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Abstract

In this paper, we study the issue of fair resource optimization for an unmanned aerial
vehicle (UAV)-enabled mobile edge computing (MEC) system with multi-carrier
non-orthogonal multiple access (MC-NOMA). A computation efficiency (CE)
optimization problem based on the max-min fairness principle under the partial
offloading mode is formulated by optimizing the subchannel assignment, the local
CPU frequency, and the transmission power jointly. The formulated problem belongs
to the non-convex mixed integer nonlinear programming (MINLP), that is NP-hard to
find the global optimal solution. Therefore, we design a polynomial-time algorithm
based on the big-M reformulation, the penalized sequential convex programming, and
the general Dinkelbach’s method, which can choose an arbitrary point as the initial
point and eventually converge to a feasible suboptimal solution. The proposed
algorithm framework can be also applied to computation offloading only mode.
Additionally, we derive the closed-form optimal solution under the local computing
only mode. Simulation results validate the convergence performance of the proposed
algorithm. Moreover, the proposed partial offloading mode with the CE maximization
scheme outperforms that with the computation bits (CB) maximization scheme with
respect to CE, and it can achieve higher CE than the benchmark computing modes.
Furthermore, the proposed MC-NOMA scheme can attain better CE performance than
the conventional OFDMA scheme.

Keywords: Unmanned aerial vehicle, Mobile edge computing, Non-orthogonal
multiple access, Fair resource allocation design, Computation efficiency

1 Introduction

In the past decade, the rapid growth of mobile communication business has promoted the
great progress of wireless communication and network technologies, which gives birth to
mobile cloud computing (MCC), i.e., allowing computing tasks to run remotely at cloud
data centers [1]. However, the user equipment (UE) is usually far away from the cloud data
center, which may result in a long time of data exchange between them. As a consequence,
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MCC is difficult to meet the computing service requirements of various real-time mobile
applications [2]. Recently, Internet of Things (IoT) has been applied to many aspects,
which can connect things via networks [3]. In contrast to the conventional MCC, mobile
edge computing (MEC) has potential wide application ranges for IoT as a newly emerging
technology [4]. The key idea of MEC is to decentralize computing servers at the wireless
network edge closing to UEs so as to improve the computation capability of UEs and
reduce the corresponding task delay and consumed energy greatly.

On the one hand, non-orthogonal multiple access (NOMA) is considered as a promising
multiple access scheme in the future wireless communication systems [5]. The funda-
mental concept of NOMA is to serve more than one UE in one orthogonal resource
block (ORB) by using superposition coding and multi-user detection technologies [6].
For instance, power-domain NOMA assigns different power levels to the UEs at the
transmitter and exploiting successive interference cancelation (SIC) technology to decode
overlapping signals at the receiver [7]. In [8], a NOMA-based resource allocation algo-
rithm was designed for a cluster-based cognitive industrial IoT. This is very different from
orthogonal multiple access (OMA) schemes, e.g., time division multiple access (TDMA),
orthogonal frequency division multiple access (OFDMA), which service one UE at most
in a time-domain ORB and a frequency-domain ORB, respectively.

However, the system complexity and decoding delay will become high if all users
are multiplexed in one ORB. To this end, multi-carrier NOMA (MC-NOMA), i.e., the
combination of NOMA and OFDMA, can be employed to meet the needs of massive con-
nectivity and improve the transmission efficiency in MEC systems [9-12], where all users
are divided into several NOMA groups and one NOMA group can occupy one ORB. In
[9], a MEC-NOMA technique was proposed to minimize the consumed energy of MEC
users, where the users can simultaneously upload their tasks via the uplink NOMA pro-
tocol. In [10], the total computation overhead minimization problem was investigated by
coalition formation game theory in a MC-NOMA based MEC system. Moreover, [11]
and [12] provided their separate theories and simulation results to the energy minimiza-
tion in MC-NOMA based MEC systems, which show the application of MC-NOMA
in MEC can improve the system performance greatly when compared to the OMA
counterpart.

On the other hand, unmanned aerial vehicle (UAV) has attracted a great quantity of
research interests in the wireless communication. The benefit of UAV as the aerial base
station (BS) is great when compared with the traditional ground BS, such as flexible move-
ment, high probability of line-of-sight (LoS) channel, and low cost and easy deployment.
Therefore, MEC servers can be carried to UAV for the purpose of providing flexible com-
puting services [13—18]. In [13], the Lyapunov optimization framework was invoked for
minimizing the average weighted consumed energy of a UAV-MEC system. In [14], the
resource optimization for maximizing computation rate was firstly studied in a wireless
powered UAV-MEC system. In [15], user association and path planning were studied in a
UAV-MEC system with energy restriction. In [16], a double deep Q-network based algo-
rithm was developed to maximize the system reward of a UAV-MEC network. Moreover,
[17] studied the sum-power optimization for a MEC system with several UAVs, which was
addressed by solving the decomposed subproblems iteratively. Besides, [18] minimized
the consumed energy of a UAV-MEC system, which can enable fairness among all the

users.
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It can be seen that the delay minimization, the energy consumption minimization, and
the computation bits (CB) maximization are the main focus of resource allocation in
MEC systems. However, with the rapid growth of communication business, the commu-
nication industry is becoming a major energy consumer. Against this background, it is
critically important to consider green communication so as to improve the efficiency of
resource utilization per joule. Particularly, it is suggested that future MEC pursue the
maximization of computation efficiency (CE), i.e., the ratio of the total CB to the asso-
ciated energy consumption [19-23]. In [19], the max-min CE optimization problem was
studied in a MEC system powered by wireless energy. In contrast to [19, 20] maximized
the weighted sum of CE in a MEC system. While TDMA is considered in both [19] and
[20, 21] and [22] extended the CE maximization frameworks to MEC networks under
NOMA and OFDMA, respectively. Furthermore, [23] aimed to maximize the CE of a
multi-UAV based MEC system.

Motivated by the above discussions, we study the CE optimization problem in a UAV-
MEC system with MC-NOMA, which is oriented towards computation-efficient massive
connections and flexible deployment in the future MEC network.

The rest of this paper is organized as follows. The system model and problem formu-
lation are presented in Section 2. The proposed CE optimization algorithm was detailed
in Section 3. Two benchmark computing modes are discussed in Section 4. The relevant
simulation results are provided in Section 5. Finally, the conclusion of this paper is made
in Section 6.

2 Method

In this paper, we focus on a computation-efficient UAV-enabled and MC-NOMA based
MEC system, where a UAV is fitted with a MEC server to supply computing services for
the ground UEs via the LoS connections. Besides, MC-NOMA is employed for the uplink
transmissions between all the UEs and the UAYV, in which all the UEs are divided into
several user groups without repetition, and the UEs in the same group can adopt uplink
NOMA to upload their tasks simultaneously to the UAV-MEC server in one ORB.

On this basis, we formulate the CE optimization problem based on the max-min
fairness principle under the partial offloading mode by optimizing the subchannel assign-
ment, the UE’s CPU frequency, and the transmission power jointly. Considering that the
formulated problem belongs to the non-convex mixed-integer nonlinear programming
(MINLP), we design a two-layer iterative algorithm based on the big-M reformulation, the
penalized sequential convex programming (SCP), and the general Dinkelbach’s method to
enjoy a polynomial-time complexity. The proposed algorithm can start from an arbitrary
point and eventually converge to a feasible suboptimal solution. Moreover, the other two
typical computing mode are discussed as benchmarks, including the local computing only
mode and the computation offloading only mode. Specially, the closed-form best optimal
solution is derived under the local computing only mode, while a suboptimal solution is
obtained using the above algorithm under the computation offloading only mode.

Finally, simulation results confirm that the proposed algorithm achieves good con-
vergence performance and is robust to random initial points. In addition, the proposed
CE maximization framework has obvious computation-efficient advantages over the CB
maximization framework under the partial offloading mode. Furthermore, the CE perfor-
mance of the partial offloading mode is superior to the benchmarks computing modes.
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Moreover, the MC-NOMA scheme exhibits higher CE than the OFDMA scheme in the
proposed UAV-MEC system.

3 System model and problem formulation

As illustrated in Fig. 1, we focus on a UAV-MEC system where one rotary-wing UAV with
an embedded MEC server provides computing services for K ground UEs denoted by
the set k € K = {1,2,...,K}, in which the UAV and all K UEs are each equipped with
one single-antenna. We construct a three-demission (3D) Cartesian coordinate model,
where the UAV and the kth UE are located at q, =[ X, Y, H] and qx =[x, %, 0], Vk € K,
respectively. As a result, the distance between the UAV and the kth UE is given by dy =
VX =202+ (Y — )2 +H2,Vk e K.

3.1 Communication model

In the proposed UAV-MEC system, the overall system bandwidth W is partitioned into N
orthogonal subchannels denoted by the set n € N' = {1,2,...,N} satisfying s Wy, =
W, where W, is the bandwidth of the nth subchannel. Besides, each subchannel is the
frequency-flat block fading channel, i.e., the subchannel remains unchanged during one
time block with duration 7' (T > 0). We assume the UAV knows the perfect channel state
information (CSI) of all subchannels as well as the computation information of all the
UEs. Moreover, it is assumed that all subchannels are each dominated by LoS links since
the altitude of the UAV is usually much higher than that of the UEs. Hence, by adopting
the commonly used free-space path loss model [13-18], the channel power gain on the
nth subchannel between the kth UE and the UAV can be modeled as

3 MEC
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Fig. 1 UAV-enabled MEC system model
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=Ko Ho (1)
A7 X —x)?+ (Y —y)? +H?

8k

where 1o represents the channel power gain at the reference distance dp = 1 m.

Particularly, one time block with duration T is composed of the following three stages.
In the first stage, MC-NOMA is invoked for the uplink transmissions between the
UEs and the UAYV, i.e., each orthogonal subchannel can accommodate multiple users by
employing NOMA. Specially, all the UEs are divided into different groups to upload their
tasks simultaneously to the UAV-MEC server, where different groups access different sub-
channels and the UEs in the same group occupy one subchannel via NOMA. In the second
stage, the UAV exploits SIC technique to decode the uploaded tasks from the UEs and
the UAV-MEC server computes the decoded tasks. Finally, the UAV transmits the task
results computed by the UAV-MEC sever to all the UEs in the third stage. Besides, each
UE can perform its local computing throughout the entire time block duration T Similar
to [19-23], we only consider the first stage due to the strong computational capability of
the UAV-MEC sever as well as the small data size of the computed results.

3.2 Local computing
For the local computing at the UEs, the total CB L}("C and total energy consumption E}(""’
of the kth UE during the entire time block T can be, respectively, expressed as [19-23]
LlOC — Lﬁ
k Ck '
ERC = pif2T, (2b)

(2a)

where Cj denotes the CPU cycles of computing 1-bit of input task of the kth UE, f;
(cycles/second) is the CPU frequency at the kth UE, and yi is the CPU capacitance
coefficient of the kth UE.

3.3 Computation offloading

To enable parallel execution, the proposed UAV-MEC system adopts the partial compu-
tation offloading mode, where the task of each UE can be divided into two parts, i.e., one
part computed locally at the UE and another part uploaded to the UAV-MEC sever.

Let px , denote the subchannel assignment indicator, Vk € K, n € N. Specially, pr,, = 1
if the kth UE is assigned to the nth subchannel, otherwise px,, = 0. According to the
uplink NOMA protocol, the received signal at the UAV on the nth subchannel can be
expressed as

K
Yn = Z pk,nmsk,n + zy, (3)
k=1
where s, represents the transmitted signal of the kth UE over the nth subchannel satis-
fying E{|sx , 12} = 1, Pk, is the corresponding transmission power, and z, stands for the
additive white Gaussian noise (AWGN) at the nth subchannel, i.e., z, ~ CN (0, 19 W},), in
which 7 denotes the single-sided power spectral density of AWGN.

On each subchannel, the SIC decoding order of the uplink NOMA is always from the
strong UE to the weak UE so as to avoid consuming significant transmission power for
compensating the path loss [24]. Then, the uplink offloading rate of the kth UE on the nth
subchannel is given by



Xu et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:178 Page 6 of 22

8k,nPk,n
Ry = Pk Whlo 1+ 1Pk,
’ o8 Y. ZinPinbin + noWy,
i€Sk
(4)
8k,nPk,nPk,n
= Wylog, | 1+
e Y. GinPinPin +noWy
iESk'n

where Sy, = {lC|gl',,, < Gkl # k} denotes the set of the UEs in the set K whose channel
power gain are worse than that of the kth UE.

Therefore, the number of offloaded bits of the kth UE on the nth subchannel can be
calculated as

LR = TRin (5)
and the corresponding consumed energy is

El?,ftg = PknbkbinT + Pk T, ©)

where & is the amplifier coefficient at the UE, and p, is the fixed circuit power consump-
tion for the computation offloading process at the UE.
According to [19] and [20], the CE of the kth user can be quantified as

N joff | rl
2n=1 Ly + ¢

N

M= N off  rloc
Zn:l El?,ffl + E}:)C (7)
N
Ry, Zn:l Ry + J%(

P SN prnbibin + Vi + Pk

3.4 Problem formulation

With the purpose of guaranteeing fairness for all the UEs, the subcarrier assignment
{0k.n}, the local CPU frequency {f; ,}, and the transmission power {py ,}, Vk € K,n € N,
are jointly optimized to maximize the minimum CE among all the UEs. Therefore, the CE
optimization problem based on the max-min fairness principle can be formulated as

max  min {ng} (8a)
{Pk,rzvpk,mfk,n} kek
s.t. Cr: Ry > RM™ Vk e K, (8b)
Co:Pp < PznaX,Vk ek, (8¢)
C3:0 <fi <SP Vk e K, (8d)
K
Ca: ) iy <MnVneN, (8e)
k=1
N
Cs: Y pin < LVkeK, (8)
n=1
Co: prn €1{0,1},Vk e K,n e N, (8g)

where er:‘i“ in the constraint C; is the minimum CB per second required by the kth UE,
P in the constraint C; denotes the maximum power consumption of the kth UE, f™**
in the constraint C3 denotes the maximum CPU frequency of the kth UE, the constraint
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C4 indicates that the nth subchannel can support at most M,, UEs, and the constraints Cs
and C ensure that one UE can occupy at most one subchannel.

4 Proposed computation efficiency optimization algorithm

It is clearly that the problem in (8) belongs to the non-convex MINLP, that is NP-hard
to find the global optimal solution in general. In this section, we design a polynomial-
time iterative algorithm based on the big-M reformulation, the penalized SCP, and the
generalized Dinkelbach’s method to obtain a feasible suboptimal solution of (8).

4.1 Big-M reformulation

Due to the product term py ,px , in (8), it is not easy to design an efficient algorithm for
solving (8). Fortunately, we can use the big-M reformulation to decompose the product
terms [25]. With the help of big-M reformulation, we first introduce auxiliary variables
Din = PrknPions Yk € K, n € N. Then, all the product terms pg ,,pr.,» in (8) will be replaced
with py ,, which yields

Nk
= ZRk,n'i'C*kk

~ Rk n=1
=== 9a
Mk B B (9a)
Cr: R = R, Vk € K, (9b)
Cy: Py < PP Vk e K, (9c)
where
% 8k nﬁk n
Ry, = Wiylo 1+ — (10a)
" n'062 Z GinPin + noWy
i€Skn
N
Py = Z ExBrn + VifE + Pk (10b)
n=1
Afterwards, we add the following constraints into (8):
C7: Pkn < PP pxm Yk e K, e N, (11a)
Cs :ﬁk,n Spk,nka ek,neN, (11b)
Co: Pk = Pin — (1 — Pk,n) P]r(nax,Vk ek,neN, (11¢)
C10 : Pin >0,Vke K,neN. (11d)
Moreover, we can rewrite the binary constraint Cg in its equivalent continuous form as
follows:
Cou:0< pin <LVkeK,neN, (12a)
K N
Cob: Y D (okn—0it,) <O (12b)
k=1 n=1

Therefore, we can reformulate (8) as the following equivalent problem:

max min{7y
® kekC {nk} (13)

st.  C1,C,C3,Ca,Cs,Coa, Copy C7 ~ Cio,
where © = { o, Py Piyns fims Yk € K,n € N}
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The big-M reformulation linearizes the term py ,,px ,, such that pg , is separated from
Pk.n» which helps to design an efficient CE optimization algorithm. Moreover, if the con-
straints Cg,, Cep, and C7 ~ Cio, are satisfied, then Cy is equivalent to C;, and C, is also
equivalent to Cy. Hereto, the original MINLP problem in (8) has been equivalently trans-
formed into a more tractable form in (13). However, the transformed problem in (13)
still belongs to the non-convex max-min fractional programming (MMFP), which can
not be addressed directly. To this end, we combine fractional programming theory with
sequential convex programming (SCP) [26, 27].

4.2 Sequential convex programming
In particular, the core idea of SCP is to convert a non-convex optimization problem into a
series of convex optimization problems and solve them iteratively, where the non-convex
terms in each iteration will be substituted by appropriate inner convex terms [28].

We note that f?k,, in (13) can be expressed as the subtraction of two concave functions
i?k,,,l and i?k,,,,z, ie.,

Rk,n = Rk,n,l - Rk,n,Z

= Wylog, Z ZinDin + Genbion + noWn
i€Skn (14:)

- Wnlogz Z gi,n[?i,n +noWy

i€Sk

At the tth iteration (¢ > 1) of SCP, we can obtain an upper bound R/(:L 5 of i?k,n,z by using
its first-order Taylor expansion, which is expressed as

o H(t ~(t—1
Rk,}’l,Z =< R]((,L,z == Wnlog2 Z gi,npg,n ) + I’loWn

i€Skn
~ ~(t—1
Y. Ein (Pi,n —P,(,n )> (15)
W, i€Skn
~(t—1 ’
In2 S b+ noW,
i€Sk

where [95;_1) is the value of p; ,, at the (¢ — 1)th iteration of SCP. Similarly, we can obtain a

lower upper 5/5?, of p,%n by using its first-order Taylor expansion, which is expressed as

2
~(t t—1 t—1 t—1
PRz i = (o) + 200" (k= 0 "), (16)

where p,ﬁtn_l) is the value of py , at the (¢ — 1)th iteration of SCP. Furthermore, since the

function min{-} is increasing, we can obtain a lower bound f],(f) of 7j; at the tth iteration of

SCD i.e,,
N
7 ()
RO > (Rk,n,l - Rk,n,Z) + é%
~ ~(2) k n=1
ﬂki’?k=l~)7= N (17)
k ~
> Ebin + Vi + Pk
n=1
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As aresult, a convex approximation of (13) at the ¢th iteration of SCP can be cast as

max min i 70 }
Nk

(€] keK
- fi
ST 7 () i
st. Cr: HX:; (Rk,n,l - Rk,n,Z) + ka > R/r(nm,Vk ek,
C~2’ C37 C‘L» CS; C6a; (18)
~ K N
Cob : ZZ (,oky,, — ,5,5?1) <0O,VkeK,nelN,
k=1n=1
C7 ~ Cro.

4.3 Generalized Dinkelbach’s method
It can be observed that all the constraints in (18) are convex, i.e., the feasible region of
(18) is a convex set. In addition, for each 7, Yk € IC, its numerator is non-negative and
concave, meanwhile its denominator is positive and convex. Therefore, the problem in
(18) belongs to the convex MMFP, which can be efficiently addressed by the generalized
Dinkelbach’s method [26].

Let A* and ®* denote the optimal objective and the optimal solution of (18), respec-
tively, then

A* = max min { X ©) = min M . (19)
0  kek | Py (O) kek | Py (©%)

Moreover, ®* is the optimal solution of (18) if and only if the following condition is
satisfied: [26]

. () * 7
max min (R, (®) — A™P, (~)}
ax min R (©) — 1*P (0)

= min (R (0%) = wBi (@) (20)

=0.

Based on (20), we can transform (18) into its associated subtractive form as

max min ik/(:) - A(q_l)i’k}
(€] keK

st. C1,Ca,C3,Ca,Cs,Coar Copy C7 ~ Ci0,

(21)

where (21) is the problem to be solved at the gth iteration (¢ > 1) of the generalized
Dinkelbach’s method, and A4~V is the corresponding iterative parameter at the (g — 1)
iteration. At the gth iteration, we compute the optimal solution @@ of (21) for the fixed
1@=D | then we update A? by using the obtained ®@, i.e.,

RY (0@
7A@ = min L) . (22)
kek | Py (©@)

By solving (21) iteratively and setting a very small iteration tolerance ¢ > 0, e-optimal
solution ®* = ©@ of (18) is achieved if the following condition holds: [26]

<e. (23)

min { p;{t) (@w)) _aDp, <@<q))}
kekC
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Since the objective function in (18) is not smooth, we introduce a new auxiliary variable

given as

1 = min {f?l(f) - )\(qfl)i)k} . (24)
ke

Accordingly, the equivalent form of (18) can be expressed as:

max u
O,u
s.t. C_ll C~2) CB: C4) CS: C6a: C~6br C7 ~ ClOy (25)

Ci1: R — 2@ VP > vk e K.

Based on the above analysis, a two-layer iterative algorithm consisting of the outer
iterative procedure based on the SCP and the inner iterative procedure based on the gen-
eralized Dinkelbach’s method can be employed to obtain a feasible suboptimal solution of
(13). Nevertheless, the above algorithm requires a feasible point of (13) as the initial point.
If the above algorithm starts from a feasible point, then all the generated points will be
feasible; otherwise, it may fail at the first iteration due to the infeasibility [28]. However,
finding a feasible point in the non-convex feasible region of (13) is very hard. To avoid
this, we will integrate the penalized SCP [29] with the framework of the above algorithm,

which can start from an arbitrary point.

4.4 Penalized sequential convex programming

To ensure that a sequence of feasible solutions can be generated, the abovementioned SCP
needs a feasible initial point. Generally, an infeasible initial point misleads intermediate
solutions obtained by the iterative process, which often causes an incorrect local solution.
However, it is usually NP hard to find a feasible initial point for non-convex problems,
e.g., the CE optimization problem in (13). To avoid the above initialization requirement,
it is a good choice to adopt the penalized SCP. Specially, auxiliary variables are introduced
to relax all non-convex inequality constraints, and penalty parameters are added into the
objective function, so that we can randomly generate the initial point and then feasible
solutions can be gradually obtained with the increasing of iterations.

It can be found that only the constraints C; and Cg, are non-convex in (13). To this end,
we relax the constraint C; via slack variables $1.k (81,6 = 0,Vk € K) and the constraint Cg,
via a slack variable sy (s2 > 0). Then, the constraints C; and Cgy, in (25) are, respectively,
reformulated as

N
5 k
Cri ) (Runa = R) + 2 Jie vz Rk E K, (26a)

=1
K N
ZZ(,;M )gsg,VkelC,neJ\/'. (26b)
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In order to minimize the violations of non-convex constraints, we subtract the sum of the

slack variables from the objection function of (25). Therefore, (25) can be reformulated as

K
max u—7@D (Z Sik+ 52)

{©1,51 1,52} k=1
s.t. C1,Ca,C3,Ca, C5,Coar Copy C7 ~ Ca1, (27)
CIZ :Sl,k Z 0, Vk € ,Cr

Ci13:8 >0,

where (27) is the problem to be solved at the tth iteration of the penalized SCP, and 7~
is the corresponding penalty factor at the (¢ — 1)th iteration and is updated for the next
iteration by using the following equation:

7® = min [Mf(t_l), rmax} . (28)

Here, Tmayx denotes the upper bound of 7® so as to avoid numerical problems if ¥ is too
large and provide convergence if a feasible region is not found, and u is the predefined
increasing factor [29]. Moreover, existing optimization tools, like YALMIP [30], CVX [31],
CVXQUAD [32], can be used to solve the convex problem in (27).

In summary, we propose a CE optimization algorithm based on the big-M reformula-
tion, the penalized SCP, and the generalized Dinkelbach’s method, which is presented in
Algorithm 1.

Theorem 1 Algorithm 1 can converge to a local optimal solution of (13).
Proof See Appendix A. O

Remark 1 The stopping criterion of Algorithm 1 includes two parts, while one is that the
objective value of (13) is nearly unchanged, and the other is that the sum of slack variables is
very small, which indicates that the solution obtained by Algorithm 1 is a feasible solution

of (13).

4.5 Computational complexity analysis

In Algorithm 1, the computational complexity is mainly determined by solving problem
(27) L1L, times, where L; and Ly denote the required iterations of the inner loop and
outer loop, respectively. In addition, (27) is solved by using standard optimization tools
based on the interior-point method whose complexity is O ((4I(N + N +2)3° log(l/s)),
where O (-) denotes the big-O notation and ¢ represents the solution accuracy [33]. Thus,
the proposed Algorithm 1 has an acceptable polynomial time computational complexity,
ie, O (LiL2(4KN + N + 2)35log(1/e)).

5 Computing modes as benchmarks

In this section, we discuss the other two computing modes as benchmarks, namely the
local computing only mode and the computation offloading only mode. The local com-
puting only mode requires that all the UEs only perform their local computing but never
offload their tasks to the UAV-MEC server, while the computation offloading only mode
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Algorithm 1 Proposed CE Optimization Algorithm

1: Initialize: the maximum number of iterations Ij,l, the maximum tolerance
€1,€2 for inner loop and outer loop, respectively, and an arbitrary point
{olon P fO0 vk € Kom e N},

2: Set the iteration index ¢ = 0, the iterative objective value r® =0 of (8), the penalty
factor 7@ = 1, the increasing factor = 1.5, the upper bound 7, = 10, the sum

of penalty values 711(0) = 0, and the penalized objective value 7{2(0) = 0 for outer loop.
3: repeat
4  Sett=1t+1.
5. Set the iteration index g = 0, the iterative parameter A©) = 0 for inner loop.
6: repeat
7: Setg=¢q+ 1.
8: Solve the problem in (27) to obtain the optimal solution

@ (@
{G)(q)’”(q)’SLk’Sz ,Vk € IC}.
> if min (R (0@) - 2a-VB (0@)]
ex
Convergence2 = true.

< ¢; then

else "
.| RP(0@)
Update 19 = min {13];(0(4)) }
end if

10:  until Convergence2 = trueor g > I
11:  Update I'® = inin {iix (@)}
ex

K
120 Updaten!” = Y 0 457,
k=1 "~

132 Update 7, =T® — 79,
14: if nl(t) < €y and |7r2(t) — nz(t_l)| < €y then
Convergencel = true.
else
Update p,ﬁ?ﬁ, p]((t,L, k(tn)’ Vk € K,n € N according to
O@D, and t® = min {ut(t_l), Tmax}.
end if
15: until Convergencel = trueor ¢ > I
16: Output: the suboptimal solution of the problem in (8), ie,

Ho® L
[015,,)4»17/((,3« k(,rf’Vk elkne ./\f}

requires that all the UEs only offload their tasks to the UAV-MEC sever but never perform
their local computing.

5.1 Local computing only mode
Under the local computing only mode, the CE of the kth UE can be expressed as

Ji

Ck
MLk = (3 - (29)
ka}(?) + Pek
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The corresponding CE optimization problem is formulated as

ma min {nLi} (30a)
fk .

st ooz R vk € K, (30b)

VKfE + Pox < PP, Vk € K, (30¢)

0 < fi <[, Vk € K. (30d)

In (30), we find that the optimization variables {f;,k € K} are decoupled. Moreover,
the objective function consists of the “min” function and K independent CE expres-
sions, i.e., {nyr k € K}. Without loss of optimality, we can maximize each CE expression
nrx to maximize the objective function of (30). Thus, (30) can be decomposed into K
sub-problems, in which the kth sub-problem is given by

max npk (31a)

Jr
RTIyp o
i = R, (31c)

pmax _
SR = max { frax, 9222 Pek (31d)
’ Yk

By setting the first order derivative of ; i to be zero, i.e.,

Ik =20+ pek
= 2
i Cr(vifi + Pek)

the zero point of 91y x/9fi can be calculated as

o — 3pC,k (33)
Jux V 2y

The numerator of 97, x/df is a concave and monotone decreasing function with respect

=0, (32)

to fx > 0, while the denominator of 37y /9f is positive for fy > 0. Thus, the closed-form
optimal solution of (31) can be derived as

fix = min {fg,?, max LL,l]?’fLo,k}} . (34)
As a result, the best optimal solution of (30) is given by
j'L*z{fL*,k,VkelC}. (35)

Theorem 2 The problem in (30) has many optimal solutions with the same objective

value.
Proof See Appendix B. O

Remark 2 Since (30) has many optimal solutions with the same objective value, “the
best” means that the optimal solution in (35) can make the CEs of all the UEs as large as
possible.
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5.2 Computation offloading only mode

(2020) 2020:178

Under the computation offloading only mode, the CE of the kth UE can be expressed as

Nnck =

N
Z Rk,n
n=1
N .
Zl Pk n&kPkn + Pek
n=

(36)

The corresponding CE optimization problem is formulated as

max

min {'IC,k}

{pk,n Phkn } kek

s.t.

N
> Riw = RP™,Vk € K,

n=1

N
> kbl + Pok < PR,k € K,

n=1

K
Zpk,n E M,,,Vn € N;
k=1

N
Zpk,n =1Vkek,

n=1

okn €10,1},Vke K,n e N.

(37a)

(37b)

(37¢)

(37d)

(37e)

(371)

Since (37) is similar to (8), the framework of Algorithm 1 can be applied to solve (37). To

avoid repetition, the detailed solution to (37) is omitted here.

6 Simulation results and discussions

In this section, we provide the relevant simulation results to first demonstrate the conver-

gence of the proposed Algorithm 1 and then evaluate the performance of the proposed

partial offloading scheme by using the local computing only scheme, the computation

offloading only scheme, and the OFDMA scheme as benchmarks. In the simulations,

we consider a UAV-MEC system as illustrated in Fig. 2, where K = 8 UEs are ran-

domly located in a squared area of size 1000 m x1000 m, and the UAV is located at

500
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or v

-100

y-coordinate (m)

-200 o N
-300

-400 -
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v  UAV

500 I I I I I I
-500 -400 -300 -200 -100 0 100

z-coordinate (m)

Fig. 2 The locations of the UEs and the UAV in x-y axes
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q, =[0,0,100] [23]. To reduce the decoding complexity and time delay in one NOMA
group, the maximum number of the UEs supported by each subchannel is considered as
two, i.e, M,, = 2,Vn € N [34]. Besides, the maximum power consumption of the kth UE
is P]r(“ax = Pmax Yk € K, where Pp,x is defined as the maximum local power consump-
tion. For convenience, the normalized CE and CB are used as the performance indicators,
and their units are, “Bits/Joule/Hz” and “Bits/Hz’, respectively. Except where otherwise
stated, we present the remaining simulation parameters in Table 1, which are based on
the typical settings in [21-23].

Figure 3 plots the convergence curves of the iterative objective value I'” and the sum
of penalty values nl(t) for the proposed Algorithm 1 under the partial offloading mode,
where the maximum local power is set as Ppax = 0.2W. As seen from Fig. 3, when the
number of iterations increases, the sum of penalty values nl(t) decreases accordingly. Since
nl(t) denotes the sum of violations of non-convex constraints, the generated solutions by
Algorithm 1 tend to be feasible for (8). In fact, Algorithm 1 can be interpreted as an infea-
sible method for the original MINLP problem in (8). Specially, Algorithm 1 may generate
a sequence of infeasible solutions if it starts from an infeasible point but can converge
to a feasible suboptimal solution of (8) at last. Moreover, the proposed Algorithm 1 has
a fast convergence rate because the iterative objective value I'® needs only 5 iterations
to be stable and converge to a e-optimal solution for the specified precision €. Further-
more, the average iterations of Algorithm 1’s inner loop and outer loop are 6.08 and
6.49, respectively. The above observations demonstrate the convergence property and the
convergence efficiency of Algorithm 1.

Table 2 evaluates the impact of random initial points on the CE performance of Algo-
rithm 1 under the partial offloading mode, where Pn,x = 0.2W. The random initial points
for Algorithm 1 are given by p,(:); = rand([0.5, 1]), p,(f; = O,f]f](})q) =0,Vk e K,ne N,
where rand([0.5, 1]) stands for a real random variable uniformly distributed in the range
of [0.5, 1]. As shown in Table 2, with these random initial points, Algorithm 1 will even-
tually converge to one of the three different local optimal values, denoted by, n; = 10.455
bits/Joule/Hz with the probability 11%, np = 11.487 bits/Joule/Hz with the probability
15%, and n3 = 12.455 bits/Joule/Hz with the probability 74%, respectively. Moreover, the
probability of converging to ns is 74% for one run time, which means that Algorithm 1
has a 98.4% probability of converging to the best local optimal values within 3 run times.

Table 1 Simulation parameters

Parameters Default values
Number of UEs K=28

Number of subchannels N=4

Total system bandwidth B = 2MHz
Reference channel power gain no = —50dB

Noise power density No = —150dBm/Hz
Required CPU cycles for one bit C = 103cycles/bit
CPU coefficient v =10"28
Amplifier coefficient & =3

Fixed circuit power Dck = 50mW
Maximum local CPU frequency " = 05 x 10%cycles/s
Minimum required computation bits RN = 10%pits

Stop tolerances for Algorithm 1 € =€ =103
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Fig. 3 Convergence of Algorithm 1 with respect to the iterative objective value and the sum of penalty
values under the partial offloading mode

In other words, Algorithm 1 is robust to different initial points due to the high probability
of converging to the best local optimal values with very few run times.

In Figs. 4 and 5, we compare the proposed partial offloading mode with the CE max-
imization scheme referred as “MaxCE” and the CB maximization scheme referred as
“MaxCB” in terms of CB and CE with varying the maximum local power consumption
Prax, respectively. In particular, the CB maximization scheme is to maximize the mini-
mum CB among all the UEs, which is implemented by using the simplified Algorithm 1
without the inner loop, i.e., A(? = 0, Vg. From the above two figures, the “MaxCE” scheme
has both CB and CE in common with the “MaxCB” scheme when Pp,y is not so large, i.e.,
Prax < Pg‘ax. Due to the limitation of Pp,y, the resource allocation strategies of the two
schemes are identical when Py, is small, which leads to the above result. In the case of
small Pp,x, the CE and CB of the two schemes increase with P, since the CB increases
faster than the power consumption. But on the other hand, when Py > P, although
the “MaxCB” scheme has larger CB than the “MaxCE” scheme, the “MaxCE” scheme has
obvious advantages on the CE compared with the "MaxCB" scheme from Fig. 5. This is
because the "MaxCB" scheme maximizing the CB will consume more inefficient power
to achieve higher CB but the “MaxCE” scheme will still adopt the solution maximizing

the CE instead of consuming inefficient power when P x > Pth e, the solution of the

max’

“MaxCE” scheme is not affected by the increase of Pp,x. Consequently, both CE and CB
of the “MaxCE” scheme keep unchanged when Py, > P .
Figure 6 presents the CE versus the maximum local power consumption Pp,,x under dif-
ferent computing modes with the proposed CE maximization frameworks. From Fig. 6,
it can be found that the partial offloading mode has a much higher CE performance than

the other two computing mode, especially when compared to the local computing only

Table 2 Impact of random initial points on Algorithm 1

Local optimal objective value Probability (%)
n = 10455 bits/Joule/Hz 11
n> = 11487 bits/Joule/Hz 15

n3 = 12455 bits/Joule/Hz 74
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Fig. 4 Comparison of CBs under partial offloading mode with CE maximization and CB maximization

mode. The reason is that the partial offloading scheme can offer the flexibility to adjust
the resource allocation for the task offloading and the local computing. However, the local
computing only scheme allows the UEs to perform their local computing only regardless
of the channel conditions, and the computation offloading only mode completely uploads
the tasks of the UEs to the UAV-MEC server even if the channel conditions are bad,
so their CE performances are greatly compromised. Besides, the computation offloading
only mode exhibits better CE performance than the local computing only mode since the
former can yield better computation-efficient benefits than the latter when Pp,ax is not so
small.

Figure 7 shows the max-min fairness with the proposed CE maximization framework
under different computing modes, where the minimum CE, the average CE, and the best
CE of all the UEs are compared, and the maximum local power is set as Pp,x = 0.2W.
With respect to the above three performance indicators, the proposed partial offloading
mode has the best performances, while the local computing only mode has the worst

14
b = n
12+ 1
th
/mN\ 10 F F)max \‘\\\\ 4
=
E A
=S st ]
&Z
E
= L 4
o 6
4r —&— Partial Offloading with MaxCE scheme 1
—4— Partial Offloading with MaxCB scheme
o . . . .

0.1 0.15 02 0.25 03
Pinax (W)

Fig. 5 Comparison of CEs under the partial offloading mode with the CE maximization scheme and the CB
maximization scheme
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Fig.6 Comparison of CEs among different computing modes

performances. The reason for explaining this is similar to the simulation result in Fig. 6,
which verifies the effectiveness of the proposed scheme in the max-min fairness.

Figure 8 illustrates the CE versus the maximum local power consumption Pp,y in the
partial offloading mode with the proposed MC-NOMA scheme and the OFDMA scheme.
In the OFDMA scheme, each UE can access one subchannel at most and each subchannel
can support one UE at most, which is implemented by letting the maximum number of
the UEs supported by one subchannel to be one, i.e., M, = 1,Vn € N. To ensure fair com-
parison, the number of subchannels in the OFDMA scheme is set as N = 8, but the other
simulation parameters are consistent with the proposed MC-NOMA scheme. It can be
observed from Fig. 8 that the proposed MC-NOMA scheme is significantly greater than
the OFDMA scheme on the CE performance. This is because NOMA can service more
users than OFDMA at the same frequency-domain resource block, i.e., the multiplexing
gain can be obtained when NOMA is applied.

30
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25 | Offloading Only ]
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Minimum CE Average CE Maximum CE
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Fig. 7 Comparison of fairness among different computing modes
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Fig. 8 Comparison of CEs under partial offloading mode with MC-NOMA and OFDMA

7 Conclusion

In this paper, we have studied a max-min fairness based CE optimization problem in
a UAV-MEC system with MC-NOMA, where the joint optimization of the subchannel
assignment, the local CPU frequency, and the transmission power is considered. Since
it is NP-hard to find the global optimal solution of the formulated non-convex MINLP
problem, we design a polynomial-time algorithm to obtain a feasible suboptimal solution.
In specify, the big-M reformulation is employed firstly to obtain the equivalent continu-
ous form of the original problem. Next, by applying the penalized SCP and the general
Dinkelbach’s method, a two-layer iterative algorithm is designed, which is able to start
from an arbitrary initial point and finally converge to a feasible suboptimal solution. We
also analyze the corresponding CE optimization problems in the benchmark computing
modes. The relevant simulation results have demonstrated that the proposed Algorithm 1
enjoys a good convergence performance. Moreover, the proposed computation-efficient
scheme is superior to the other benchmark schemes. Besides, when compared with the
conventional OFDMA scheme, the proposed MC-NOMA scheme can get higher CE.

Appendix A
Proof of Theorem 1

First, we prove the convergence of the algorithm based on the SCP and generalized
Dinkelbach’s method to solve (13), namely Algorithm 2. Let ©F, and l:(t)(®z"t)) respec-
tively denote the optimal solution and the optimal objective value of (18) at the tth
iteration of SCP; meanwhile, the corresponding objective value of (13) is given by I'(©(;)),

then we have

@ - ® -
r(eg) 2 10 (0) = IO (efy) 2T (0 ) (38)

At the ¢th iteration of SCP, we can find from (38) that (a) holds since I'® (@Z‘t)) is a lower
bound of F(@?‘t)), (b) holds if (18) can be solved globally, which can be guaranteed by
using the generalized Dinkelbach’s method, and (c) holds because @z‘t_l) is used as the
local point of the first-order Taylor expansion based on (17). From (38), it can be seen that

the objective value of (13) is non-decreasing. Since the objective value of (13) is upper
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bounded, Algorithm 2 can gradually converge to a local optimal solution of (13). Next, it
is ready to prove the convergence of Algorithm 1. If the penalty factor 7 is large enough
and the sum of slack variables is very close to zero, then (27) can be rewritten as (25).
Therefore, Algorithm 1 is equivalent to Algorithm 2, which indicates that Algorithm 1
will converge to a local optimal of (13). Please refer to [29] for more detail.

Appendix B
Proof of Theorem 2
Based on (35), we denote 1y & (f]:k k) as the optimal CE of the kth UE. We further define

k as the index of the UE whose optimal CE is smallest, i.e.,

k =argmin ng (/) - )
kek

According to (39), we have
e (15%) = i (7)) Yk € KK, (40)

where IC\/~( = {klk e K,k # k}. For each k € IC\/~<, there exists at least one fi € [L]j,]f, LI’JE],

such that 1y x (fL*k> = (i) = np; (fL*];) Note that the solution ’fk,‘v’k e K\ /~<,fL*]~<}

has the same objective value of (30) as the optimal solution {fL*k,Vk € IC} in (35).
Therefore, (30) has many optimal solutions with the same objective value.
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