and Îdepth are the supervisory and estimated depth map, respectively, D(·) is
the network of the depth block, and ILR is the input LR image.
SR loss.We also adopt the common pixel-wise MSE loss as the SR loss:

LSR = ‖IHR − ISR‖2F , (2)

where IHR and ISR are the HR image and super-resolved image by the whole network,
respectively.
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Fig. 4 Image morphological operations. An example of image dilation and erosion operation to remove the
outliers and holes for a depth mask map

Total loss. We set the total loss function as the combination of the depth guided loss
and the SR loss:

LT = αLdepth + LSR, (3)

where α is an adjustable parameter. In our experiments, the quantitative results on the
validation set are almost stable for a wide range of α only if the two losses are numerically
comparable, and we set α = 5. The whole network is implemented in an end-to-end
trainable manner with the total loss in Eq. 3 (also refer to Fig. 2).

3.3 Preparing the depth maps

In this section, we provide two ways for the preparation of matched depth maps for
training the face SR network.

3.3.1 Processingmatched depth scans

One way is to directly get the depth data from raw RGB-D cameras. Since the raw depth
scans may contain many outliers and holes, we use image dilation and erosion operations
to remove the outliers and fill the holes. Image dilation and erosion are basic morpholog-
ical operations used to handle raw depth scans in this study. Figure 4 shows an example.
We first use erosion operations to remove the outliers for the valid region (mask) for the
depth scans and then use dilation operations to fill the holes. The structuring array used
in this work is as follows.

A =
⎡

⎢
⎣

0 1 0
1 1 1
0 1 0

⎤

⎥
⎦ . (4)

After the dilation and erosion are operated on the facial mask, we use bicubic
interpolation to recover the missing pixels within the mask, as shown in Fig. 5.

Fig. 5 Depth map processing. An example of depth map interpolation for RGB-D scans based on the
processed mask
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This generally provides high-quality depth maps but is restricted to matched RGB-D
datasets.

3.3.2 3D face depth reconstruction

The other way is to use a prior 3D face model [36, 37] to reconstruct the shape of a facial
image.
We assume that the 3D facial shape has a Gaussian distribution which can be expressed

by a linear principal component analysis (PCA) model. Specifically, let the shape vector
of a face be S = (x1, y1, z1, ..., xl, yl, zl)T ∈ R

3l, where l is the number of 3D vertices. After
Procrustes alignment, we conduct standard PCA analysis to the concatenated vectors of
shapes for all exemplar 3D facial shapes. A new facial shape therefore can be represented
as eigenvectors si (in descending order according to their eigenvalues) of the covariance
matrices, as

S = Sβ = S̄ +
3l−1
∑

i=1
βisi, βi ∼ N(0, σi), (5)

where S̄ is the average shape, βi is the coefficient of each orthogonal base, and σi is the
variance of Gaussian distribution. This is actually a linear model for the representation of
a facial shape.
Then, the depth map can be calculated from the resulted pose and shape parameters.

The reconstruction process is to minimize the following function:

E(β , s,R,T) =
∑

i

∥
∥xi − SOP(R,T , s, Sβ)

∥
∥2, (6)

where xi is the value for each pixel and SOP(·) denotes scaled orthographic projection
with respect to the rotation R, translation T, scaling factor s, and 3D shape Sβ as

SOP(R, t, s, Sβ) = s
[

1 0 0 0 1 0
]

RSβ + T . (7)

Finally, we convert the 3D shapes to depth maps with Z-buffer technology [38] and feed
them into the training of the proposed network. Figure 6 shows an example of the recon-
structed depth map. This way generates reasonable depth maps but lacks high-frequency
details restricted by the specific 3D face prior models [36, 39–43].

4 Experiments
Datasets.We carry out our experiments on two publicly available datasets. (1) FRGCv2.0
[14] is one of the largest RGB-D datasets with matched depth maps. We take out some
problematic faces from the 4007 samples of this dataset and retain the other 3683 faces

Fig. 6 Depth map by 3D reconstruction. An example of reconstructed depth map from a facial image by 3D
reconstruction methods
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of good quality. We select 3500 images as the training set, 100 images as the validation
set, and the remaining 83 images as the test set. We then crop the images to obtain the
facial regions according to the facial landmarks provided by [44]. The cropped images of
faces are then resized to the resolution 256 × 256 with matched depth maps. (2) FFHQ
[15] is a recently released high-quality dataset. We select 5000 images as the training set,
100 images as the validation set, and another 100 images as the test set. We then resize
the original images to the resolution 256× 256. The matched depth maps for training are
synthesized by a 3D prior face model as described in Section 3. For both datasets, the HR
images are downsampled to obtain the LR images of resolution 64 × 64 with the bicubic
kernel.
Training details. We implement the networks with the Pytorch platform. The pro-

posed method is trained with the Adam optimizer [45] with an initial learning rate of
2 × 10−4. The mini-batch size is set to 32. Other parameters of the optimizer follow the
default settings in Pytorch. The learning rate of the proposed network is decayed by a
factor 10 every 100 epoches at a total number of 300 epoches. For the networks of other
methods, we fine tune the learning rates to achieve the best performances. It takes ∼ 3 h
on aGPU of GTX2080Ti to train the proposedmodel on the image resolution of 256×256.
Evaluation metrics. In the experiments, we adopt three quantitative metrics for the

evaluation of the SR reconstructed results: (1) the peak signal to noise ratio (PSNR) mea-
sures the pixel-wise similarity between the reconstructed image and the HR reference
image, (2) the structural similarity index measure (SSIM) [46] considers the local struc-
tural similarity between the two images, and (3) the perceptual index (PI) [20] prefers the
high-frequency details as a non-reference metric that is different to the reference metrics
such as PSNR and SSIM.

4.1 Learned depth maps

We expect that the depth block of the network can learn the depth map from the origi-
nal LR image. The output of the trained depth block is extracted to validate it. Figure 7
shows some examples of the learned depth maps from the validation set, together with
the ground-truth ones. We can see that the depth map is learned reasonably compared to
the ground-truth. The learned depth maps show similar structures with the ground-truth
ones in their geometric information. This demonstrates that the 3D shape of face can be
well learned and further integrated into the main SR task.

4.2 Quantitative evaluations

We compare the proposed method with the state-of-the-art SR networks, in terms of
PSNR, SSIM, and PI. We train the networks of VDSR [17], SRResNet [6], and RDN [47]
with the same RGB images from the FRGCv2.0 and FFHQ dataset. We do not include
some recently proposed networks for specific face SR [23, 24] because they generally focus
on visual qualities instead of quantitative metrics. Table 2 summarizes the quantitative
results. We also include a trimmed version of the proposed network with only the main
SR block as the baseline network for comparison. The results show that the modulation
with adaptive geometric features leads to superior results over the baseline methods in
quantitative metrics. All the evaluation metrics have achieved significant improvements
by the proposed method for the FRGC v2.0 dataset with matched depth scans. For exam-
ple, the PSNR shows 0.40 dB gains over the baseline network. Although the gain in PSNR
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Fig. 7 Results of learned depth maps. Some examples of the learned depth maps in comparison with the
ground truths. From top to bottom: the original RGB images, the supervisory depth maps (as the
ground-truths), the learned depth maps, and the error maps between the learned depth maps and the
ground-truths

for the FFHQ dataset with synthetic depth is only 0.12 dB, the resulted PI index achieves
considerable improvement, which shows great advantages for sharper edges as in Fig. 8.

4.3 Qualitative evaluations

We show two examples from the two datasets in Fig. 8, marked with individual evalu-
ation metrics. While the state-of-the-art methods such as SRResNet and RDN, and our
trimmed SR network are competitive with each other for individual test samples, we find
that the intervention with the depthmap leads to almost uniformly superior results for the
FRGC v2.0 dataset. The regions in the boundary of the face are remarkably sharper than

Table 2 Quantitative result

Method\dataset FRGC v2.0 FFHQ

PSNR SSIM PI PSNR SSIM PI

Bicubic 34.96 0.9119 9.5696 28.04 0.8224 7.6602

VDSR [17] 36.66 0.9237 8.3482 29.49 0.8584 6.4264

SRResNet [6] 37.20 0.9315 8.3070 30.07 0.8717 5.9043

RDN [47] 37.37 0.9328 8.2789 30.23 0.8722 6.0352

Ours (trimmed) 37.32 0.9324 8.2755 30.19 0.8720 5.9586

Ours (full) 37.72 0.9413 8.0159 30.31 0.8734 5.5071

HR +∞ 1.0000 7.0542 +∞ 1.0000 4.5806

Comparisons on the test set for the scaling factor ×4. Red/blue color indicates the best/second best performance
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Fig. 8 Qualitative results. Two examples with the individual quantitative metrics from the FRGCv2.0 dataset
(upper) and FFHQ dataset (lower), respectively. Please zoom in and pay attention to the sharp edges achieved
by the proposed network

that obtained by the other methods for both of the two datasets. We owe these improve-
ments to the distinction of 3D coordinates by virtue of the learned geometric features.
This proves that the proposed method has positive effect on the face SR task, especially
for sharper details of edges.

4.4 Ablation study

In this work, we propose the auxiliary depth and modulation blocks for the main SR task.
We conduct two additional comparative experiments on the FRGC v2.0 validation set to
demonstrate the effect of the auxiliary blocks. We also provide two ways for the prepa-
ration of matched depth maps, and an additional experiment with different supervisory
depth maps is carried out for the ablation study.
First, we exclude the auxiliary depth and modulation blocks to get a trimmed version of

the proposed network. The purpose is to learn the effect of the added network structure.
We train the trimmed network with the same settings and report the quantitative results
on the validation set in Table 3. It shows that removing the depth and modulation blocks
leads to 0.44 dB drop of PSNR, which demonstrates the added network structure has
positive effect on the final results.
Then, we retain the whole network but exclude the guided depth loss for training. This

is equal to the setting α = 0. This experiment aims to demonstrate the effectiveness
of the guided geometric features without regard to the network architecture. The result
in Table 3 shows 0.56 dB drop of PSNR without the guided loss even with the auxil-
iary blocks, which demonstrates that the supervisory depth actually contributes to the
improvement of the face SR task.

Table 3 Ablation studies for the network architectures

Component Comparison

Auxiliary blocks � × �
Depth-guided loss � × ×
PSNR 37.97 37.53 37.41

Comparisons of results with the added blocks and depth-guided loss, respectively



Fan et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:149 Page 12 of 15

Finally, we conduct an additional experiment on the FRGC v2.0 dataset. The supervi-
sory depthmaps are thematched raw scans, the reconstructed ones, and the preprocessed
ones from the raw scans, respectively. Table 4 shows the results in terms of PSNR using
different depth maps. It shows that the raw depth map after preprocessing leads to supe-
rior results than both the raw one and the reconstructed one. This indicates that removing
the outliers and holes for raw depth scans is beneficial for robust training of the net-
work. Although the reconstructed depth maps show superior results over the baseline SR
network, it is inferior to that by the matched depth scans. This may result from recon-
struction errors to the ground-truth. Thus, the proposed method prefers raw depth maps
from matched RGB-D scans.

5 Discussion
There are some remaining problems for the depth maps used to train the proposed net-
work. First, the raw depth scans of the current hardware devices usually contain a lot
of noise and errors. In this paper, we use morphological image operations to suppress
the noise, and we also use bicubic interpolation to fill the “holes”. Although these oper-
ations largely relieve the depth data from noise and errors, the depth scans are still
far from the ground-truth ones. This should be a main factor hindering the perfor-
mance for the proposed method. It is useful to collect a dataset with more advanced
devices to train the proposed network for better performance. Secondly, the depth maps
obtained by 3D face reconstruction methods are limited by the prior model, which lacks
high-frequency details and novel structures that cannot be expressed by the model.
Combining the prior model and raw depth scans is a possible way to construct closer
depth map to the ground-truth, which promotes better solutions for the face SR prob-
lem guided by the depth maps. Finally, the improved performance with the depth map
is at the cost of extra network architectures for the inference of depth map. Better
network architectures can be explored to incorporate the depth information into the
SR task.
It is worth mentioning that the success of the proposed method is not achievable with-

out the use of large amount of available data, like most deep learning-based methods.
The developments of effective data mining [48–50] and computing technologies [51–54]
will push the face enhancement methods to real-life applications. Also, the prevalence of
portable RGB-D scanning devices (e.g., iPhoneX) will provide more data and platforms
for these methods. In addition, this model may incorporate with the state-of-the-art GAN
model for a better visual performance based on the improved quantitative performance.
In the future, we will develop more effective ways to incorporate depth information into
the SR task, and specific data processing methods for various applications of face SR.

6 Conclusion
In this paper, we propose to use adaptive geometric features for the modulation of the
face SR task. The face image is a special case of the general images that has limited geo-

Table 4 Ablation studies for the supervisory depth maps

Depth maps Reconstructed ones Raw scans Preprocessed scans

PSNR 37.66 37.78 37.97

Comparisons of results with the reconstructed depth maps, those from the raw scans, and the preprocessed ones, respectively
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metric variations. We design a specific network structure to estimate the depth map from
a facial image and then use it to produce adaptive geometric features to modulate the
mid-level features for the main SR task. The supervisory depth map is either a matched
one from RGB-D scans or a reconstructed one by a 3D prior model of faces. The experi-
ments demonstrate that the acquired SR results are superior to the state-of-the-art works
without depth guidance, especially with the help of real matched depth maps. We hope
that the fast development and widely promotion of RGB-D cameras will lead to better
solutions and applications for the face SR problem.
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