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Abstract

It is not denied that real-time monitoring of radar products is an important part in
actual meteorological operations. But the weather radar often brings out abnormal
radar echoes due to various factors, such as climate and hardware failure. So it is of
great practical significance and research value to realize automatic identification of
radar anomaly products. However, the traditional algorithms to identify anomalies of
weather radar echo images are not the most accurate and efficient. In order to
improve the efficiency of the anomaly identification, a novel method combining the
theory of classical image processing and deep learning was proposed. The proposed
method mainly includes three parts: coordinate transformation, integral projection,
and classification using deep learning. Furthermore, extensive experiments have
been done to validate the performance of the new algorithm. The results show that
the recognition rate of the proposed method can reach up to more than 95%,
which can successfully achieve the goal of screening abnormal radar echo images;
also, the computation speed of it is fairly satisfactory.

Keywords: Radar echo image, Coordinate transformation, Integration projection,
Deep learning, Recognition

1 Introduction
Doppler weather radar is a kind of monitoring tool for small and medium catastrophic

weather, so its measurement accuracy is very important for weather forecast. However,

because of the external electromagnetic interference and the failure of transmitter-

receiver system, the weather radar usually outputs erroneous data and abnormal echo

images. Also, the anomalies are not easy to identify and control for the business

workers, so it is necessary to put forward a solution for the data quality control. At

present, 143 operational new generation weather radars are running in China, so it will

be a heavy workload to recognize anomalies from the huge amounts of radar data arti-

ficially. For these reasons, it is of great significance to achieve the automatic identifica-

tion of abnormal echo images from the radar data.

In terms of detecting anomalies of weather radar echoes, many scholars have done

much work. Some of them achieve the identification based on classical image
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processing methods. For example, Chen et al. [1] put forward a set of method to deal

with the abnormal radar echo through extracting feature of texture. Weijer and Schmid

[2] extended the description of image features with color information, so as to better

accomplish feature extraction. However, the main drawback of these methods is com-

plicated and inefficient. The other scholars prefer applying the artificial intelligence

(AI) [3] algorithm to identify the anomalies. For instance, Nan and Chong [4] accom-

plished the automatic recognition of radar echo by means of traditional machine learn-

ing, but its recognition efficiency is not very high.

In 2006, Geoffrey Hinton firstly proposed the concept of deep learning [5] and

pointed out that it is a set of algorithms in machine learning based on learning repre-

sentations of data. Deep models included convolutional neural network (CNN), stacked

auto-encoder (SAE), deep belief network (DBN), etc. For the past few years, deep learn-

ing has been widely used in image processing because it requires less human

intervention.

In this paper, we propose a new method combining the theory of classical image pro-

cessing and deep learning to realize automatic identification of radar anomaly products,

and this method is suitable for all weather radars. We utilize a deep learning frame-

work—SAE—due to its superiority in feature representation. In addition, the integra-

tion projection theory [6, 7] is performed to extract features, which improves

computing speed and recognition rate.

2 Data
The radar echo images used in this article were acquired from different weather sta-

tions across China.

The abnormal radar echo images were mainly divided into three types, namely as

super refraction, arc shape, and radial shape. All of the training sample data are 800

pieces, including 226 pieces of normal radar echo images and 574 pieces abnormal

radar echo images, among which 175 pieces are super refraction, 173 pieces are in the

shape of arc, and 226 pieces are in shape of radial. The size of each piece was 460 ×

460 pixels. Also, it is worthy that the ratio of numbers of four kinds of radar echo im-

ages is about 1.3:1:1:1.3, and there is no much difference among them, which will not

lead to the phenomenon of over-fitting.

Figure 1 a is the example in super refraction, b is the example in arc shape, and c is

the example in radial shape. In order to make a better and clearer illustration, the

Fig. 1 Examples of abnormal radar echo images
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samples listed above are easy to distinguish, but in fact the majority of the abnormal

echo images are hard to tell the difference, especially the kinds of super refraction.

3 Methods
3.1 The general framework of algorithm

The goal of this paper is to achieve detecting and classifying the abnormal radar echo

images automatically, and we will combine the traditional image processing and deep

learning to realize it. The flow chart of new algorithm is shown in Fig. 2.

As is shown in Fig. 2, the original abnormal radar echo images are first through a me-

dian filter and then converted into log-polar coordinates [8] from Descartes coordi-

nates. Afterwards, the pictures in log-polar coordinates will be conducted integration

projection, the results of which will be as the inputs of SAE, a deep learning model.

After training by SAE, we can get the results of classification.

3.2 Coordinate transformation

As is mentioned above, the first step of whole algorithm is coordinate transformation,

changing the picture into log-polar coordinates.

The idea of showing the image in the perspective of log-polar coordinates is inspired

from the biological vision system. The so-called log-polar coordinate is a two-

dimensional coordinate system, which is just based on the polar coordinate and in-

creases the “log”, namely the log operation. In this coordinate system, the coordinate of

a point is decided by a real pair (ρ, θ).

ρ ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
θ ¼ tan − 1 y=xð Þ

�
ð1Þ

where ρ is the logarithm of the distance between this point and a particular point

(the origin), and θ is the angle between a reference line (such as the X axis) and the

straight line which touches this point and the origin.

The application of log-polar coordinate in image processing is becoming more and

more extensive. The logarithmic polar coordinates can bring more convenience than

Descartes rectangular coordinate system in image feature extraction. In order to illus-

trate it better, we took an abnormal echo image as the experimental sample, making

descriptions from the perspective of image rotation [9].

Figure 3 shows the pictures before rotation, including the picture (a) in Cartesian co-

ordinate system and the picture (b) in log-polar coordinate system. Figure 4 shows the

results rotated back 90° clockwise based on Fig. 3. It can be observed that there is a

greater change for the picture in Cartesian coordinate system than that in log-polar co-

ordinate system.

In order to further show the characteristic on resisting rotation of image feature

under the log-polar coordinate system, we performed quantify analysis of this charac-

teristic by obtaining the Zernike moment [10] which usually can be treated as the fea-

ture to describe the object shape. In order to define the Zernike moment, the concept

of Zernike functions will be introduced. The (p, q) order Zernike function [11] is de-

fined as
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Fig. 2 Flow chart of proposed method
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Vpq x; yð Þ ¼ Rpq ρð Þ exp jqθð Þ; x2 þ y2≤1 ð2Þ

where ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance between the origin and the pixel (x, y) and θ =

arctan(y/x) is the angle between the vector and the x axis. In (2), Rpq(ρ) is a polynomial

in ρ of degree p ≥ 0, containing no power of ρ lower than |q|. The integer q is positive,

negative, or zero, and it must satisfy

qj j≤p ð3Þ

where p − |q| is an even number.

The orthogonality relation for {Vpq(x, y)} is

Fig. 3 The pictures before rotation
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Z Z
D

V �
pq x; yð ÞVp0q0 x; yð Þdxdy ¼ π

pþ 1
δpp0δqq0 ð4Þ

where δpp' = 1 if p = p' and 0 otherwise.

Due to the orthogonality and completeness of {Vpq(x, y)}, any square integrable image

function f(x, y) can be defined as follows:

f x; yð Þ ¼
X∞
p¼0

Xp
q¼ − p

τpApqVpq x; yð Þ; p − qj j ¼ even ð5Þ

where τp is a constant, and

Fig. 4 The pictures after rotation
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τp ¼ pþ 1
π

ð6Þ

Thus, the Zernike moment Apq is as follows:

Apq ¼
Z Z

D

f x; yð ÞV �
pq x; yð Þdxdy ð7Þ

Table 1 shows the Zernike moment values of the original and rotated images in two

coordinates system.

The normalized value in Table 1 is the result of Zernike moment normalizing by

maximum, and the difference value is the result of subtraction by normalized values be-

tween adjacent rotation angles.

As is shown in Table 1, the difference values respectively are 13%, 1%, 1%, and 14%

on the condition that the rotation angles are 30°, 45°, 60°, and 90° under the log-polar

coordinates. And the difference values respectively are 35%, 4%, 11%, and 9% under the

Cartesian coordinate system. It can be seen that the changes of Zernike moment are

smaller in log-polar coordinate system than that in Cartesian coordinate system. More-

over, more samples have been tested for validation. Hence, the coordinate transform-

ation is necessary before detecting and classifying the abnormal radar echo images.

3.3 Integration projection

After achieving the coordinate transformation, the second step is to extract the image

feature by integration projection for SAE model training. Its theory is as follows: as-

suming that I(x, y) is the gray value of one point (x, y), the functions of vertical and

horizontal integration projection are as follows:

Sv xð Þ ¼
Z y2

y1

I x; yð Þdy

Sh yð Þ ¼
Z x2

x1

I x; yð Þdx
ð8Þ

We employed integration projection in two directions to ensure better expression of

the feature of images after coordinate transformation. Thus, we can get two features of

each image for SAE training.

Table 1 Comparison of Zernike moment between the original and rotated images in two
coordinates system

Image feature Original
image

Rotation angle (°)

30 45 60 90

Value in log-polar coordinate system

Zernike moment 1,775,000 1,543,900 1,563,000 1,578,700 1,325,600

Normalized value 1 0.87 0.88 0.89 0.75

Difference value 0.13 − 0.01 − 0.01 0.14

Value in Cartesian coordinate system

Zernike moment 5,257,300 3,423,600 3,188,100 3,748,300 3,298,300

Normalized value 1 0.65 0.61 0.71 0.63

Difference value 0.35 0.04 − 0.11 0.09
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Figures 5, 6, 7, and 8 show examples of integration projection. The left one is the re-

sult of projection in horizontal direction, and the right one is the result of projection in

vertical direction. Large amounts of experimental results demonstrate that different

types of abnormal radar echo images have different waveform characteristics. In terms

of the projection results in horizontal direction, the morphological characteristic of this

four types follow the different function rules. But as for the projections results in verti-

cal direction, the difference between images in arc shape and in radial shape is pretty

small, which need automatic learning algorithm to extract representation.

3.4 Stacked auto-encoder (SAE)

Bengio [3] has shown that a deep or hierarchical architecture is useful to find highly

non-linear and complex patterns in data. Motivated by the study, in this paper, we con-

sider a SAE, in which an auto-encoder (AE) becomes a building block, for a latent fea-

ture representation [12] to recognize anomalies in radar echo images. Also, one of the

most important peculiarities of SAE is to find highly non-linear and complicated rela-

tions among input features.

An auto-encoder is a neural network which can reproduce the input signals as far as

possible. It is defined by three layers: input layer, hidden layer, and output layer. Multi-

layer AEs is called Stacked Auto-Encoders (SAEs), which is one type of deep learning

models we used. We constructed the model utilizing cascaded auto-encoders, taking

the outputs of the hidden unit of the lower layer as the input to the upper layer’s input

units.

The SAE model consists of two parts: encoders and decoders. The encoding part of

SAE maps the original feature through a hierarchical representation to a low dimen-

sional compressed representation [13, 14]. Let DH and DI denote, respectively, the

number of hidden and input units in a neural network. Given a set of training samples,

X ¼ fxi∈RDIgNi¼1. Let ϕ(x) be a non-linear activation function in this case:

ϕ xð Þ ¼ 2
1þ e − 2x

− 1 ð9Þ

So the latent representation yi through ϕ(x) is as follows:

Fig. 5 Example of integration projection based on normal echo images

Yang et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:177 Page 8 of 15



yi xð Þ ¼ ϕ w0 þ
XN
i¼1

wixi

 !
ð10Þ

which can also be written

yi Xð Þ ¼ ϕ wXT
� � ð11Þ

A layer in the network consists of N nodes

y Xð Þ ¼ ϕ WXT
� � ð12Þ

where W is an encoding weight matrix.

For the decoding part, it is composed of two layers: the hidden layer and output layer.

The output layer has a linear activation function, thus

y Xð Þ ¼ Wdϕ WeXð Þ ð13Þ

where We is the parameters of the encoding layer, and Wd is the parameters of the de-

coding layer.

Let ESAE and DSAE be the encoder respective decoder parts of the SAE model; then,

the reconstruction of a sample xn is defined as

Fig. 6 Example of integration projection based on images with super refraction

Fig. 7 Example of integration projection based on images in arc shape
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x̂n ¼ DSAE∘ESAE xnð Þ ð14Þ

where ∘ is a function composition operator. Let en be the error of a sample xn, thus

en ¼ xn − x̂n ð15Þ

The mean-square error is defined as

ε ¼ 1
N

XN
n¼1

enk k22 ð16Þ

The mean-square error ε can indicate the performance of the SAE model.

Figure 9 shows the SAE model used in this study with three auto-encoders stacked

hierarchically. It is worth noting that the number of units in the input layer is equal to

the dimension of the input feature vector. In addition, the number of hidden units can

be determined according to the input, but it better be larger than the dimension of the

input. Here, we set up three hidden layers. For the SAE model, it includes two parts:

stacked auto-encoder and softmax classifier [15]. The stacked auto-encoder can realize

encoding and decoding automatically, and the softmax classifier is equal to a neural

network.

For the traditional neural network, its mechanism of training parameters including

the weight matrices and the biases is back-propagation, which turns out to be a failure

for the deep network due to its falling into a poor local optimum easily. However, the

SAE model uses a greedy layer-wise learning to train the parameters. The key idea of

this algorithm is to train one layer at a time by maximizing the variational lower bound

[5]. That is to say, the result of the lth hidden layer is treated as the input for (l + 1)-th

hidden layer.

Focusing on the ultimate goal to classify the abnormal radar echo images, we

optimize the deep network in a supervised manner. In order for that, we stack an out-

put layer on the top of the SAE model, as is shown in Fig. 9. This top layer is used to

represent the class-label of the input, and it is so-called softmax classifier, which trains

the network by back-propagation with gradient descent. The supervised optimization is

called “finetuning”, which can reduce the risk of falling into local poor optimum.

Table 2 is the algorithm summary of a stacked auto-encoder.

Fig. 8 Example of integration projection based on images in radial shape
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4 Experiments and results
The transformation and integration algorithm in this paper were implemented by in-

house code through MATLAB 2014a. And the SAE model was implemented based on

achievement by Palm in 2012 [16].

A critical problem for classifier design is feature extraction and selection. Saberian

and Vasconcelos proposed an algorithm named SOP-Boost [17], which was based on

boosting and a pool of simple features, to achieve classification, and showed the super-

ior performance over previous boosting methods. Thus, it was necessary for us to make

comparisons between the two classifiers: SAE and SOP-Boost. As is well-known, there

are two standards—recognition accuracy and computation speed—to judge whether an

algorithm is good or not. So we will make two groups of comparison both of them.

4.1 The recognition accuracy

There are many methods of feature extraction in image processing, such as the

methods based on pixels color, texture, shape, and so on. In order to highlight the su-

periority of integration projection, a method of feature extraction used in this paper,

Fig. 9 SAE model

Table 2 The algorithm of a stacked auto-encoder

Input: train pictures after integral projection: X, train labels: L

Output: weight matrices: fWh
1

∧

g
Hþ1

h¼1 , biases: fWh
0

∧

g
Hþ1

h¼1 /*H: number of hidden layers*/

Step 1: the training of hidden layers:

① Initialization: Y0 = X

② Greedy layer-wise training (h ∈ {1,…, H})

- Acquire the parameters fWh
1 ;W

h
0g for the h-th hidden layer

- Yh ¼ f ðWh
1Yh − 1 þWh

0Þ
Step 2: fine-tuning the whole network:

① Initialization:fWh
1

∧

¼ Wh
1 ;W

h
0

∧

¼ Wh
0g

H

h¼1; fW
∧ Hþ1

1 ;W
∧ Hþ1

0 g=random
② Back-propagation with a gradient-descent theory
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we also have made a detailed comparison of all these methods. Tables 3 and 4 show

the classification results of five feature extraction methods in the recognition mode of

SOP-Boost and SAE, respectively.

The color method is based on color histogram of CBIR_colorhist, totally 256.

The texture method is to extract the features of radar echoes by texture, and its

dimension is 1 × 256. The color + texture method realizes the feature extraction

by using CBIR_colorhist + texture. As for the color + texture + shape method, it

uses three characteristics of color, texture, and shape, and its dimension is 1 ×

576.

Both the results of Tables 3 and 4 indicate that the recognition rate using method of

integral projection is superior to that of other methods, in either SOP-Boost or SAE. In

terms of the original picture, which is without any feature extraction in advance, the

rates respectively are 55% and 77.59%. Therefore, for radar echo pictures, it really

shows, using integral projection to extract feature is more efficient and has higher rec-

ognition rate than the other methods. Also, in the aspect of choosing classifier, the SAE

model does better than SOP-Boost, and the former’s identification rate is about 3%

higher than the latter’s.

Besides, we also select 550 pictures of abnormal radar echo, including 150 pieces of

normal images, 120 pieces of super refraction, 160 pieces of arc shape, and 120 pieces

of radial shape, to test the recognition accuracy of the algorithm combining integral

projection and SAE. Table 5 shows the results.

The testing samples above are non-repetitive with the training samples. It can be seen

that the method proposed in this paper has high recognition rate for all types of radar

echo pictures. Among them, the recognition rate for super refraction can reach 98.33%,

the rate for pictures in arc shape is 96.25% and the rate for pictures in radial shape is

91.67%. The average of them is 95.41%.

In conclusion, the algorithm come up with by this paper to detect and classify the

radar echo pictures performs very well on the recognition accuracy.

Table 3 The recognition accuracy using different methods of feature extraction in SOP-Boost

Method of feature extraction Recognition accuracy

None (original picture) 55.00%

Color 14.55%

Texture 20.00%

Color + texture 14.55%

Color + texture + shape 18.18%

Integral projection 92.97%

Table 4 The recognition accuracy using different methods of feature extraction in SAE

Method of feature extraction Recognition accuracy

None (original picture) 77.59%

Color 23.27%

Texture 23.71%

Color + texture 24.03%

Color + texture + shape 23.63%

Integral projection 95.15%
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4.2 The comparison of computation speed

We also conduct several experiments using training samples to see the results of com-

putation speed for all the methods both SAE model and SOP-Boost. Table 6 displays

the comparison of computation time, and each of computation time is the average of

multiple results.

We can see from Table 6, for SAE mode, the computation time without feature ex-

traction is about 4 h, and that of integration projection is just 2 min. Obviously, the lat-

ter’s computation speed is 120 times faster than the former’s. Also, we can see that, the

computation time of SOP-Boost respectively are 3 min without feature extraction, and

1min using integration projection. It is clear that the computation speed using method

of integration projection for SAE mode is almost as good as that of SOP-Boost. Thus,

in the case of recognition rate and computation speed being taken into account at the

same time, the SAE model is fairly satisfactory.

5 Summary and conclusions
In this work, we propose an abnormal radar echoes recognition method combining the

theory of image processing and deep learning. The results of the experiments show the

proposed method is really effective in recognizing the anomalies of radar echo images.

Furthermore, the method also overcomes the shortcoming that the traditional feature

extraction methods are not enough to describe the radar echo pictures’ information in

detail, and it significantly improves the recognition rate and computation speed. Also,

we compare it with SOP-Boost. As it turns out that the proposed method performs bet-

ter than SOP-Boost in recognition accuracy, and its computation speed is satisfactory

as well.

However, there still exist several things which need to be improved. First, in order to

further improve the recognition performance, we can optimize the feature of pictures

on the basis of integral projection, such as the size or number of the wave peak and

trough, the slope of the waveform, and so on. Second, we only do the analysis of three

kinds of abnormal radar echoes, which cannot meet the demand of locating the abnor-

mal part of radar. Thus, the more types of radar echoes will be studied in following re-

search. Finally, with the development of deep learning, we can also apply the more

efficient models to recognition and classification in the future, which will perhaps

achieve a better result.

Table 5 The recognition accuracy of testing samples

Normal Super refraction Arc shape Radial shape

Sample number 150 120 160 120

Correct number of recognition 143 118 154 110

Recognition rate 95.33% 98.33% 96.25% 91.67%

Table 6 The comparison of computation time

Recognition mode Method of feature extraction Computation time

SAE None (original picture) 4 h

Integral projection 2 min

SOP-Boost None (original picture) 3 min

Integral projection 1 min
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