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Abstract

In multi-scale geometric analysis (MGA)-based fusion methods for infrared and visible
images, adopting the same representation for the two types of images will result in
the non-obvious thermal radiation target in the fused image, which can hardly be
distinguished from the background. To solve the problem, a novel fusion algorithm
based on nonlinear enhancement and non-subsampled shearlet transform (NSST)
decomposition is proposed. Firstly, NSST is used to decompose the two source
images into low- and high-frequency sub-bands. Then, the wavelet transform (WT) is
used to decompose high-frequency sub-bands to obtain approximate sub-bands
and directional detail sub-bands. The “average” fusion rule is performed for fusion for
approximate sub-bands. And the “max-absolute” fusion rule is performed for fusion
for directional detail sub-bands. The inverse WT is used to reconstruct the high-
frequency sub-bands. To highlight the thermal radiation target, we construct a non-
linear transform function to determine the fusion weight of low-frequency sub-
bands, and whose parameters can be further adjusted to meet different fusion
requirements. Finally, the inverse NSST is used to reconstruct the fused image. The
experimental results show that the proposed method can simultaneously enhance
the thermal target in infrared images and preserve the texture details in visible
images, and which is competitive with or even superior to the state-of-the-art fusion
methods in terms of both visual and quantitative evaluations.

Keywords: Image fusion, Non-sampled shearlet transform, Infrared and visible image,
Nonlinear enhancement, Fusion weight

1 Introduction
Image fusion technology, which aims to combine images obtained from different sen-

sors to create a single and rich fused image [1], has been widely used in medical im-

aging [2, 3], remote sensing [4–6], object recognition [7, 8], and detection [9]. Among

the combination of different types of images, infrared and visible image fusion has

attracted increasing attention [10]. The infrared images record the thermal radiation of

the scene, thus, the target in the infrared images is prominent and obvious. However,

the infrared images have less detail information, low contrast, poor visual effects, and

poor imaging performance. In contrast, the visible images can provide abundant detail
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information, while the target will be inconspicuous and easily influenced by smoke, bad

weather conditions, and other factors. Therefore, fusion of the two types of the images

can compensate for the insufficient imaging competence of infrared and visible sensors

[11]. The final fused image can possess clearer scene information as well as better tar-

get characteristics [12].

There are seven main fusion methods: multi-scale geometric analysis (MGA)-based,

sparse representation-based [13–15], neural network-based [16, 17], subspace-based

[18], saliency-based methods [19], hybrid models [20], and other methods. Among

them, MGA-based methods are the most popular. MGA-based methods assume that

the images can be represented by different coefficients in different scale. These

methods decompose the source images into low- and high-component bands, combine

the corresponding bands with specific fusion rules, and reconstruct the fused image

with the inverse MGA transform [21]. The key to MGA-based methods is the MGA

transform, which decides the amount of the useful information that can be extracted

from source images and integrated in the fused image. Popular transforms used for de-

composition and reconstruction include wavelet transform [22] (WT), wedgelet trans-

form [23], curvelet transform [24, 25], contourlet transform [26], NSCT [27, 28],

shearlet transform [29] (ST), non-subsampled shearlet transform [30] (NSST), and so

on. Due to the characteristics of shift-invariant, high sensitivity, strong directivity, fast

operation speed, and multi-directional processing, NSST has been widely used in the

image fusion [31]. Many researches have shown that NSST is more consistent with hu-

man visual characteristics than other MGA transforms, and the performance can make

the fused images have better visual effects [32]. However, it may be inappropriate for

the infrared and visible image fusion. In infrared images, the target information is sig-

nificant and easy to detect and recognize. While in visible images, the detailed informa-

tion is mainly provided by gradients. Therefore, adopting the same representation for

the two types of images will cause the thermal radiation target inconspicuous, which

can hardly be distinguished from the background. In MGA-based fusion methods, it is

difficult to keep the thermal radiation in infrared images and appearance information

in visible images simultaneously.

To overcome the problem, we proposed a new fusion algorithm based on nonlinear

enhancement and NSST decomposition for the infrared and visible images. Firstly, the

NSST is used to decompose the two source images into low- and high-frequency sub-

bands. Then, the high-frequency sub-bands are fused with WT-based method. To high-

light the target, we construct a non-linear transform function to determine the fusion

weight of low-frequency sub-bands, and whose parameters can be further adjusted to

meet different fusion requirements. Finally, the inverse NSST is used to reconstruct the

fused image. The experiments demonstrate that the proposed method can not only en-

hance the thermal target in infrared images, but also preserve the texture details in vis-

ible images. The presented method is competitive with or even superior to other

methods in terms of both visual and quantitative evaluations.

The rest of this paper is organized as follows. The principle theoretical base and

implementation steps of NSST are reviewed in Section 2. The details of the pro-

posed image fusion method are proposed in Section 3. Experimental results and

comparisons are presented in Section 4. The main conclusion of this paper is

drawn in Section 5.
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2 Related works
NSST is one of the most suitable multi-scale geometric analysis tools for fusion appli-

cations. The NSST provides an elegant sparse image representation with edges and

much detail information. It does not introduce artifacts or noise when the inverse

NSST is performed. In addition, the shearlet coefficients are well-localized in tight

frames ranging at various locations, scales with anisotropic orientation. This achieves a

successful fusion process and produces higher image quality and more clearness of

image details and edges [33].

2.1 Basic principle of NSST

The shearlet construction is based on the non-sampled pyramid filter banks that pro-

vide the multi-scale decomposition and directional filtering generated using shear

matrix that provides multi-directional localization. When the dimension n = 2, the af-

fine system with synthetic expansion is AAB(ψ) [10].

AAB ψð Þ ¼ ψ j;l;k xð Þ ¼ detAj j j2ψ BlAjx − k
� �

: j; l∈Z; k∈Z2
n o

ð1Þ

where ψ ∈ L2(R2), A and B are 2 × 2 invertible matrices and |detB| = 1. If AAB(ψ)

forms a Parseval tight framework for L2(R2), the elements of the system are called com-

posite wavelets. For any f ∈ L2(R2), there is

X
j;k;l

< f ;ψ j;l;k >
��� ���2 ¼ fk k2 ð2Þ

Among them, matrix Aj and Blare respectively associated with scale and geometric

transformations, such as rotation and shear operations.

Where Aa ¼ a 0
0

ffiffiffi
a

p
� �

, Bs ¼ 1 s
0 1

� �
, the system can be shown as follows:

ψast xð Þ ¼ a −
3
4
ψ A − 1

a x − t
� �

; a∈Rþ; s∈R; t∈R2

� 	
ð3Þ

Equation (3) is a shearlet system, and ψast(x) is a shearlet.

Figure 1 shows the tiling of the frequency plane induced by the shearlets and fre-

quency supports of shearlet elements. It can be seen from Fig. 1 that each element

ψ̂ j;l;kðxÞ is supported on a pair of trapezoidal pairs with the size of about 2j × 22j, and

the direction is along a straight line with a slope of l2−j.

2.2 Implementation steps

The NSST can be realized through two steps:

(1) Multi-scale decomposition. The nonsubsampled pyramid (NSP) filter bank de-

composes each source image into a set of high- and low-frequency sub-images to attain

multi-resolution decomposition. Firstly, the source image is decomposed into the low-

and high-frequency coefficients with NSP. Then, the NSP decomposition of each layer

will iterate on the low-frequency components obtained by the upper layer decompos-

ition to get the singular points. Without the down-sampling operation, the sub-band

images will have the same size as the source image. Finally, for j level decomposition,

we can obtain a low-pass image and j band-pass images.
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(2) Directional localization. The shearlet filter bank decomposes these high-frequency

sub-images to attain multi-direction decomposition. Firstly, the pseudo polarization co-

ordinates are mapped to Cartesian coordinates. Then, the “Meyer” wavelet is used to

construct window function and generate shearlet filters. Finally, the sub-band image is

convoluted with “Meyer” window function to obtain the direction sub-band images.

The two-level decomposition structure is shown in Fig. 2. The NSP decomposes the

source image f into a low-pass filtered image f 1a and a high pass filtered image f 1d . In

each iteration, the NSP decomposes the low-pass filtered image from the upper layer

until the specified number of decomposition layers is reached. Finally, a low-pass low-

frequency image and a series of high-frequency images are obtained.

3 Proposed method
In this section, we introduce the process of the proposed method and discuss the set-

ting of parameters. The low- and high-frequency components obtained from the NSST

decomposition represent different feature information. For example, the low-frequency

components carry the approximate features of the source image, and the high-

frequency components carry the detailed features. The approximate parts of images

provide more visually significant information and contrast information. The detailed

parts of images provide more contour and edges information. Therefore, we should use

different fusion rules to fuse the low- and high-frequency components. According to

the stage of image data to be fused and the degree of information extraction in the fu-

sion system, image fusion is divided into three levels: pixel level, feature level, and deci-

sion level. The proposed method focuses on the pixel level. The specific fusion scheme

is shown in Fig. 3. The steps of proposed method are as follows:

Step 1: Decompose the infrared and visible images with NSST into low- and high-

frequency coefficients.

Step 2: Fuse low-frequency coefficients based on nonlinear enhancement algorithm.

Fig 1 The tiling of the frequency plane induced by the shearlet and frequency support of shearlet elements
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Fig. 3 The diagram of fusion scheme

Fig. 2 Two level decomposition diagram of NSST
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Step 3: Fuse high-frequency coefficients based on WT-based method.

Step 4: Apply inverse NSST to obtain the fused image.

3.1 Low-frequency sub-band fusion

The low-frequency components reflect the contour information of the image, which

contain a lot of energy information of the original image [34]. Weighted average

method is commonly used to fuse low-frequency sub-bands; however, unreasonable fu-

sion weight will cause loss of source image information or poor image performance.

We introduce a fusion strategy that construct a nonlinear transform function to deter-

mine the fusion weight of the low-frequency sub-bands to address the problems.

In infrared images, the target information is significant. Due to the large gray values,

the target is easy to detect and recognize. In order to highlight the target in the fused

image, we extract the coefficients in the low-frequency component of the infrared

image to determine the low-frequency fusion weight.

Each coefficient of the low-frequency components takes the absolute value as follows:

R ¼ LFCIRj j ð4Þ

Where LFCIR represents the low-frequency sub-band of the infrared image after de-

composition, R represents the significant infrared characteristic distribution. Rmean

means the average of the LFCIR. When R is larger than Rmean, it can be considered as a

bright point; when R is smaller than Rmean, it can be considered as a dark point. The

bright points are regarded as the target, while the dark points are regarded as back-

grounds. In order to highlight the target, a nonlinear transform function is introduced

to control the degree of the enhancement. The nonlinear transform function is as

follows:

S λð Þ ¼ 1 −
1

1þ R
Rmean


 �λ ð5Þ

where the parameter λ belongs to (0,∞).

The low-frequency information fusion weight can be expressed as:

CIR ¼ S λð Þ ð6Þ

CVIS ¼ 1 −CIR ð7Þ

Where CIR is the fusion weight of the infrared image, CVIS is the weight of visible

image, and they both belong to [0, 1].

As shown in Eqs. 5–7, the parameter λ directly affects the fusion weight of the infrared

image. Therefore, we can adjust λ to control the proportion of the infrared features of the

fused image. Particularly, the larger the value of CIR, the more obvious the target is. To

strengthen the thermal radiation target, the value of CIR should be relatively large.

The final low-frequency sub-band fusion result can be obtained as follows:

LFC F ¼ CIR�LFCIR þ CVIS�LFCVIS ð8Þ

where LFC _ F represents the low-frequency component of the fused image. LFCVIS

represents the low-frequency component decomposed by visible images.
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3.2 High-frequency sub-band fusion

High-frequency components reflect detailed information, such as edges and contours of

the source image. To obtain more detailed information, we use the WT-based method

to fuse the high frequency sub-bands of the infrared and visible images. Firstly, the WT

is used to decompose high-frequency sub-bands to obtain approximate sub-bands

(LFCIR and LFCVIS) and directional detail sub-bands (HFCIR and HFCVIS). Here, Haar

wavelet is selected as the WT basis, and the decomposition layers are set to 1. Then,

the “average” fusion rule is performed for fusion for approximate sub-bands. The ap-

proximate sub-band fusion rule is defined as follows:

LFC F ¼ LFCIRj j þ LFCVISj j
2

ð9Þ

And the “max-absolute” fusion rule is performed for fusion for directional detail sub-

bands. The directional detail sub-band fusion rule can be expressed as follows:

HFC F ¼ HFCIR ; HFCIRj j > HFCVISj j
HFCVIS; otherwise

�
ð10Þ

where LFC _ F and HFC _ F represent the approximate and directional detail sub-bands

of high-frequency sub-band images.

Finally, the inverse WT is implemented on LFC _ F and HFC _ F to get the high-

frequency sub-bands of the fused image.

3.3 Analysis of parameter

In the nonlinear enhancement method, there is a main parameter which influence the

enhancement performance, namely, the parameter λ. In this section, we draw the curve

of the enhancement weight CIR under different parameter λ shown in Fig. 4. The inten-

sity of the target pixel in the fused image is determined by the value of CIR. The larger

the value of CIR, the more evident the target is.

Fig. 4 The curve under different parameter λ
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As shown in Fig. 4, the CIR curve with the the abscissa R (the gray level of the pixel)

is “S” type, which shows that the target pixels can obtain larger enhancement than that

of the background pixels. Moreover, the shape of CIR becomes steep when the param-

eter λ increases. Therefore, it is convenient to adjust λ to get different fusion result.

Figure 5 shows the fused images under the parameter λ of 5, 10, 30, 50, 100, and 200.

As seen in Fig. 5, the pixel intensity distribution of infrared images is strengthened with

the increase of λ. However, when λ reaches a certain degree, the distortion in the fused

image will occur. The parameter λ should be appropriately large to meet different fu-

sion requirements. In this paper, the value of λ is 10. The proposed algorithm is sum-

marized as Table 1.

4 Experimental results and discussion
4.1 Experimental scheme

To evaluate the performance of the proposed algorithm, two groups of simulation ex-

periments have been carried out. Firstly, we compare the proposed method with six

MGA-based methods. Then, we compare our method with other five advanced

methods. Finally, qualitative and quantitative analysis of experimental results is

achieved. The infrared and visible images to be fused are collected from TNO Image

Fusion Dataset. Our experiments are performed using MATLAB Code on a computer

with 2.6 Hz Intel Core CPU and 4 GB memory.

Fig. 5 Fused images under different parameter λ. a Infrared image; b visible image; c–h fused images at λ
= 5, λ = 10, λ = 30, λ = 50, λ = 100, λ = 200, respectively. The differences are highlighted in red rectangles
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4.2 Fusion quality evaluation

4.2.1 Subjective evaluation

The subjective evaluation methods assess the quality of the fused image according to

the evaluator’s own experience and feeling. To some extent, it is a relatively simple, dir-

ect, fast, and convenient method. However, the lower efficiency and poorer real-time

performance limit its practical applications. Table 2 shows the common used subjective

evaluation criteria.

4.2.2 Objective evaluation

According to the different subjects, the objective evaluation indicators of image fusion

quality can be divided into three categories: the characteristics of the fusion image it-

self, the relationship between the fusion image and the standard reference image, and

the relationship between the fusion image and the source images [10]. We use A, B,

and F to infrared, visible, and fused image, respectively, and R to be the ideal reference

image. Here are the five objective evaluation parameters we used.

(1) Entropy (E)

E can be directly used to measure the richness of image information. The larger the

E value, the better the fusion effects are. The calculation formula is shown in Eq. (11):

E ¼ −
XL − 1

i¼0

pi log2 pi ð11Þ

where L is the total number of gray levels of the image, and pi is the probability with

the gray value i in the image.

Table 1 Algorithmic module

The proposed algorithmic: Based on Nonlinear Enhancement and NSST Decomposition

Input: Infrared image IR, visible images VIS, parameter λ

Output: Fused image F

1. IR and VIS are decomposed into high- and low-frequency components by NSST.

2. The parameter λ set to 10; compute fusion weight CIR and CVIS by nonlinear function S(λ) (Eqs. 5–8).

3. Obtain fused low-frequency component LFCF using LFC _ F = CIR ∗ LFCIR + CVIS ∗ LFCVIS.

4. Fuse high-frequency components using WT-based method with “mean” and “maximum absolute” rules to
obtain fused high-frequency component HFCF.

5. Repeat 4 until all corresponding components are fused.

6. The final fused images F is obtained by inverse NSST.

Table 2 Subjective evaluation criteria

Score Quality level Obstruction level

5 Perfect Do not see the deterioration of image quality

4 Good Could see the deterioration of image quality, do not affect viewing

3 Ordinary See clearly the deterioration of image quality, affect viewing slightly

2 Bad Affect viewing

1 Worst Affect viewing seriously
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(2) Average gradient (AG)

AG is used to reflect the micro-detail contrast and texture variation in the image.

The larger the AG value, the more gradient information the fused image contains. The

calculation formula is shown in Eq. (12):

ΔG ¼ 1
M � N

XM
m¼1

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔF2

x m; nð Þ þ ΔF2
y m; nð Þ

2

s
ð12Þ

where ΔFx is the difference in the x direction of the fused image F, and ΔFy is the differ-

ence in the y direction.

(3) Standard deviation (SD)

SD is used to reflect the distribution of pixel gray values and the contrast of the fused

image. It is defined as follows:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � N

XM
m¼1

XN
n¼1

F m; nð Þ − F m; nð Þ� �2
vuut ð13Þ

(4) Spatial frequency (SF)

SF is used to reflect the overall activity of the image in the spatial domain. The solu-

tion of SF is defined in Eq. (16). The larger the SF, the better the fusion effects are.

RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � N

XM
m¼1

XN
n¼1

F m; nð Þ − F m; n − 1ð Þ½ �2
vuut ð14Þ

CF ¼ 1
M � N

XM
m¼1

XN
n¼1

F m; nð Þ − F m − 1; nð Þ½ �2 ð15Þ

SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF2 þ CF2

p
ð16Þ

where RF and CF are the row and column frequency of image respectively.

(5) Edge information retention (QAB/F)

QAB/F measures the amount of edge information that is transferred from the source

image to the fused image. QAB/F is defined as follows:

QAB=F ¼
P

∀m;nQ
AF
m;nw

A
m;n þ ABF

m;nw
B
m;nP

∀m;nw
A
m;n þ wB

m;n
ð17Þ

wA and wB denote the weight of the importance of infrared and visible images to the

fused image. QAF and QBF are calculated from the edges. A large QAB/Fmeans that con-

siderable edge information is transferred to the fused image. For a perfect fusion result,

QAB/F is 1.
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4.3 Experiments and results

4.3.1 Comparison with MGA-based methods

In the first group of simulation tests, we used the presented method to fuse five typical

infrared and visible images in the TNO datasets, namely, “Men in front of house,”

“Bunker,” “Sandpath,” “Kaptein_1123,” and “barbed_wire_2”. In addition, six MGA-

based methods are selected for comparison experiments, including WT [23], TEMST

[35], NSST with weighted average [36], NSST with WT [37], NSCT with WT [38], and

CURV with WT [39].

The key of MGA-based fusion schemes is the selection of the transforms. WT- and

CURV-based methods have block artifacts, reduce the contrast of the image, and can-

not capture abundant directional information of images. NSCT-based method can cap-

ture the geometry of image edges well, while the number of the directions at every level

is fixed. In NSST-based methods, the number of the directions can be set arbitrarily,

and thus the more detailed information can be obtained. But the more directions, the

longer running time is. We replaced LP with NSST in TEMST as a comparative

experiment.

In the proposed method, the pyramid filter for NSST is set as “maxflat,” the decom-

position level of NSST is set for 3, and the number of the directions is set for {4,4,4}.

The high-frequency sub-bands are decomposed into 1 level by WT (with the basis of

Harr). The results are shown in Fig. 6. The first two rows in Fig. 6 show the infrared

and visible images. The six remaining rows denote the fused images of our method,

TEMST, NSST with weighted average, WT, NSST with WT, NSCT with WT, and

CURV with WT. The subjective and objective evaluation parameters introduced earlier

are used to analyze the fusion results.

The above five assessment indicators (i.e., E, AG, SD, SF, and QAB/F) on the five typ-

ical infrared and visible images are shown in Fig. 7. The larger their values, the better

the fusion effects are.

4.3.2 Comparison with the state-of-the-art methods

In this part, seven typical infrared and visible images in the TNO datasets (i.e., men in

front of house, bunker, soldier_behind_smoke_1, Nato_camp_sequence, Kaptein_1123,

lake, and barbed_wire_1) are chosen to evaluate the effectiveness of the proposed

method. We compare the proposed method with other 5 advanced methods, including:

guided filtering-based weighted average technique (GF) [40], multi-resolution singular

value decomposition (MSVD) [41], fourth order partial differential equations (FPDE)

[42], different resolutions via total variation (DRTV) [43], and visual attention saliency

guided joint sparse representation (SGJSR) [44].

The fused images are shown in Fig. 8. The values of the five evaluations metrics on

the seven infrared and visible images are shown in Fig. 9.

4.3.3 Results and discussion

As seen in Figs. 6, 7, 8, and 9, the above 12 methods can implement the effective fusion

of infrared and visible images. In the other MGA-based methods, the fused image is

dark and the target is not prominent, which can be clearly seen from the sky in images

“Men in front of house” and “Kaptein_1123” in Fig. 6. It can be seen that the proposed
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method can achieve apparently and easily identifiable target information. In terms of

objective evaluation parameters, our proposed method is generally higher than other

methods as seen in Fig. 7. In short, the presented method in this paper is superior to

other MGA-based methods.

Compared with five advanced methods, the presented method can achieve the best

visual quality as shown in Fig. 8. However, analyzing the objective evaluation

Fig. 6 Fusion results on five typical infrared and visible images in the TNO datasets. a Men in front of
house. b Bunker. c Sandpath. d Kaptein_1123. e barbed_wire_2. From top to bottom: infrared image, visible
image, fused images of our method, TEMST, NSST with weighted average, WT, NSST with WT, NSCT with
WT, and CURV with WT
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Fig. 7 Comparison of five evaluation parameters, including E, AG, SD, QAB/F, and SF. The seven methods are
our method, TEMST, NSST with weighted average, WT, NSST with WT, NSCT with WT, and CURV with WT for
five pairs datasets
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parameters (i.e., E, AG, SD, SF, and QAB/F) as seen in Fig. 9, there is a fluctuation. Our

method cannot always get the highest values, but it can get the more stable image qual-

ity. In all, our method is competitive with the five advanced fusion methods.

5 Conclusions
In this study, we propose a new fusion algorithm for infrared and visible images based

on nonlinear enhancement and NSST decomposition. It can be demonstrated that this

algorithm can not only retain the texture details of the visible image, but also highlight

the targets in the infrared image. Compared with other MGA-based and advanced algo-

rithms, it is competitive or even superior in terms of qualitative and quantitative evalu-

ation. And the fusion performance is beneficial for target detection and tracking in

complex environments.

Abbreviations
MGA: Multi-scale geometric analysis; NSST: Non-subsampled shearlet transform; WT: Wavelet transform; CURV: Curvelet
transform; NSCT: Non-subsampled contourlet transform; TEMST: Target-enhanced multiscale transform decomposition;
GF: Guided filtering-based weighted average technique; MSVD: Multi-resolution singular value decomposition;
FPDE: Fourth order partial differential equations; DRTV: Different resolutions via total variation; SGJSR: Visual attention
saliency guided joint sparse representation

Fig. 8 Qualitative fused images on seven sets of typical infrared and visible images in the TNO_datasets. a Men
in front of house; b Bunker; c Soldier_behind_smoke_1; d Nato_camp_sequence; e Kaptein_1123; f Lake; g
Barbed_wire_1. From top to bottom: infrared image, visible image, the results of GF, MSVD, DRTV, SGJSR, FPDE,
and our method. We pick out a small area (i.e., the red rectangle) in each fusion result, enlarge, and put it on
the bottom
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Fig. 9 Comparison of five evaluation parameters, including E, AG, SD, QAB/F, and SF. The six methods are
GF, MSVD, DRTV, SGJSR, FPDE, and our method
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