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Abstract

In this study, a 3D positioning method is proposed for hospital applications, such as
navigation within a hospital building. It employs deep learning algorithms to analyze
the received signal strength from cellular networks and Wi-Fi access points in order to
estimate the positions of mobile stations. A two-stage deep learning procedure (level
classification and location determination) is constructed to obtain the exact position
information (building level, longitude, and latitude) in multiple-level buildings. To
evaluate the performance of the proposed method, an experiment was conducted in
the hospital of Xi’an Polytechnic University. In total, 36,985 records, 42 sampling
location points, 28 different cellular networks, and 289 different Wi-Fi access points
were considered. A deep learning neural network was trained for the first stage of level
classification. Three deep learning neural networks were trained to obtain the distinct
location coordinates (longitude and latitude) for three different building levels. To
compare the efficacy of heterogeneous networks, three kinds of neural networks with
different inputs (only cellular, only Wi-Fi APs, and a conjunction of cellular and Wi-Fi
APs) were implemented. The accuracy of level classification was shown to be 100% for
only Wi-Fi APs as an input. The average distance error of the location determination for
different floors was 0.28m for only Wi-Fi APs and for the conjunction of Wi-Fi APs and
cellular networks in the second stage.

Keywords: Indoor positioning, Deep leaning, Mobile positioning method, Received
signal strength

1 Introduction
Global Positioning Systems (GPS) are the most well-known tool in navigation and po-

sitioning frameworks. However, they do not usually work in the interior of buildings.

In the urban environment, the propagation of GPS satellite signals is hindered by

buildings. The “Urban Canyon” effect prevents GPS from accurately predicting indoor

positioning.

Due to the complex indoor environment, indoor propagation of signals is more com-

plicated than outdoor propagation. The positioning accuracy is required to be control-

lable within a few meters to provide users with the maximum utility. In view of the

difficulties involved in indoor positioning and the excessive requirements for position-

ing accuracy, researchers have done a lot of work. These studies involve many
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intersecting fields, such as wireless networks, sensor technology, and random signal

processing. Ultra-wideband (UWB), radio-frequency identification (RFID), ZigBee, Wi-

Fi, etc., were used in indoor positioning systems [1]. For hospital applications, it has

been proposed to use UWB sensors in combination with GPS to achieve indoor and

outdoor location tracking [2]. In order to track patients in a hospital, RFID technology

has been used to solve the problems caused by patient mobility [2]. ZigBee technology

has been used to locate certain patients suffering from mental disorders within the con-

fines of the hospital [3]. However, these systems are not without some defects. It is an

effective method to integrate UWB and GPS into a positioning system, but the stability

of this system is poor because the signal transmission from UWB to GPS depends on

the Wi-Fi network [2]. RFID is another positioning system, which needs to install the

reader and the label of the item to be identified first. Bluetooth positioning technology

requires the installation of multiple local area network access points, and the signal is

easy to be affected [3, 4].

Wi-Fi is a popular component in wireless positioning technology in recent years due

to various reasons. First, it is ubiquitous modern technology. It has extensive coverage,

including shopping malls, schools, and hospitals, among others. Moreover, it is easy to

set up a Wi-Fi access point (AP) in rural districts. Second, a MAC address is a unique

identifier used to mark a specific Wi-Fi AP, and the signal strength indicator (RSSI)

from the specific AP can be received by mobile devices. This implies that the RSSI of

Wi-Fi APs could be featured for identification of the signal strength at a specific loca-

tion. Nowadays, both android and iOS mobile phones have a function to detect Wi-Fi

APs. The cellular network is another signal that can be automatically detected by mo-

bile phones. Mobile positioning technology is an excellent method to integrate cellular

networks and Wi-Fi APs.

With the development of the social economy, an increasing number of comprehen-

sive buildings have been established in the world, such as large-scale shopping malls,

general hospitals, and so on. Particularly in the case of general hospitals, it is necessary

to develop an efficient indoor positioning system to help doctors and patients rapidly

determine the exact location from the numerous departments, operating rooms, and

treatment rooms. The existing indoor positioning system technologies are used in large

parking lots, shopping malls, and hospitals to solve the location problem in 2D space.

However, there is no pertinent discussion about the positioning technology of multi-

story buildings. In this study, an indoor positioning system in 3D space is proposed to

tackle the problem of navigation in multi-story buildings. This system can obtain the

horizontal information of a plane space, as well as retrieve the vertical information of

different floors.

The fingerprint-matching algorithm is commonly used for indoor positioning. The

most basic algorithms are the nearest neighbor and naive Bayesian methods. In recent

years, deep learning has been extensively used in various fields and exhibited excellent

results [5]. In this study, the deep learning algorithm is used in indoor positioning tech-

nology to explore its effect on improving the positioning accuracy.

The innovations of this work are highlighted as follows:

(1) A 3D mobile phone positioning system is proposed to locate multi-story buildings

from three dimensions: plane and vertical.
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(2) A two-stage deep learning method is proposed to implement a 3D mobile phone

positioning system. This can provide accurate information on the floor, longitude,

and latitude of a location.

This study proposes a 3D positioning system for hospital applications, which is based

on the integrated signal from cellular signals and Wi-Fi APs. The outline of the paper

is as follows. Section 2 illustrates the related work of indoor positioning systems. Sec-

tion 3 presents further details of the 3D mobile positioning system and deep neural

networks used in the system. Section 4 describes the experiment conducted in the cam-

pus hospital and illustrates the results. This is followed by the conclusions and explor-

ation of potential future work in Section 5.

2 Related work
Usually, the algorithms for the indoor positioning technology can be divided into two

categories: triangulation method and fingerprint method. The triangulation method

uses a signal attenuation model to estimate the distance between the mobile device and

all the detected APs, and this proportion is used to draw a circle. The intersection of

all the circles is the specific location of the device we need to locate. The premise of

this method is that the location of the AP must be known in advance. Once the envir-

onment changes, the triangulation method does not work [4].

The fingerprint method consists of two phases, the offline phase followed by the on-

line phase. During the offline phase, sampling points (reference samples), which contain

the RSSI values of all the detected APs and the coordinates of the known locations, are

collected and stored. The collection of sampling points forms the fingerprint database

of the surveyed area. During the online phase, the estimated location will be provided

by the matching algorithms based on the comparison of the detected RSSI values and

the corresponding APs in the database. Many such matching algorithms have been

used in fingerprint technology.

The Euclidean distance is commonly used to measure the distance between the ob-

served RSS vectors and sampling points. The matching algorithm estimates the location

as the sampling points, which have the smallest distance to the observed signals [6].

Some researchers considered the location estimation to be a machine learning problem.

The weighted k-nearest neighbor algorithms were proposed to estimate the position of

the target node, based on Bluetooth technology. The estimated position error is ap-

proximately 1.8 m, which is too high [7]. To compare the efficacy of different machine

algorithms, six different machine learning algorithms, including J48, Bayes Net, KNN,

SMO, and Adaboost were used. J48 and Bagging with J48 which are included in Weka

were used for the UJIIndoorLoc database [8]. A novel ensemble learning method was

proposed to provide the building level and indoor localization in buildings. Extensive

experiments were conducted in real-world office-like environments, as well as on An-

droid smartphones. It achieved the best indoor landmark localization accuracy of al-

most 97% in office-like environments. This method can provide a basis for accurate

indoor positioning [9]. An ensemble model consisting of fuzzy classifier and multi-layer

perceptron was proposed for indoor parking localization [10]. This study employs deep

learning algorithms to train the positioning system. Deep learning algorithms have been

successfully used in many fields, such as image, transportation, and statistics [11–13].
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They have also been used in wireless sensor networks, in an effort to implement posi-

tioning systems [14–18]. This study focuses on a 3D mobile positioning system, based

on deep neural networks.

3 3D mobile positioning system and deep neural networks
The architecture and concepts of the proposed 3D mobile positioning system are illus-

trated in Section 3.1 and Section 3.2, respectively.

3.1 3D mobile positioning system

The proposed 3D positioning system includes a (1) Signal receiver, (2) Processor, (3)

Performer, (4) Location server, and (5) Model server. The whole system is depicted in

Fig. 1. Each component in the proposed system is presented in the following

subsections.

As illustrated in Fig. 1, the signal from Wi-Fi and cellular networks are received first.

Subsequently, the data pass through the receiver, database, processor, database, and

performer.

3.1.1 Signal receiver

The receiver detects and receives the signals which are from the cellular networks and

Wi-Fi APs. A mobile phone is a convenient device which can detect the signals both

from cellular network and Wi-Fi AP. A mobile application (App) is required to collect

the RSSIs and write to a list. All the RSSIs of cellular networks and Wi-Fi APs at one

specific location are recorded with the corresponding beacons and MAC addresses.

The matrices, constituted by the RSSIs, are the input sources for the neural network

model in the process phase.

Fig. 1 Architecture of the proposed 3D mobile positioning system
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3.1.2 Signal processor

The goal of the signal processor is to construct positioning models. To improve the po-

sitioning accuracy, the deep learning neural networks are used to be training algo-

rithms. The received RSSIs (including cellular base stations and Wi-Fi APs) from

mobile phones should be normalized before the data are used as an input for the train-

ing model. In order to resolve the 3D positioning problem for multilevel building, a

two-stage deep learning neural network model is proposed. The first stage is level clas-

sification. In this stage, the network is trained for predicting building level (vertical in-

dicator). The normalized RSSI is the input, and the building level is the output. The

trained model will be called in the followed performance phase. Then, the building level

will be predicted as the first step for the required mobile devices. The second stage is

location determination which is trained for predicting the longitude and latitude (hori-

zontal coordinates) for location in every building level. In the training of the second

stage, the corresponding normalized RSSI is the input. The GPS coordinates are used

as the output of the deep learning models. The building level information and GPS co-

ordinates of the sampling locations are initially stored in the location server. When the

deep learning neural networks are trained, these models are sent to the model server to

be saved. Therefore, the signal processor component has two functions: normalization

of the received signal and training of the deep learning model.

3.1.3 Performer

The function of the performer is based on the processor and model server. When the

performer is activated, it receives the new RSSIs vectors and subsequently loads the

trained models from the model server. Finally, the estimated location information

(building level, longitude, and latitude) is provided.

3.1.4 Location server

The location server is a database, which is used to store RSSIs. The RSSIs are detected

by the mobile receiver and wrote to the location server following the corresponding

rule with sample points. The sample points are recorded as GPS coordinates.

3.1.5 Model server

The deep learning models trained in signal processor phase are stored in the model ser-

ver. For the neural networks, the structure and parameters of the models (weights and

biases) are stored as a database. The models will be called by performer module when

it is needed to predict a location.

3.2 3D mobile positioning method

The 3D mobile positioning method includes (1) collection and normalization, (2) the

two-stage neural network, and (3) de-normalization and estimation. Each step in the

proposed method is detailed in the following subsections.

3.2.1 Collection and normalization

The data used in the 3D positioning system are collected by mobile receivers, which re-

ceive the RSSI of signals from cellular networks and Wi-Fi APs. Before training the
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models, some sampling location points are collected. For every sampling location point,

the mobile records received the RSSIs for a period of time. During this time period,

one location point has multiple records of the RSSIs. The number of records at one lo-

cation point depends on the writing interval of the mobile receiver, which can be ad-

justed as per the requirements.

The building level of the sampling location is recorded for a multiple-level building.

The use of GPS to obtain the location coordinates (longitude and latitude) of an indoor

sampling location does not work well. The transformation formula is used to assist the

GPS in obtaining all the sampling location coordinates. First, the location coordinates

of the specific location points (e.g., both ends of the building) should be obtained using

GPS. The specific location points serve as reference points. The reference points should

be at the end of the building. It is better to select the reference points and sample

points on the same line. Take the basilica building as an example, selecting both ends

of the building is the best choice for reference points. In the basilica building, L∗ is

noted as the left end point and R∗ is noted as the right end point for every floor. The

location coordinates of L∗ and R∗ are lon(L∗), lat(L∗) and lon(R∗), lat(R∗). The distance of

the L∗ between R∗ is noted as long(L∗, R∗). For a sampling location point S∗, which is on

the same floor as the reference points, the distance between S∗ and left L∗ is noted as

d(L∗, S∗). The longitude and latitude of the points of a sampling location S∗ are noted as

lon(S∗) and lat(S∗), which are computed using Eqs. (1) and (2).

lon S�ð Þ ¼ lon L�ð Þ − lon L�ð Þ − lon R�ð Þð Þ d L�; S�ð Þ
long L�;R�ð Þ ð1Þ

lat S�ð Þ ¼ lat L�ð Þ − lat L�ð Þ − lat R�ð Þð Þ d L�; S�ð Þ
long L�;R�ð Þ ð2Þ

It is known that RSSI takes on a value between − 150 and 0. During computing, the

input value should be normalized in order to eliminate the dimensional effect. The nor-

malized value for RSSI is computed according to Eq. (3)

Rnormalized ¼ RSSIorigin‐RSSImin

RSSImax‐RSSImin
ð3Þ

where Rnormalized is the normalized value; RSSIorigin is the received value, which is be-

tween − 150 and 0; and RSSImin and RSSImax are the minimum and maximum values

among the original collected data, respectively.

The location coordinates have not yet been normalized to 0–1. The normalized value

lonnormalized and latnormalized are computed by Eqs. (4) and (5).

lonnormalized ¼ lonorigin‐lonmin

lonmax‐lonmin
ð4Þ

latnormalized ¼ latorigin‐latmin

latmax‐latmin
ð5Þ

where lonnormalized and latnormalized are the normalized values; and latorigin are the values

received by solving (2) and (3); lonmin and latmin are the minimum values among the
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original collected longitudes and latitudes; and lonmax and latmax are the maximum

values.

3.2.2 The two-stage neural network

The processor component is the core of the proposed 3D positioning system. In this

phase, the models are trained on the basis of the collected and normalized data. Here,

deep learning algorithms are used in conjunction with neural networks to train the

model to estimate the location of the building. The proposed 3D positioning system is

a two-stage work, particularly for the multiple level buildings. The first stage is level

classification, and the second stage is location determination. The GPS coordinates for

indoor positioning are difficult to obtain, particularly in a vast building with multiple

floors. Some locations share the same GPS coordinates, despite being on different

floors in the building. The models in both the stages are trained by neural networks

using the deep learning algorithm. The model and methods of the two stages are pre-

sented below.

3.2.2.1 Level classification Level classification, which is the basis for location deter-

mination, is the first stage in the processor component of the proposed 3D positioning

system. Some sampling location points in a building, despite being on different building

levels, share the same GPS coordinates (longitude and latitude). Therefore, the first

stage plays the role of separating locations in different building levels.

In this model, a three-layer forward neural network (one input layer, one hidden

layer, and one output layer) is used. The inputs are the RSSIs collected at every sam-

pling point, and the outputs are the corresponding building level information, which

are encoded in 0–1 code. The number of inputs and outputs are the total number of

RSSIs and total floors of the building, respectively. The number of hidden neurons is

not definite; it can be retrieved by experience. All the neurons between neighboring

layers are fully connected (see Fig. 2). The strength of connections is abstracted as

weights, and every neuron in the hidden layer and the output layer has a bias, which is

used to stimulate the stimulus pulse of the brain.

The input layer includes the normalized RSSIs of n1 base stations and n2 Wi-Fi APs.

We concatenate them into a vector (x1, x2,⋯, xn), which is normalized with the original

RSSIs. The coding method uses 0–1 coding. For example, in a building of 5 floors, if

the position is on the second floor, then the output vector is (0, 1, 0, 0, 0). It is fully

connected for all the nodes in the network. The weights between hidden layer and in-

put layer are represented as wij ( weight links input neuron hiand hidden neuron xj).

The weights between hidden layer and output layer are represented as vij (weight links

hidden neuron oi and output neuron hj). The bias of the neurons in the hidden layer

and output layer are represented as bi and bi
′, respectively.

The values of the hidden neuron hi and the output neuron oiare computed by Eqs.

(6) and (7), respectively. The hidden layer is used to extract the intermediate informa-

tion contained in the neural network model. The information retrieved by the hidden

layer is then used as the input of the output layer (the subsequent layer).

hi ¼
Xn
j¼1

wijx j þ bj ð6Þ
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oi ¼
Xm
j¼1

vijh j þ b
0
i ¼

Xm
j¼1

vij
Xn
j¼1

wijx j þ bi

 !
þ b

0
i ð7Þ

The linear function is selected as the hidden layer activation function of each neuron

(Eq. (8)), and the softmax function is selected as the output layer activation function

through (Eq. (9)).

f oið Þ ¼ oi ð8Þ

f oið Þ ¼ exp oið ÞXm
j¼1

exp o j
� � ð9Þ

Furthermore, the loss function is defined in Eq. (10). For the optimization of the level

classification, the learning rate η and gradient descent method are used to update each

weight and bias. The updates of wij; bi; vij; b
0
i are calculated by Eqs. (11), (12), (13), and

(14), respectively.

L w; v; b; b
0� �

¼ 1
2

ŷ − yð Þ2 ¼ 1
2

Xm
j¼1

vij
Xn
j¼1

wijx j þ bi

 !
þ b

0
− y

" #2
ð10Þ

wij←wij − η
∂L
∂wij

¼ wij − η ŷ − yð Þx j

Xm
k¼1

vki ð11Þ

bi←bi − η
∂L
∂bi

¼ bi − η ŷ − yð Þ
Xm
k¼1

vki ð12Þ

Fig. 2 Structure of level classification model
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vij←vij − η
∂L
∂vij

¼ vij − η ŷ − yð Þhi ¼ vij − η ŷ − yð Þ
Xn
k¼1

wikxk þ bi

 !
ð13Þ

bi
0
←bi

0
− η

∂L

∂bi
0 ¼ bi

0
− η ŷ − yð Þ � 1 ð14Þ

The training process of the neural network model is also the optimization process.

The goal of optimization is to obtain the optimal weights and bias with which the error

of the predicted value is the minimum. Therefore, the loss function is defined in order

to measure the training error. The optimization process is described in (15) as

w�; v�; b�; b
0 �� �

¼ argmin
w;v;b;b

0
L w; v; b; b

0� �
ð15Þ

To solve the optimization problem in (15), the gradient descent algorithm is used to

obtain the optimal parameters (weights and biases). The algorithm is described as fol-

lows: The model parameters wij, bi, vij, and bi
′ are first initialized with a random num-

ber generator. The values of hi, oi, and ŷ are computed using Eqs. (6), (7), and (9),

respectively. Subsequently, Eqs. (11)–(14) are used to adjust the model parameters wij,

bi, vij, and bi
′. This step is computed iteratively when one of the following conditions

are met: the maximum iterations or the requisite error is attained.

3.2.2.2 Location determination Location determination is the second stage in the data

processing by the proposed 3D positioning system. On the basis of the first stage in-

volving location determination, deep neural networks are trained separately for differ-

ent floors. Therefore, the number of location determination models depends on the

number of floors in the building. The structures and the optimization methods for

these neural network models are identical. However, they have different inputs and out-

puts. The structure of the location determination model is presented in Fig. 3.

As depicted in Fig. 3, the structure of the neural network is the same as that of the

level classification. It comprises three layers (one input layer, one hidden layer, and one

output layer) of a deep neural network. The inputs are the normalized vectors of ori-

ginal RSSIs. Therefore, the same representation is used. The input vectors are repre-

sented as (x1, x2,⋯, xn), which are the same as those in the level classification neural

network model. The hidden layer is (h1, h2,⋯hl). The input layer and hidden layer are

fully connected by weight wij, and bias bi. The value of hiis derived from Eq. (6). The

input layer and hidden layer are fully connected by weight vij and bias b
0
i.

However, the output of the location determination model is different from that of the

level classification model. For location determination, the output is the location coordi-

nates (longitude and latitude). Therefore, the number of output neurons is two. Fur-

thermore, the activation function for the output is linear (Eq. (7)). The output value,

which is obtained from Eq. (8), is represented as (o1, o2). Gradient descent (Eqs.

(11)–(14)) is used as the optimization algorithm.

3.2.3 De-normalization and estimation

The de-normalized value is obtained from Eqs. (16) and (17) for the estimation of the

location coordinates (longitude and latitude).
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latdenormalized ¼ lat� latmax‐latminð Þ þ latmin ð16Þ
londenormalized ¼ lon� lonmax‐lonminð Þ þ lonmin ð17Þ

where lat is the value to be denormalized; lonmin and latmin are the minimum values

among the original collected longitudes and latitudes; and lonmax and latmax are the

maximum values. Here, lonmin, latmin, lonmax, and latmax are the same as in Eq. (4).

4 Practical experimental results and discussion
In this section, the practical experimental results are presented and discussed. The

practical experimental environments are illustrated in Section 4.1 and the practical ex-

perimental results are detailed in Section 4.2. The results for different neural networks

are discussed in Section 4.3.

4.1 Practical experiment environment

To validate the proposed 3D positioning method, we conducted an experiment in the

school hospital of Xi’an Polytechnic University. The school hospital is a three-story

building, containing 37 rooms, including emergency, internal medicine, otolaryngology,

X-ray, injection, treatment, pharmacy, and inpatient department. All the rooms are lo-

cated on these three floors. After considering the significance of each room, every door

was used as a sampling location point. Furthermore, the length of the building was

measured to be 47 m. There are 13, 14, and 13 rooms on the 3rd, 2nd, and 1st floors,

respectively.

In this experiment, an Android application was implemented and installed on

mobile stations (e.g., Huawei honor running Android platform 8.0.0). It was tasked

with collecting the RSSIs from cellular networks and Wi-Fi networks every second.

Fig. 3 Structure of location determination model
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The mobile receiver was situated on the building. Every room was labeled as a

sampling point from which data was collected. In addition, 3 sampling points were

allocated to the corner of stairs and 2 points to the stairway. A total of 42 sam-

pling points were labeled (see Fig. 4).

We allotted a time of approximately 30 s for the sampling of each location point. It is

guaranteed that there are at least 30 records for every location point sampled. Finally, a

total of 1527 records were collected. In order to maintain the reliability of the records,

the first and the last record was deleted in case of an observation having a null value.

4.2 Experimental results

Two-stage neural networks were used in this experiment. To compare the classification

accuracy of different inputs, three neural networks were used in every stage. The inputs

are the RSSI of only the cellular network, only the Wi-Fi AP, and the combination of

cellular network and Wi-Fi AP. A total of 27 cellular networks and 287 Wi-Fi APs were

received. Therefore, the inputs of the neural networks were 27, 287, and 314,

respectively.

For the first stage of level classification, the number of neurons in the hidden layer

was set to 20. The number of output neurons was 5, which included those on the 1, 2,

3, 2.5 (location between 2nd floor and 3rd floor), and 1.5 floors (location between 1st

floor and 2nd floor). The training and testing data were separated by half and half. A

Fig. 4 Location points of school hospital
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two-fold cross validation was applied on both the level classification and location deter-

mination. The accuracy was used to determine the reliability of the model. The accur-

acies of the level classification by two-fold cross validation are presented in Tables 1

and 2.

From Tables 1 and 2, it can be seen that the accuracies of both the cross validations

are the same. The highest accuracy is 100%, which is obtained from the union of cellu-

lar networks and Wi-Fi AP as an input and only Wi-Fi AP as an input. The accuracy

for only a cellular signal as an input is 92%.

In the second stage, three neural networks with different input (only cellular network,

only Wi-Fi AP, and the combination of a cellular network and Wi-Fi AP) were used.

The hidden layer neurons were set to 20. The training data and testing data were sepa-

rated by half and half. A two-fold cross validation was applied on the location

determination.

The distance error was used to measure the capability of the model. When the loca-

tion coordinates were estimated by the neural network, they were denormalized first.

Subsequently, the distance was transformed using Eqs. (18) and (19). The two points A

and B were hypothesized. The location coordinates (longitude and latitude) of A and B

were recorded as (latA, lonA) and (latB, lonB). The distance between A and B was de-

noted by distance.

C ¼ sin latAð Þ� sin latBð Þ þ cos latAð Þ� cos latBð Þ� cos lonA − lonBð Þ ð18Þ

distance ¼ R� arccos Cð Þ�Pi=180; ð19Þ

where R is the radius of the earth.

The mean error of the distance is obtained by two-fold cross validation and is pre-

sented in Tables 3 and 4.

The results presented in Tables 3 and 4 are consistent. The mean of the distance

error obtained in the model with only the cellular signal as input is approximately 3.7–

4.3 m. The distance error is so large that it would guide a user to the wrong room in

this kind of building. Among the models with only Wi-Fi AP as input and with com-

bination of cellular network and Wi-Fi AP as input, the mean distance error of the

model is approximately 0.1–0.4 m. This error is acceptable in an actual scenario. Both

trained models (only Wi-Fi as input and combination of cellular and Wi-Fi as input)

are efficient in meeting their positioning requirements.

4.3 Discussions

In practical experimental environments, there are 36,985 records, 42 sampling location

points, 28 different cellular networks, and 289 different Wi-Fi access points. All these

are collected in the multilevel hospital building of the Xi’an Polytechnic University.

Table 1 The accuracy of level classification in the first-fold cross validation

Cell + Wi-Fi Cell Wi-Fi

Accuracy 100% 92% 100%
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4.3.1 The two-stage neural network analysis

In the experiment, one deep learning neural network was trained for the first stage of

level classification. The location coordinates (longitude and latitude) for three different

levels were individually obtained by three deep learning neural networks in the second

stage. The optimal accuracy of level classification was found to be 100%, as listed in Ta-

bles 1 and 2. This lays a good foundation for the follow-up work in the two-stage

method for multilevel buildings. The deep learning neural network plays a pivotal role

in this step.

In the second stage, the mean distance error corresponding to only Wi-Fi APs and

the conjunction of Wi-Fi APs and cellular networks was 0.28 m for different floors. In

the experiment, the door of every room in the building was located. In China, a typical

single leaf door has a width of 0.8 m. Therefore, an error of 0.28 m will not cause the

system to guide the user inaccurately in the navigation application. The second stage

uses multiple deep learning neural networks, which are reliable options. The two-stage

neural network is effective for multilevel buildings in the location positioning systems.

4.3.2 The comparison of heterogeneous networks

To compare the effectiveness of heterogeneous networks, three experiments with three

different input networks (only cellular, only Wi-Fi APs, and a conjunction of cellular

and Wi-Fi APs) were conducted. The accuracy of the level classification was 100%

when only Wi-Fi APs and a combination of cellular network and Wi-Fi APs were used

as the inputs. The distance error was used to determine the location. The average dis-

tance error in different floors was 0.28 m for only Wi-Fi APs and a combination of Wi-

Fi APs and cellular networks. However, for only cellular networks, the results at both

stages were not satisfied. All the distance errors were greater than 1 m. This could lead

to the user being guided to the wrong room.

Several cellular network-based wide area location systems have been proposed in re-

cent years. The technological methods of location determination involve measuring the

signal strength, the angle of signal arrival, and/or the time difference of signal arrival.

However, the accuracy of wide area location systems is highly limited by the cell size.

Moreover, the effectiveness of systems in an indoor environment is also limited by the

multiple reflections experienced by the radio frequency signal. Using cellular networks

as the minor feature in deep learning neural networks will not change these factors.

Table 2 The accuracy of level classification in the second-fold cross validation

Cell + Wi-Fi Cell Wi-Fi

Accuracy 100% 92% 100%

Table 3 The mean distance error of location determination in the first-fold cross validation

Building floor Cell Cell + Wi-Fi Wi-Fi

1 3.81318 0.24169 0.19428

2 4.23094 0.41723 0.44292

3 3.87375 0.17962 0.19766

Total 3.98238 0.28354 0.28406
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4.3.3 The comparison of different building levels

In the second stage, three location determination neural networks were trained. How-

ever, the distance error on the second floor is larger than that on the other two build-

ing levels. Identical results are produced by three neural networks using different

inputs. This result could be caused due to measuring errors.

5 Conclusion and future work
The proposed 3D mobile system is based on the RSSIs from cellular networks and Wi-

Fi APs. Deep learning is used to train the model. For multiple-story buildings, the two-

stage location model is theoretically reasonable and practical, which is verified experi-

mentally. It demonstrates the validity of this model for dealing with practical problems.

This 3D positioning system is designed particularly for multiple-story buildings. It

aims to obtain the building level, longitude, and latitude for a specific location. This

system can recognize the horizontal information of the plane space, as well as the verti-

cal information of different floors.

There are still some defects in the systems. Although this experiment is conducted

on a simple building, the implementation of the two-stage 3D indoor positioning

method in multiple level buildings is based on the same logic. For irregular buildings,

such as cylindrical buildings, the calculation method of the latitude and longitude for

the reference point can be designed more sensitively to ensure the accuracy of the lati-

tude and longitude. Furthermore, an additional condition should be considered. The

collected RSSIs of Wi-Fi APs for training models are affected by many factors, such as

temperature and air humidity. Therefore, the positioning error maybe slightly different

at different times. Further collection of data may optimize the system in the future.
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