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Abstract
We propose a method to substantially reduce the computational complexity of
iterative decoders of low-density parity-check (LDPC) codes which are based on the
weighted bit-flipping (WBF) algorithm. In this method, the WBF-based decoders are
modified so that the flipping function is calculated only over a reduced set of variable
nodes. An explicit expression for the achieved complexity gain is provided and it is
shown that for a code of block length N, the decoding complexity is reduced from
O

(
N2

)
to O(N). Moreover, we derive an upper bound for the difference in the frame

error rate of the reduced-set decoders and the original WBF-based decoders, and it is
shown that the error performances of the two decoders are essentially the same.

Keywords: Low-density parity-check (LDPC) codes, Iterative decoding, Weighted
bit-flipping (WBF)

1 Introduction
The iterative decoding schemes for low-density parity-check (LDPC) codes fall into
three main categories: soft-decision methods such as belief propagation (BP) algorithm,
hard-decision methods such as bit-flipping (BF) algorithm, and hybrid methods such as
weighted bit-flipping (WBF) algorithm [1, 2], with soft-decision and hard-decision meth-
ods having the highest and the lowest complexity, respectively. The BP algorithm provides
the best performance at the cost of a high implementation complexity [3]. The error per-
formance of BF decoding is inferior to that of the BP, but it is faster and much easier to
implement [1, 4, 5]. Moreover, hard-decodingmethods like BF are the only option in some
applications, such as high-throughput power fiber-optic communications [6, 7], NAND
storage systems [8, 9], and McEliece cryptosystem [10],due to hardware limitations.
The WBF decoding algorithm offers a good error performance/decoding complexity

trade-off and enjoys an improved performance gained by introducing some measure of
reliability (soft information) in the BF decoding algorithm [2]. The WBF algorithm flips
some bits in each iteration based on the value of a flipping function and repeats the
algorithm until all the parity-check equations are satisfied or the maximum number of
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iterations is reached. The performance of the WBF method can be further improved by
modifying the flipping function [11–19], and flipping several bits in each iteration can
speed up the convergence of decoding [20–23]. However, calculating the flipping function
for each variable node requires real-number arithmetic and its computational complexity
is much higher than the hard-decision BF decoding.
In this paper, we propose a method to significantly reduce the computational

complexity of WBF-based decoders with a negligible loss in the error perfor-
mance. Our proposed method, named reduced-set (RS) WBF-based decoding, reduces
the complexity of obtaining the flipping function to a great extent and can be
applied to all WBF-based decoders. Although simulation results do not show
any loss in the error performance, we present an upper bound for the differ-
ence between the frame error rate (FER) of WBF-based decoders and their RS
counterparts.
The rest of this paper is organized as follows. In the next section, some preliminaries

about LDPC codes and WBF-based decodings are reviewed. In Section 3, we present
the proposed algorithm to reduce the decoding complexity, followed by complexity and
error performance analysis. Simulation results are presented in Section 4, and Section 5
concludes the paper.

1.1 Methods/experimental

The research content of this paper is mainly theoretical derivation and analysis, and
specific experimental verification will be carried out in a future research.

2 WBF-based algorithms
In this section, we briefly review some preliminaries about LDPC codes and WBF-based
decoders.

2.1 Preliminaries

A (dv, dc)-regular LDPC code has a sparse parity-check matrix whose column and row
weights are exactly dv and dc, respectively. An LDPC code is irregular if its rows and/or
columns have different weights. An LDPC code can be represented by a bipartite (Tan-
ner) graph which consists of two subsets of nodes, namely, variable nodes (or bit nodes)
and check nodes. Variable nodes represent the bits of the codeword and check nodes cor-
respond to the parity-check equations. An edge connects the nth variable node to check
nodem if and only if bit n is checked by the check-summ. The set of bits participating in
themth check (i.e., the set of variable nodes connected to the check nodem in the Tanner
graph) is denoted by N (m). Similarly, M(n) denotes the set of checks involving the nth
bit. Hence, for an LDPC code with an M × N parity-check matrix H = [hmn], we have
N (m) = {n : hmn = 1} andM(n) = {m : hmn = 1}.
Let c = (c1, c2, . . . , cN ) be a codeword of a binary LDPC code C of block length N.

After BPSK modulation, the transmitted sequence will be x = (x1, x2, . . . , xN ), with xi =
2ci − 1, i = 1, 2, . . . ,N . Assuming an additive white Gaussian noise (AWGN) channel,
y = (y1, y2, . . . , yN ) is the real-valued sequence at the output of the receiver matched filter,
where yi = xi + ni, with ni’s being independent zero-mean Gaussian random variables
with variance σ 2. Let z = (z1, z2, . . . , zN ) be the binary hard-decision sequence obtained
from y (i.e., zi = 1 if yi > 0 and zi = 0 if yi ≤ 0). The syndrome vector s = (s1, s2, . . . , sM)



Haddadi et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:180 Page 3 of 18

is then given by s = zHT , i.e., the syndrome component sm is computed by the check-sum

sm =
∑

n∈N (m)

zn. (1)

Vector s is zero if and only if all parity-check equations are satisfied and z is a codeword
in C.

2.2 WBF-based decoding algorithms

The bit-flipping (BF) algorithm is an iterative hard-decision decoding algorithm that com-
putes all the parity-check equations and then flips a group of bits per iteration that is
contained in a preset number of unsatisfied check-sums. The weighted bit-flipping (WBF)
algorithm improves the performance of the BF decoding by including some reliability
measures of the received symbols in their decoding decisions [2]. Reliability of all the
parity-check equations are computed via

wm = min
n∈N (m)

|yn|, (2)

and the flipping function is defined as

En =
∑

m∈M(n)

(2sm − 1)wm. (3)

TheWBF decoder first computes the reliability of all the parity-check equations from (2).
Next, the decoding algorithm is carried out as follows.

Step 1) Form = 1, 2, . . . ,M, compute the syndrome components from (1). Break the
algorithm if all the parity-check equations are satisfied (s = 0) or a preset
maximum number of iterations is reached. Otherwise, continue.

Step 2) For n = 1, 2, . . . ,N , compute the flipping function En.
Step 3) Flip the bit zn for n = argmax1≤n≤NEn, and go to Step 1.

In what follows, we review several WBF-based methods that improve the standard
algorithm. In [12], the modified WBF (MWBF) is proposed, considering not only the
reliability of the syndrome sequence for computing the flipping function, but also the
reliability information of the received symbol. The flipping function in the MWBF is
modified as

En =
∑

m∈M(n)

(2sm − 1)wm − a|yn|, (4)

where the weighting factor a can be determined via Monte-Carlo simulation at different
SNRs. Reliability-ratio based WBF (RRWBF) proposed in [13] introduces a new quantity
called the reliability ratio Rm,n and modifies the flipping function as

En =
∑

m∈M(n)

(2sm − 1)wm
Rm,n

. (5)

Lee et al. [14] proposed a new version of the RRWBF algorithm which simplifies the
calculation. The flipping function in improved RRWBF (IRRWBF) is given by

En = 1
|yn|

∑

m∈M(n)

(2sm − 1)Tm, (6)
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where Tm = ∑
n∈N (m) |yn|. In [15], Jiang et al. proposed the improved MWBF (IMWBF)

algorithm where in computing the flipping function, the reliability of check-sums involv-
ing a given bit should exclude that bit, and the reliability computation in (2) should be
revised as w′

n,m = mini∈N (m)/n |yi|, n ∈ N (m), and the flipping function as

En = 1
a

∑

m∈M(n)

(2sm − 1)
2w′

n,m
σ 2 −

∣
∣
∣
∣
2yn
σ 2

∣
∣
∣
∣ . (7)

For a special class of high-rate quasi-cyclic LDPC codes, Liu-Pados WBF (LP-WBF) [16]
and its improved version Shan-Zhao-Jiang LP-WBF (SZJLP-WBF) [17] improve the com-
putation of syndrome reliability and perform even better than the IMWBF algorithm at
the high SNR regime.
The standard WBF algorithm selects and flips one bit in each iteration. However, to

increase the speed of decoding, it can select and flip multiple bits in each iteration. In
[20], a threshold adaptation scheme is applied to multi-bit flipping decoding algorithm,
where in each iteration, variable nodes with flipping function greater than a pre-defined
threshold are selected and flipped. If no flipping occurs, the threshold is reduced and
the algorithm continues. A parallel version of IMWBF (PIMWBF) algorithm is proposed
in [21] that converges significantly faster and often performs better than IMWBF. The
threshold for PIMWBF must be optimized by simulation in each iteration. The proposed
multi-bit algorithm in [22] flips multiple bits in each iteration based on a certain threshold
that should be optimized by simulation, but the maximum number of bits that are to be
flipped in an iteration is restricted. The adaptive-weighted multibit-flipping (AWMBF)
algorithm proposed in [23] adjusts the threshold in each iteration as

Eth = Emax − |Emax|
(
1 − wH(s)

M

)
, (8)

where wH(s) denotes the Hamming weight of the syndrome vector s and Emax = max
En, n = 1, . . . ,N . The flipping function used in AWMBF is the same as the flipping
function proposed for MWBF (i.e., Eq. (4)). In AWMBF, the threshold in each iteration
has a closed-form expression and there is no need for time-consuming simulations to
determine the optimum thresholds. In this paper, we will use the AWMBF algorithm in
simulations for multi-bit flipping decoders.
Recently, a two-bit WBF (TBWBF) decoder was proposed in [24] for the binary sym-

metric channel (BSC) that produces reliability bits for both the bit-decision results at
variable nodes and the syndrome values at check nodes and exchanges the reliability bits
between variable and check nodes as the decoding proceeds.

3 Reduced-set low-complexity decoders
In this section, we propose amethod to significantly reduce the computational complexity
of allWBF-based algorithms. The complexity of the decoder is also analyzed and an upper
bound for its FER is presented.

3.1 Proposed algorithm

All of the WBF-based decoders use a flipping function En to select the bits to be flipped.
These decoders compute the flipping function for all variable nodes in each iteration
to detect the erroneous bits in the received sequence. As the flipping function calcu-
lation requires real-number arithmetic, the computational complexity of WBF-based
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algorithms is essentially due to this part. The main idea behind our proposed algorithm
is to reduce the number of flipping function calculations in each iteration by considering
only those variable nodes which are likely to be in error. Denote this set of variable nodes
in the lth iteration by Al. In the first iteration, A1 contains only the variable nodes that
are connected to the unsatisfied check nodes. In the next iterations,Al contains the vari-
able nodes that participate in the parity-check equations involving the flipped bits in the
last iteration.Al can thus be written as:

Al = {n : n ∈ N (m),m ∈ Bl} , (9)

where B1 = {m : sm �= 0} and Bl = {
m : m ∈ M(nl−1)

}
for l ≥ 2. nl−1 is the index of

the flipped bit in the (l− 1)th iteration. Note that a variable node might appear in several
iterations of the decoding process, and variable nodes in the (l − 1)th iteration are not
excluded in the lth iteration.
A reduced-set (RS) WBF-based algorithm is summarized below.

Step 1) Form = 1, 2, . . . ,M, compute the syndrome components in (1). Break the
algorithm if all the parity-check equations are satisfied (s = 0) or a preset
maximum number of iterations is reached. Otherwise, continue.

Step 2) Compute the flipping function En for n ∈ Al where
Al = {n : n ∈ N (m),m ∈ Bl}. If l = 1, B1 = {m : sm �= 0}, otherwise for l ≥ 2,

Bl = {m : m ∈ M(nl−1)}. Update A as A �
l⋃

i=1
Ai.

Step 3) Flip bit znl for nl = argmaxn∈AEn. Increase the iteration number l by one and go
to Step 1.

The standardWBF algorithm flips one bit in each iteration. In the following remark, the
reduced-set single-bit WBF-based algorithm is extended to reduced-set multi-bit WBF-
based algorithm.

Remark 1 In multi-bit WBF-based algorithms, the decoder selects and flips multiple bits
in each iteration. In the first iteration, the set of variable nodes which are likely to be in
error, i.e., the set of variable nodes that are connected to the unsatisfied check nodes, is
the same for single-bit and multi-bit WBF-based decoders. Let γl denote the number of the
flipped bits in the lth iteration and ni,l, i = 1, . . . , γl , denote the index of the flipped bits
in the lth iteration. In multi-bit WBF-based algorithms, for l ≥ 2 the set Bl is modified as

Bl =
{
m : m ∈

γl−1⋃

i=1
M

(
ni,l−1

)
}
.

Due to the sparsity of the LDPC parity-check matrixH, the number of bits that partici-
pate in each check is small compared to N. So, each erroneous bit causes a small number
of unsatisfied check-sums, and for each unsatisfied check-sum, there is a small number
of bits that the decoder must decide whether to flip or not. Therefore, even for moder-
ate values of SNR, the set of candidate variable nodes in each iteration constitutes a very
small subset of all variable nodes which, in turn, leads to a substantial reduction in the
computational complexity of step 2 of theWBF-based decoding algorithms. In the follow-
ing subsections, we derive explicit expressions for this reduction in complexity and show
that the incurred loss in the performance is indeed intangible.
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3.2 Computational complexity analysis

In this subsection, we obtain the average number of flipping function calculations as a
complexity measure of the RS decoding algorithms and show how the computational
complexity of any of theWBF-based decoders is substantially reduced using the proposed
algorithm.1

We now present a theorem.
Theorem 1 Consider a (dv, dc)-regular LDPC code. For any of the single-bit and the

multi-bit RS decoders, the average number of flipping function calculations in the first
iteration (i.e., the average cardinality ofA1) is

L1 = N
(
1 −

(
p0βdv + (1 − p0) (1 − β)dv

))
, (10)

where p0 is the probability that a bit is received in error and β = 1
2

(
1 − (1 − 2p0)dc−1

)
.

For the next iterations, i.e., l ≥ 2, the average number of flipping function calculations for
the single-bit RS decoders is given by

Ll = dv (dc − 1) + 1, l ≥ 2 (11)

and for the multi-bit RS decoders it is upper bounded as

Ll ≤ (dv (dc − 1) + 1) × γl−1, l ≥ 2 (12)

where γl is the number of flipped bits in the lth iteration.

Proof We first obtain the cardinality of A1, the selected set in the first iteration. As
noted in Remark 1, the set of variable nodes that are connected to the unsatisfied check
nodes in the first iteration is the same for both single-bit and multi-bit RS decoders. So,
the cardinality of setA1 (i.e., L1) is the same for both single-bit andmulti-bit RS decoders.
We define the indicator function Ii of the ith variable node as

Ii =

⎧
⎪⎨

⎪⎩

1, i ∈ A1

0, i /∈ A1

(13)

for 1 ≤ i ≤ N . The cardinality of A1, denoted by l1, is a random variable and can be
written as l1 = ∑N

i=1 Ii. So, the average number of variable nodes in setA1 is obtained as

L1 =
N∑

i=1
E {Ii} , (14)

and we have
E {Ii} = 1 − Pr {i /∈ A1} . (15)

The event i /∈ A1 occurs when all checks involving the ith bit are satisfied. Let μm be the
event that the mth check involving the ith bit is satisfied. The ith bit participates in dv
checks, hence

Pr {i /∈ A1} =Pr
{
μ1,μ2, . . . ,μdv

}

=Pr
{
μ1,μ2, . . . ,μdv |i ∈ E

}
Pr {i ∈ E}

+ Pr
{
μ1,μ2, . . . ,μdv |i /∈ E

}
Pr {i /∈ E} ,

(16)

1The number of iterations in the original and the proposed algorithms are the same, but the
number of calculations required to obtain the flipping function in a WBF-based decoder has been
sharply decreased in the proposed method.
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where E denotes the set of all erroneous bits in the received sequence. We assume that the
code is 4-cycle free, i.e., no two code bits are checked by the same two parity constraints.
This structural property is imposed on almost all LDPC code constructions and is very
important to achieve good error performance with iterative decoding [5, 25, 26]. If there
are no cycles of length 4 in the Tanner graph, no two checks share more than one variable
node. In other words, if more than one variable node appear at two different checksums,
there will be at least one cycle of length 4 in the Tanner graph. On the other hand, in
the first iteration, values of variable nodes are received directly from the channel output.
Thus, in the first iteration, all variable nodes are independent (as the noise was assumed to
be white). Therefore, assuming a 4-cycle free graph, all checks involving the ith bit do not
share any other bits, and conditioned on the ith bit all these checks will be independent
in the first iteration. Thus,

Pr {i /∈ A1} =p0
dv∏

m=1
Pr {μm|i ∈ E} + (1 − p0)

dv∏

m=1
Pr {μm|i /∈ E} . (17)

Pr {μm|i ∈ E} is the probability that the number of erroneous bits participating in themth
check (except the ith bit) is an odd number and is given by [4]

β = 1
2

(
1 − (1 − 2p0)dc−1

)
. (18)

Similarly, Pr {μm|i /∈ E} = 1 − β . Therefore,

Pr {i /∈ A1} =p0βdv + (1 − p0) (1 − β)dv . (19)

Using equations (14), (15) and (19), we have

L1 =
N∑

i=1
(1 − Pr{i /∈ A1})

= N
(
1 −

(
p0βdv + (1 − p0)(1 − β)dv

))
. (20)

For l ≥ 2, Al contains all the variable nodes that participate in the parity-check
equations involving the flipped bit in the last iteration. The number of variable nodes that
participate in the parity-check equations involving a given variable node is dv (dc − 1)
(see Fig. 1). Single-bit RS decoders flip only one bit in each iteration. Therefore, in this
case, the cardinality of setAl for l ≥ 2, will be

Ll = dv(dc − 1) + 1. (21)

In multi-bit RS decoders, γl bits are flipped in the lth iteration, and for each flipped bit
in the last iteration, the RS decoder must update dv(dc − 1) + 1 flipping functions. In
general, parity-check equations involving flipped bits in the last iteration may have some
bits in common. So, the cardinality of the setAl, l ≥ 2, in multi-bit RS decoders is upper
bounded as

Ll ≤ (dv(dc − 1) + 1) × γl−1. (22)

End of Proof.
Plotted in Fig. 2 is L1 versus SNR for (3,6) and (4,32)-regular codes. It is seen that the

result of (20) matches the average number of variable nodes inA1 obtained fromMonte-
Carlo simulation.
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Fig. 1 A subgraph spreading from variable node j1 associated with a (3,6)-regular LDPC code. The erroneous
variable nodes are painted gray

If k is the number of iterations required in the decoding process, by using (22), the
number of flipping function calculations in multi-bit RS decoders can be upper bounded
as2

L =L1 +
k∑

l=2
Ll

≤L1 + (dv(dc − 1) + 1) ×
k∑

l=2
γl−1 (23)

Assume that the decoder is in the waterfall region and is able to detect and correct some
erroneous bits in each iteration and eventually corrects all of them. Therefore,

∑k
l=2 γl−1

is equal to the number of erroneous bits in the received sequence. For large block sizes,
the number of erroneous bits is approximately Np0 and it can be easily verified that for
p0 � 1 and large N, we have

L ≤ 2Np0 (dv (dc − 1) + 1) . (24)

For single-bit RS decoder, the inequality in Eq. (24) becomes equality (cf. (21) and (22)).
From Eq. (24), it can be seen that the computational complexity is linear in the codeword
length. This fact was checked by simulation and the results are presented in Table 1. The
simulation results for several (3,6)-regular LDPC codes of different codeword lengths are
tabulated along with the theoretical results. The parity check matrices of the codes are
given in [27], and the SNR is considered to be 6 dB. We observe that both the single-bit
and multi-bit RS decoders need essentially the same average number of flipping function
calculations, and the derived upper bound for L in (24) is quite tight. As expected, as N
increases, the upper bound obtained from Eq. (24) get closer to the simulation results.
On the other hand, original WBF-based decoders compute the flipping function for all

N variable nodes in each iteration. So, the number of flipping function calculations for
WBF-based decoders is approximately kN . So, the ratio of the average number of flipping
function calculations for WBF-based and RS decoders—which can be considered as the
complexity gain—is lower bounded as

Gc ≥ k
2p0

(
dv(dc − 1) + 1

) . (25)

2Note that when the codeword is received correctly, i.e., s = 0, there is no need to calculate the
flipping function, so L = 0.
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Fig. 2 L1 versus SNR for the (3,6) and (4,32)-regular LDPC codes

By assuming that the decoder is able to detect and correct one erroneous bit in each
iteration, in single-bit decoders, the average number of iterations required to obtain the
correct codeword is the same as the number of erroneous bits in the received sequence,
i.e., k = Np0, and the inequality in equation (25) becomes equality (cf. (21) and (22)). It
should also be noted that the complexity gain is higher for a sparser parity-check matrix.
For example, for a (3, 6)-regular code with N = 105 and at SNR=6 dB, Gc for the single-

bit and multi-bit RS decoders is obtained as 3125 and 1279, respectively. Although the
complexity gain is smaller for multi-bit RS decoders, it is still significant.

3.3 Performance analysis

To evaluate the performance of the proposed RS algorithm and compare it with the origi-
nal WBF-based decoder,3 we first note that if A �

⋃

i
Ai, the selected set by RS decoders,

which contains all erroneous bits, both decoders will have the same performance. How-
ever, in general, some erroneous bits may happen not to be in the selected set and thus
the RS decoders can never detect and correct them. Specifically, an erroneous bit will not
be included in A1 if all parity-checks in which this bit participates are satisfied (i.e., if
these checks involve an even number of errors). This bit may never enter A in the next
iterations, and so the RS decoder will totally miss it. Therefore, the performance of RS-
based decoders will generally be inferior to that of the original decoders. However, in the
following theorem, we show that the difference between the FER of original WBF-based
decoders PO and RS decoders PRS is indeed negligible.

3 By “original” WBF-based decoders, we mean all WBF-based decoders previously proposed in the
literature (to differentiate them from their RS counterparts).
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Table 1 Number of flipping function calculations for several (3,6)-regular LDPC codes over AWGN
channel at SNR = 6 dB

N L (SB) L (MB) L (upper bound) L
N (SB) L

N (MB) L
N (upper bound)

1000 651 649 736 0.651 0.649 0.736

2640 1743 1738 1943 0.66122 0.65833 0.735984

4000 2645 2640 2820 0.66125 0.66 0.705

4896 3245 3243 3468 0.66278 0.66237 0.708333

8000 5307 5310 5536 0.66337 0.66375 0.692

10000 6652 6649 6845 0.6652 0.6649 0.6845

SB: single-bit,MB: multi-bit

Theorem 2 The difference between the FER of the original WBF-based and RS decoders
for a (dv, dc)-regular LDPC code is upper bounded as

�P ≤N
N∑

ε0=1

∑

θ∈T
P1(θ)

(
dv(dc − 1)

θ

)(
N − dv(dc − 1) − 1

ε0 − θ − 1

)
pε0
0 (1 − p0)N−ε0 , (26)

where T =
{
θ ′ | dv ≤ θ ′ ≤ min {dv(dc − 1), ε0 − 1} , θ ′ 2≡ dv

}
,4 and

P1(θ) =
∑

(X1,X2,...,Xdv )∈� ′
θ

(dc−1
X1

)(dc−1
X2

)
. . .

(dc−1
Xdv

)

∑
(X1,X2,...,Xdv )∈�θ

(dc−1
X1

)(dc−1
X2

)
. . .

(dc−1
Xdv

) ,

with Xi’s being non-negative integers. The sets �θ and � ′
θ are defined as

�θ =
{

(
X1,X2, . . . ,Xdv

) | 0 ≤ Xi ≤ dc − 1,
∑

i
Xi = θ

}

,

and

� ′
θ =

{
(
X1,X2, . . . ,Xdv ) | 0 ≤ Xi ≤ dc − 1,

∑

i
Xi = θ ,Xi odd

}

.

Proof Let b and b̂RS be the transmitted message and the estimated message by the RS
decoder, respectively. The FER of the RS decoder can then be written as

PRS �Pr
{
b �= b̂RS

}

=Pr
{
b �= b̂RS, E ⊆ A

}
+ Pr

{
b �= b̂RS, E � A

}
,

where E = {
ji, i = 1, 2, . . . , ε

}
is the set of indices of erroneous bits in the received

sequence and A �
⋃

i
Ai is the selected set of variable nodes in the decoding process. By

defining b̂O as the estimated sequence by the original WBF-based decoder, we have

Pr
{
b �= b̂RS, E ⊆ A

}
=Pr

{
b �= b̂O, E ⊆ A

}

≤Pr
{
b �= b̂O

}

�PO. (27)

4θ ′ 2≡ dv means θ ′ and dv are congruent modulo 2, i.e., both are even or both are odd.
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Therefore, using the Bayes rule,

PRS ≤ PO + Pr
{
b �= b̂RS|E � A

}
Pr

{
E � A

}
. (28)

By defining �P = PRS − PO, we have

�P ≤ Pr
{
b �= b̂RS|E � A

}
Pr

{
E � A

}

≤ Pr
{
E � A1

}
. (29)

The event E � A1 is the event that some erroneous variable nodes may not be in
the selected set A1. The number of erroneous bits ε in the received sequence (i.e., the
cardinality of set E) is a random variable with binomial distribution B (ε, p0), i.e.,

Pr {ε = ε0} =
(
N
ε0

)
pε0
0 (1 − p0)N−ε0 . (30)

Therefore, we have

Pr
{
E � A1

} =
N∑

ε0=0
Pr

{
E � A1, ε = ε0

}

=
N∑

ε0=1
Pr

{
ε0⋃

i=1

(
ji /∈ A1

)
, ε = ε0

}

≤
N∑

ε0=1
ε0 Pr

{
j1 /∈ A1, ε = ε0

}

=
N∑

ε0=1
ε0 Pr

{
j1 /∈ A1|ε = ε0

}
Pr {ε = ε0} . (31)

By defining 	 as the number of erroneous bits participating in checks that involve bit j1,
we have

Pr
{
j1 /∈ A1|ε = ε0

} =
K∑

θ=0
Pr

{
j1 /∈ A1|	 = θ , ε = ε0

}
Pr {	 = θ |ε = ε0} , (32)

where K = min {dv(dc − 1), ε0 − 1}. For a (dv, dc)-regular code

Pr {	 = θ |ε = ε0} =
(dv(dc−1)

θ

)(N−dv(dc−1)−1
ε0−θ−1

)

(N−1
ε0−1

) . (33)

To compute Pr
{
j1 /∈ A1|	 = θ , ε = ε0

}
, we define Xi as the number of erroneous bits

participating in the ith check that involves bit j1. Figure 1 shows an example in which
dv = 3, dc = 6, θ = 3 and the erroneous variable nodes are painted gray. It is seen
that X1 = 1,X2 = 0 and X3 = 2. Noting that a check is satisfied if an even number of
erroneous bits are involved in it, and by defining

�θ �
{

(
X1,X2, . . . ,Xdv

) | 0 ≤ Xi ≤ dc − 1,
∑

i
Xi = θ

}

,

and

� ′
θ �

{
(
X1,X2, . . . ,Xdv

) | 0 ≤ Xi ≤ dc − 1,
∑

i
Xi = θ ,Xi odd

}

,

we have
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P1(θ) � Pr
{
j1 /∈ A1|	 = θ , ε = ε0

} =
∑

(X1,X2,...,Xdv )∈�′
θ
(dc−1

X1 )(dc−1
X2 )...(dc−1

Xdv
)

∑
(X1,X2,...,Xdv )∈�θ

(dc−1
X1 )(dc−1

X2 )...(dc−1
Xdv

)
. (34)

From the definition of set � ′
θ , if dv is an even (odd) number, then P1(θ) = 0 when θ is

odd (even). Moreover, P1(θ) = 0 for θ < dv. Therefore, using (29)-(34), the upper bound
of�P is obtained as (26), and from (28) the FER of the RS decoders can be upper bounded
as

PRS ≤ PO + N
N∑

ε0=1

∑

θ∈T
P1(θ)

(
dv (dc − 1)

θ

)(
N − dv(dc − 1) − 1

ε0 − θ − 1

)
pε0
0 (1 − p0)N−ε0 .

(35)

End of Proof.
The upper bound presented in Theorem 2 is general and is applicable to both single-

bit and multi-bit WBF-based decoders. Indeed, as shown above, the difference between
the FER of the original WBF-based decoders and their RS counterparts (�P) is upper
bounded by the probability that some erroneous variable nodes may not be in the selected
set A1 in the first iteration (see Eq. (29)), and the set A1 is the same in single-bit and
multi-bit WBF-based decoders.

Remark 2 Noting that P1(θ) < 1, from (26) we have

�P <N
N∑

ε0=1

∑

θ∈T

(
dv(dc − 1)

θ

)(
N − dv(dc − 1) − 1

ε0 − θ − 1

)
pε0
0 (1 − p0)N−ε0 . (36)

By changing the order of the summations and modifying their bounds, we have

�P <N
dv(dc−1)∑

θ=dv,θ
2≡dv

⎛

⎝
(
dv(dc − 1)

θ

)

×
N−dv(dc−1)+θ∑

ε0=θ+1

(
N − dv(dc − 1) − 1

ε0 − θ − 1

)
pε0
0 (1 − p0)N−ε0

⎞

⎠ . (37)

Making the substitution ε′
0 = ε0 − θ − 1 and using

∑n
k=0

(n
k
)
pk(1 − p)n−k = 1, after some

simplification, (37) becomes

�P < N
dv(dc−1)∑

θ=dv,θ
2≡dv

(
dv(dc − 1)

θ

)
pθ+1
0 (1 − p0)dv(dc−1)−θ . (38)

From the above inequality, it is clear that in the high SNR regime �P tends to zero at least
as pdv+1

0 , and the upper bound will be tighter for a code with a larger degree of the variable
nodes.

4 Results and discussion
In this section, we compare WBF-based and reduced-set (RS) decoders in terms of com-
putational complexity and the probability of error. In the simulations, we use (3, 6) and
(4, 32)-regular LDPC codes with rates 1

2 and 7
8 , respectively. The parity-check matrix for

the (3, 6)-regular code is constructed with the progressive edge growth (PEG) method
[28]. For the (4, 32)-regular code, we use the LDPC code considered in [29] for near earth
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applications which is a quasi-cyclic code. The maximum number of iterations is set to
100 in all simulations.
First, an analysis of the computational complexity of the decoders based on the average

number of flipping function calculations (L) is presented. Plotted in Fig. 3 is L in the RS
decoder versus SNR for the (3, 6) and (4, 32)-regular LDPC codes with codeword length
10000 and 8176, respectively. Average number of flipping function calculations obtained
by Monte-Carlo simulation for single-bit and multi-bit WBF-based decoders, along with
the upper bound of (24) are shown in this figure. As expected, in the high SNR regime,
the upper bound becomes quite tight for both single-bit and multi-bit decoders.
In Fig. 4, the average number of flipping function calculations is plotted versus SNR for

the RS and original WBF-based decoders. Both single-bit and multi-bit decoders are con-
sidered in this figure. As discussed in Section 3.2, the average number of flipping function
calculations in single-bit RS and multi-bit RS decoders are almost the same, and this is
confirmed by the results obtained by simulation in Fig. 4. It is clearly seen that using the
RS algorithm results in about three orders of magnitude decrease in the decoding com-
plexity in single-bit WBF-based decoders and at least two orders of magnitude decrease
in the decoding complexity in multi-bit WBF-based decoders. Moreover, this reduction
in the complexity is higher for the sparser codes (cf. (25)). It should also be noted that the
number of flipping function calculations required in original (non-RS) multi-bit decoders
at the medium SNR regime is less than those required in the single-bit decoders, while
in the low and high SNR regimes the number of flipping function calculations required
in the two decoding algorithms are the same. This behavior can be explained as follows.
At low SNRs, neither decoding algorithms are able to correct the errors, so the decod-
ing process continues until the predefined maximum number of iterations is reached,

Fig. 3 L versus SNR for the (3,6) and (4,32)-regular LDPC codes with N = 10000 and 8176, respectively
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and thus the average number of flipping function calculations is the same for single-
bit and multi-bit WBF decoders. At intermediate SNRs, the convergence speed of the
multi-bit decoding algorithm is higher (i.e., the average number of required iterations is
smaller), and therefore, the average number of flipping function calculations for themulti-
bit decoder is lower. At the high SNR regime, either the received sequence is error-free
or the number of erroneous bits is very small. In this case, the number of required iter-
ations in the decoding process in the single-bit and multi-bit decoders are almost equal.
These results are shown in Fig. 5. In this figure, the average number of required itera-
tions versus SNR is plotted to evaluate the convergence of the original and proposed RS
single-bit and multi-bit decoders. As expected, the average number of iterations of the
original and RS decoders are nearly identical, i.e., both decoders have similar convergence
speeds.
To evaluate the probable performance loss incurred by using the RS decoders (com-

pared to their original WBF-based counterparts), the FER and BER for both the RS and
original WBF-based decoders are plotted in Figs. 6, 7, 8, and 9. In these figures, regular
(3, 6) and (4, 32) LDPC codes with codeword length 10000 and 8176 are employed. In
Fig. 6, the simulation results for the FER of the (3, 6) and (4, 32)-regular codes for both
the RS and original WBF-based decoders, along with an upper bound for the FER of the
RS decoder are plotted. In this figure, PO is obtained by Mont-Carlo simulations for both
single-bit standard WBF decoder [2] and multi-bit AWMBF decoder [23], and the upper
bound is given by equation (35). We observe that both the RS and the original WBF-
based decoders have essentially the same performance, and the derived upper bound for

Fig. 4 L versus SNR for the (3,6) and (4,32)-regular codes with N = 105 and 81760, respectively
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Fig. 5 Number of iterations versus SNR for the (4,32)-regular LDPC code with N = 8176

Fig. 6 The FER and the upper bound of �P versus SNR for the (3,6) and (4,32)-regular codes
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Fig. 7 Performance of (3,6)-regular LDPC code with rate 1
2 over AWGN channel

the RS decoders are quite tight in both single-bit and multi-bit decoders. As can be seen
in Fig. 6, the upper bound of �P for (4, 32)-regular LDPC code is tighter than the upper
bound for (3, 6)-regular LDPC code, because as discussed in Section 3.3, the upper bound
is tighter for a code with a larger degree of the variable nodes (recall that�P tends to zero
at least as pdv+1

0 ).
In Figs. 7, 8, and 9, the error performance of the proposed RS and the

original WBF-based decoders are shown. Figures 7 and 8 show the results over
the AWGN channel and Fig. 9 over the BSC. In these simulations, we have
employed the single-bit WBF, MWBF, IRRWBF, and TBWBF decoders and multi-
bit AWMBF decoder and their RS counterparts. As expected, the error perfor-
mance in terms of BER and FER of the original decoders and RS decoders are very
close.

5 Conclusion
We proposed a method to reduce the computational complexity of iterative LDPC
decoders based on the WBF algorithm. It was shown that the decoder com-
putational complexity is significantly reduced, especially when the code length
is large. Our method performs just as well as the existing WBF-based itera-
tive decoding algorithms and the FER and BER of the two decoders are essen-
tially the same. In the proposed method, instead of all variable nodes, the
decoder considers only a subset of variable nodes that are potentially erro-
neous and thus the complexity of the flipping function calculation is significantly
reduced.
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Fig. 8 Performance of (4,32)-regular LDPC code with rate 7
8 over AWGN channel

Fig. 9 Performance of regular LDPC codes with rate 1
2 and 7

8 over BSC channel
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