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considered. In order to minimize long-term average computation cost in terms of
power consumption and buffering delay at each user, a deep reinforcement learning
(DRL)-based dynamic computation offloading strategy is investigated to build a
scalable system with limited feedback. Specifically, a continuous action space-based
DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn
decentralized computation offloading policies at all users respectively, where local
execution and task offloading powers will be adaptively allocated according to each
user’s local observation. Numerical results demonstrate that the proposed DDPG-based
strategy can help each user learn an efficient dynamic offloading policy and also verify
the superiority of its continuous power allocation capability to policies learned by
conventional discrete action space-based reinforcement learning approaches like deep
Q-network (DQN) as well as some other greedy strategies with reduced computation
cost. Besides, power-delay tradeoff for computation offloading is also analyzed for both
the DDPG-based and DQN-based strategies.
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1 Introduction

As the popularity of smart mobile devices in the coming 5G era, mobile applications,
especially for computation-intensive tasks such as online 3D gaming, face recognition,
and location-based augmented or virtual reality (AR/VR), have been greatly affected by
the limited on-device computation capability [1]. Meanwhile, for the large number of
low-power and resource-constrained wireless terminals serving in the emerging Internet
of Things (IoT) [2] and Intelligent Transport Systems (ITS) [3], a huge amount of sen-
sory data also needs to be pre-processed and analyzed. As a result, to meet the quality
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of experience (QoE) of these mobile applications, the technology of mobile edge com-
puting (MEC) [4] has been proposed as a promising solution to bridge the gap between
the limited resources on mobile devices and the ever-increasing demand of computation
requested by mobile applications.

Unlike the remote public clouds in conventional cloud computing systems such as Ama-
zon Web Services and Microsoft Azure, MEC enhances radio access networks (RANSs),
which is in close proximity to mobile users, with computing capability [5]. Thus, mobile
devices can offload computation workloads to the MEC server associated with a base sta-
tion (BS), and mobile applications can be improved with considerably reduced latency
and power consumption. Nevertheless, computation offloading highly depends on the
efficiency of wireless data transmission, which requires MEC enabled systems to man-
age radio resources along with computation resources and complete computation tasks
efficiently.

To achieve higher energy efficiency or better computation experience, computation
offloading strategies for MEC have been widely investigated recently. For short-term
optimization over quasi-static channels, some algorithms have been studied in [6-12].
In [6], optimal offloading selection and radio resource allocation for mobile tasks was
studied to minimize the overall execution time. Moreover, by using dynamic voltage
and frequency (DVES) techniques, CPU-cycle frequency was flexibly controlled in [7]
to reduce the system cost which is defined as weighted sum of energy consumption
and execution time. Besides, energy-latency tradeoff has been discussed in [8] with
jointly optimized communication and computation resource allocation under the limited
energy and sensitive latency. Also, performance of MEC have been further improved
with adopting some other emerging technologies such as wireless power transfer [9]
and non-orthogonal multiple access (NOMA) [10-12]. Particularly, physical layer secu-
rity is studied in NOMA-based MEC networks in [11], where security of computation
offloading is improved in terms of secrecy outage probability and user connectivity is also
enhanced.

To cope with stochastic task arrivals and time-varying wireless channels, strategies
for dynamic joint control of radio and computation resources in MEC enabled systems
become even challenging [13—-19]. In [13], dynamic policies for offloading decision, clock
speed and network interface control were considered to minimize energy consump-
tion with given delay constraints. Joint optimization of multiple-input multiple-output
(MIMO) beamforming and computational resource allocation for a multi-cell MEC sys-
tem is designed in [14]. Additionally, a green MEC enabled system with energy harvesting
devices is studied in [15], where the delay cost addressing both the execution delay
and task failure is minimized. For multi-user scenarios, power-delay tradeoff [16], net-
work utility maximization balancing throughput and fairness with reduced feedback [17],
and stochastic admission control and scheduling for multi-user multi-task computation
offloading [18] were discussed, respectively. Markov decision process (MDP) can be also
applied to the analysis and design of dynamic control of computation offloading [19].
Furthermore, [20] demonstrated how dynamic computation offloading policies can be
learned by reinforcement learning (RL)-based algorithm with no prior knowledge of the
system.

Conventional RL algorithms cannot scale well as the number of agents increases,
since the explosion of state space makes traditional tabular methods infeasible [21].
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Nevertheless, by exploiting deep neural networks (DNNs) for function approximation,
deep reinforcement learning (DRL) has been demonstrated to be able to efficiently
approximate Q-values of RL [22] and more scalable. There have been some attempts to
adopt DRL in the design of online resource allocation and scheduling for computation
offloading in MEC [23-27]. Specifically, in [23], system sum cost of a multi-user net-
work is minimized in terms of execution delay and energy consumption by computational
resource allocation. Similarly, the authors in [24] considered an online offloading algo-
rithm to maximize the weighted sum computation rate in a wireless powered system. In
[25], a DRL-based computation offloading strategy of an IoT device is learned to choose a
MEC server to offload and determine the offloading rate. Besides, double deep Q-network
(DQN)-based strategic computation offloading algorithm was proposed in [26], where an
mobile device learned the optimal task offloading and energy allocation to maximize the
long-term utility based on the task queue state, the energy queue state as well as the chan-
nel qualities. What is more, a DQN-based vehicle-assisted offloading scheme is studied in
[27] to maximize the long-term utility of the vehicle edge computing network by consid-
ering the delay of the computation task. Overall, existing works on DRL-based dynamic
computation offloading only consider centralized algorithms for either single user cases
or multi-user scenarios. It requires BS to collect global information of the environment
from all users and makes decision for them, which leads to high system overhead and con-
siderable latency to collect such informations at BS and then distribute the decisions to
each user. Thus, decentralized DRL-based dynamic task offloading algorithms are desired
for a multi-user system, which still remains unknown.

In this paper, we consider a system consisting of one BS attached with an MEC server
and multiple mobile users, where tasks arrive stochastically and channel condition is
time-varying at each user. Without any prior knowledge of the system, i.e., the number
of users, statistical modeling of task arrivals and wireless channels, each mobile user can
learn a dynamic computation offloading policy independently based on its local obser-
vations of the system. Moreover, different from conventional discrete action space-based
DRL policies, we adopt a continuous action space-based algorithm named deep determin-
istic policy gradient (DDPQG) to derive better power control of local execution and task
offloading. Specifically, major contributions of this paper can be summarized as follows:

¢ By considering a MIMO enabled multi-user MEC system, a long-term average
computation cost minimization problem is formulated under stochastic task arrivals
and wireless channels, which aims to optimize local execution and computation
offloading powers for each user.

¢ A decentralized dynamic computation offloading framework based on the DDPG
algorithm has been built, which enables each user to independently learn efficient
offloading policies from only local observations for dynamic power allocation in a
continuous domain.

e DPerformance of the decentralized policies learned by DDPG and the power-delay
trade-off is illustrated by numerical simulations, which demonstrates the
DDPG-based continuous power control outperforms the DQN-based discrete

control and some other greedy strategies.

The rest of this paper is organized as follows. In Section 2, system model and prob-
lem formulation of dynamic computation offloading is presented. In Section 3, design of
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the decentralized DDPG-based dynamic computation offloading framework is proposed.
Numerical results are illustrated in Section 4. Finally, Section 5 concludes this paper.

2 System model and problem formulation

As shown in Fig. 1, a multi-user MIMO system is considered, which consists of an N-
antenna BS, an MEC server and a set of single-antenna mobile users M = {1,2,...,M}.
Given limited computational resources on the mobile device, each user m € M has
computation-intensive tasks to be completed. To improve user computation experience,
an MEC server is deployed in proximity to BS to enable users to offload part of com-
putation needs to the MEC server via wireless links [28]. In the proposed system, a
discrete-time model is adopted, where the operating period is slotted with equal length
79 and indexed by 7 = {0, 1, .. .}. For each slot ¢ € T, each user’s channel condition and
task arrival varies, which requires the ratio of local execution and computation offloading
to be elaborately selected to balance the average energy consumption and task processing
delay. Moreover, as the number of mobile users increases, decentralized task scheduling
is more favorable, which reduces system overhead between the users and the MEC server
and thus improves scalability of the proposed system. In the following parts, the modeling
of networking and computing of the system will be introduced in detail. The summary of
notations are presented in Table 1.

2.1 Network model
For each slot ¢, if the channel vector of each mobile user m € M is represented by h,,(t) €
CN*1 the received signal of BS from all users in the uplink can be written as

M
YO =Y B () Lo Osim(t) + (), (1)
m=1

where p, ., (¢) €[0, P, ] is the transmission power of user m to offload task data bits with
P, being the maximum value, s;,(¢) is the complex data symbol with unit variance, and
n(t) ~ CN(0, G’I%I N) is a vector of additive white Gaussian noise (AWGN) with variance
o2. Note that Iy denotes an N x N identity matrix. In order to characterize the temporal
correlation between time slots for each mobile user m, the following Gaussian-Markov
block fading autoregressive model [29] is adopted:
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Fig. 1 Computation offloading in an MEC enabled multi-user MIMO system
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Table 1 Summary of notations

Notation Description

M The set of mobile users

T Index set of time slots

Iy (1) Channel vector between user m and BS at slot t

(1) Received signal of BS at slot t

Pm Normalized temporal channel correlation coefficient of user m
H(t) Channel matrix from all the users to BS at slot t

g, User m's ZF detection vector used by BS at slot t

Ym(t) User m's receiving SINR at BS of slot ¢

Bm (1) Queue length of user m's task buffer at slot t

am(t) Amount of task arrivals of user m in bit at slot t

fr (£) CPU frequency scheduled for local execution of user m at slot ¢
Lm (Fm) CPU cycles required per one task bit (allowable CPU-cycle frequency) at user m
Dom(t) Transmission power of user m for computation offloading at slot t
dom(t) Data transmitted by user m for computation offloading at slot t
Pim(t) Power consumption of user m for local execution at slot t

dim(t) Data processed by user m via local execution at slot ¢t

Pom (Pim) Maximum transmission power (local execution power) of user m
0 Length of one time slot

() = bl (t — 1) + v 1- pyz,,e(t)y (2)

where p,;, is the normalized channel correlation coefficient between slots ¢ and ¢ — 1, and
the error vector e(f) is complex Gaussian and uncorrelated with #,,(t). Note that p,, =
Jo(2nfym70) according to Jake’s fading spectrum, where f; ,,, is the Doppler frequency of
user m, ty is the slot length, and Jo(+) is the Bessel function of the first kind [30].

Denoting H(t) =[hi1(¢),...,hp(t)] as the N x M channel matrix between BS and all
the users, the linear zero-forcing (ZF) detector at BS! can be written by its pseudo inverse
H @) = (HH(t)H(t))_1 H (). The mth row of H' (¢), which we referred to as g%(t), is
used by BS to detect signal of user m. Thus, the detected signal can be written by

g Oyt) = VDo Osm(t) + g (On(2), 3)

since we have ng ()hj(t) = 6 for ZF detection by definition [31]. Here, §;; = 1 when i =j
and 0 otherwise. Then, the corresponding signal-to-interference-plus-noise (SINR) at BS

can be derived by
Pom(t)
Ym(t) = ————, (4)
" oRllg, 0112
t
_ po,m( ) ) (5)

o2 [(HH (t)H(t))*l]mm

where [ Al is the (m, n)th element of matrix A. From (4), it can be verified that each
user’s SINR becomes worse as the number of users M increases, which generally makes
each user to spend more power on task offloading. In the sequel, we will show how the
user learns to adapt to the environment from the SINR feedbacks.

! Here, the number of antennas at BS is larger than the number of users, i.e., N > M. ZF is adopted for multiuser
detection for its low complexity and efficiency, especially for with large antenna arrays [31]. It is demonstrated that as N
increases, the SINR performance of ZF detection approaches that of the MMSE detection.
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2.2 Computation model

Without loss of generality, we use a,,(¢) to quantify the amount of task arrivals of user m
in bit during slot £, which is assumed to be independent and identically distributed (i.i.d)
over all slots. Upon arrival, task bits will be firstly stored in the user’s queuing buffer and
then processed in upcoming slots starting from ¢ + 1. Besides, we assume computation
applications are fine-grained [13]. Thus, during slot ¢, part of buffered task bits denoted
by dj ,,,(¢) will be processed locally on the mobile device and another part of buffered task
bits denoted by d, ,, () will be offloaded to and executed by the MEC server. Note that the
amount of all executed task bits, i.e., dj;,, (£) 4+ do m (¢), should not exceed the queue length
of task buffer. If B,,,(¢) stands for the queue length of user »1’s task buffer at the beginning
of slot ¢, it will evolve as follows:

Bu(t+1) = [Bu(®) — (dypn(®) + doyu(®)]" + am(@®), ¥t € T, 6)
where B,,(0) = 0 and [x]*T = max(x, 0).

2.2.1 Local execution
For user m, if p;,,,(¢£) €[ 0, P;,,] is the allocated local execution power at slot ¢, the local
processed bits can be calculated by

dw(t) = Tofim(®)L,,, 7)

where P;,, is the maximum local execution power and f,,,(£) = m is the CPU
frequency scheduled by using DVFS techniques [32] to adjust chip voltage. Note that « is
the effective switched capacitance depending on the chip architecture, and thus f,(¢) €
[0, Fy] with Fyy, = \?/IW being the maximum allowable CPU-cycle frequency of
user m’s device. Besides, L,, denotes the number of CPU cycles required to process one
task bit which can be estimated through off-line measurement [33].

2.2.2 Edge computing

MEC servers are usually equipped with sufficient computational resources such as high-
frequency multi-core CPUs. Thus, it can be assumed that different applications can
be handled in parallel with a negligible processing latency. Moreover, feedback delay is
ignored for the small sized computation output by considering applications like video
stream analysis and services for connected vehicles. In this way, all the task data bits
offloaded to the MEC server via BS will be processed. Therefore, given the uplink trans-
mission power p, ,(¢), the amount of offloaded data bits of user m during slot ¢ can be
derived by

dom(t) = ToW log, (1 + yim(2)), 8)
where W is the system bandwidth and y,,(¢) is the SNR obtained from (4).

2.2.3 Computation cost

To take both energy cost and latency into account, the overall computation cost for each
user agent is quantified in term of a weighted sum of energy consumption and task buffer-
ing delay.? According to the Little’s Theorem [34], average queue length of the task buffer

2In this paper, we focus on applications such as multimedia streaming or file backup, where the long-term average
performance metrics are relevant to consider. For other applications with more strict delay requirement, the proposed
computation cost model can be further extended to include more metrics.
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is proportional to buffering delay. Thus, the long-term average computation cost for each
user m is defined by

T

1
Cn = Th—>moo T tz_(; Win,1 (Pl,m(t) + Pom (t)) + Wi2Bim (1), ©)

where wy,, 1 and wy, » are both nonnegative weighted factors. By setting different values for
these weighted factors, there will be a tradeoff between energy consumption and buffering
delay exists for dynamic computation offloading.

In contrast to make centralized decisions at BS that requires full observation of the
environment, we take advantage of local observation to minimize the computation cost
at each user m by decentralized decisions, i.e., dynamically allocating powers for local
execution and computation offloading of each slot ¢ as follows,

min Cy,
Pim(€).Po,m (t)
st. prm(t) €[0,P,], Ve e T; (10)
po,m(t) E[O)PO,WI] ;Vt S T (11)

It is worth noting that, full observation requires global information such as uplink chan-
nel vectors and task buffer’s queue lengths of all users, as well as the receiving SINRs of
each user at BS. To collect such informations at BS and then distribute to each user will
introduce high system overhead and considerable latency in practice, which even grows
exponentially as the number of users increases. To this end, we assume that each user
m makes decentralized decisions only depending on its local observation of the environ-
ment. That is, at the beginning of each slot ¢, user m will be only provided with the arriving
bits a,,(¢) to update task buffer, be acknowledged with the previous receiving SINR at BS,
i.e., (¢ — 1), and be able to estimate the current channel vector A,,(¢) by using chan-
nel reciprocity. After that, the learned policy at each user can decide p;,,(¢) and pg, ., (¢)
independently from other user agents.

3 Decentralized dynamic computation offloading method

In this section, decentralized dynamic computation offloading is proposed to minimize
long-term average computation cost of each user. Specifically, by leveraging the DDPG
[35] algorithm, dynamic computation offloading policies can be independently learned
at each user, where an continuous action, i.e., powers allocated for local execution and
computation offloading in a continuous domain, will be selected for each slot based on
local observation of the environment. Each user has no prior knowledge of the system
environment, which means the number of users M, and statistics of task arrivals and
wireless channels are all unknown to each user agent and thus the online learning pro-
cess is totally model-free. In the sequel, we will firstly introduce some basics of DRL
technology. Then, the DDPG-based framework for decentralized dynamic computation
offloading will be built, where the state space, action space and reward function are
defined. Finally, training and testing of decentralized policies in the framework is also
presented.
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3.1 Preliminaries on DRL

The standard setup for DRL follows from traditional RL, which consists of an agent, an
environment E, a set of possible state S, a set of available action .4, and a reward function
r: S x A — R, where the agent continually learns and makes decisions from the interac-
tion with the environment in discrete time steps. In each step ¢, the agent observes current
state of the environment as s; € S, and chooses and executes a action a; € A according
to a policy 7. The policy 7 is generally stochastic, which maps the current state to a prob-
ability distribution over the actions, i.e., 7 : & — P(A). Then, the agent will receive a
scalar reward r; = r(s,a;) € R C R and transition to the next state 5,11 according to the
transition probability of the environment p(s+1|ss, a;). Thus, it can be known that state
transition of the environment E depends on the agent’s action a; executed in the current
state s;. In order to find the optimal policy, we define the return from a state as the sum of
discounted reward in the future as R; = Zszt yi~tr(si, a;), where T — 00 represents the
total number of time steps and y €[ 0, 1] stands for the discounting factor. The goal of RL
is to find the policy that maximizes the long-term expected discounted reward from the
start distribution, i.e.,

J= ES,"‘/E,(,ZL""N[RI] . (12)

Under a policy 7, the state-action function Q" (s, a;) : § x A — R, also known as
the critic function that will be introduced later in this paper, is defined as the expected
discounted return starting from state s; with the selected action 4,

QTr (Str at) = ]ES,'>Z’\'E,5I,'>Z’\'JT[Rt|St) ﬂt)] ’ (13)

where expectation is over the transition probability p(s¢+1ls;, ;) and the policy .

RL algorithms attempt to learn the optimal policies from actual interactions with the
environment and adapts its behavior upon experiencing the outcome of its actions. This
is due to the fact that there may not be an explicit model of the environment E’s dynamics.
That is, the underlying transition probability p(s¢+1l|ss, a;) is unknown and even non-
stationary. Fortunately, it has been proved [21] that under the policy 7* that maximizes
the expected discounted rewards, the state-action function satisfies the following Bellman
optimality equation,

Q* (St’ at) = ESH—I"’E |:r(str ﬂt) +vy r;lai( Q* (St-i-l) ﬂt+1)] ’ (14)
t+
from which the optimal policy 7* can be derived by choosing action in any state s € S as
follows>,
¥ (s) = argmax Q*(s, a). (15)
acA

In order to learn the value of state-action function from raw experience, the temporal-
difference (TD) method can be leveraged to update the state-action function from an
agent’s experience tuple (s¢, a¢, 14, S¢+1) at each time step ¢,

Qstrar) < Q(spar) + I:V(St: ag) +vy max Q(st+1, 1) — Qses ﬂt):| , (16)
t+
where o is the learning rate and the value &; := r(s;,a¢) + y maxg,,; Q(st41,4¢11) —

Q(sz, ay) is referred to as the TD error. Note that the well-known Q-learning algorithm

3Note that this gives an special case for deterministic policies, which can be readily extended to stochastic policies.
Specifically, (14) still holds for stochastic policies. If there are ties for different actions that maximized the Q-value, each
maximizing action can be given a portion of probability to be selected, while other actions is selected with zero probability.
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[36] is based on (16) and thus the state-action function is also known as Q-value. Besides,
it has been proved that Q-learning algorithm converges with probability one [21], which
indicates that an estimated Q*(s, @) will be obtained eventually.

Thanks to the powerful function approximation properties of DNNs, DRL algorithms
are able to learn low-dimensional representations of RL problems efficiently. For instance,
the DQN algorithm [22] utilizes a DNN parameterized by 69 to approximate Q-value
as Q(s;, a;|0Q). Moreover, an experience replay buffer 3 is employed to store the agent’s
experience tuple e; = (s¢, az, 14, S¢+1) at each time step ¢, which can be then used to resolve
the problem of instability of using function approximation in RL. Specifically, for each
time slot, a mini-batch of samples (s, a,r,s") ~ U(BB) will be drawn uniformly at random
from B to calculate the following loss function:

2
L(09) = Egs a5 ~us) [(r +y max Q(s,al8?) — QG a|eQ>) ] . (17)
a

Such loss function will be used to update the network parameter by 2 < 62 — a( -
VyoL(0Q) with a learning rate ag. In order to further improve stability, the so-called soft
update strategy is adopted by DQN, where a target network 6< in (17) is used to derive
the TD error for the agent. Note that the target network tracks the weights of the learned
network by 09 «— 162 + 1 - ‘L')@Q/ with T <« 1. Besides, from (15), we know that the
action taken by the agent at each time step ¢ is obtained by a; = arg max Q(sz, al09).

3.2 DDPG-based dynamic computation offloading

Although problems in high-dimensional state spaces can be solved by DQN, only discrete
and low-dimensional action spaces is supported. To this end, DDPG has been proposed
[35] to extend conventional DRL algorithms to continuous action space. As shown in
Fig. 2, an actor-critic approach is adopted by using two separate DNNs to approximate the
Q-value network Q(s, a|99), i.e., the critic function, and the policy network u(s|6"), i.e.,
the actor function, respectively*. Specifically, the critic Q(s, 2|6 <) is similar to DQN and
can be updated according to (17). On the other hand, the actor u(s|0*) deterministically
maps state s to a specific continuous action. As derived in [37], policy gradient of the actor
can be calculated as follows,

Vo] = Esars)~UB) I:VaQ(S:ﬂWQNa:/L(sIG“) : VQHM(SW“)], (18)

which is actually the averaged gradient of the expected return from the start distribution J
with respect to the actor parameter 6* over the sampled mini-batch U (B). Note that the
chain rule is applied here since the action a; = w(s|6") is taken as the input of the critic
function. Thus, with (17) and (18) in hand, network parameters of the actor and the critic
can be updated by 62 « 62 — aq - VyoL(09) and O* <« 6% — a, - Vgu], respectively.
Here, g and o, are the learning rates.

It is worth noting that the soft update strategy is also needed for DDPG. Thus, target
networks parameterized by 6" and 69 will be used to calculate the loss function different
from (17),

’ / 2
LOD) = Eapsru) [(r +7Q, 1(s16")169) - Qs, al6) ) } : (19)

4Note that similar to DQN, both the original DNNs in DDPG also have its own target network parameterized by 62 and
o, respectively, which use soft update strategy and slowly track the weights of the learned networks in the same way.
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Fig. 2 Diagram of the DDPG algorithm

where the target networks track the weights of the learned networks by oM <« 1M 4 (1—
1)9“/ and 9 « 162 + (1-— t)GQl with T < 1, respectively.

In order to minimize the computation cost at each user, a DDPG-based framework is
proposed to train decentralized policies to elaborately controlling power allocation for
local execution and computation offloading. More specifically, the learned policy only
depends on local observations of the environment and can make power allocation deci-
sions in the continuous domain. In the sequel, definitions of state space, action space, and
reward function in the framework will be introduced in detail.

State space: In the proposed framework, state space defines the representation of the
environment from each user m’s perspective, which will then used to make power allo-
cation decisions. For decentralized policies, each user’s state space only depends on local
observations as shown in Fig. 3. Specifically, at the start of time slot ¢, the queue length
of its data buffer B,,(¢) will be updated according to (6). Meanwhile, the user can receive
the feedback from BS with its last receiving SINR y,,,(¢ — 1). Moreover, the channel vector
h,,(t) for uplink transmission can be estimated by using channel reciprocity.

To define the state space based on the local observations mentioned above, we will
firstly leverage B,, () to indicate the amount of task data bits waiting to be executed. To
reflect the impact of the interference from other mobile users’ uplink signals under ZF
detection, we denote the normalized SINR of slot ¢ as follows,

Task buffer: Bm(f)
r Task
am(t-1) Offloading
— pon(l) .
Local SINR Decentralized
i _ Decision
Observation ym(t-1) Local Execution
CSI pl,m(t)
_— > L]

L ()

Fig. 3 Local observation and decentralized decision of user agent at slot t
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Vm(t)o}%
po,m(t)”hm(t)nz
1

2 [ OHO) ]

Om(t) = (20)

, (21)

which represents the projected power ratio after ZF detection at BS. In fact, in order to
decode user m’s symbol without inter-stream interference, ZF detection will project the
received signal y(¢) to the subspace orthogonal to the one spanned by the other users’
channel vectors [38], after which the interference from other users has already removed
for user m. Thus, ¢,,(£) can be interpreted as the normalized SINR of user m, since it
excludes the influence of its transmission power p, ,,(¢t) and channel vector h,,(t) and is
able to accurately reflect the impact of other users’ interference on unit received power
for user m. Practically, for slot ¢, the last normalized SINR ¢, (£ —1) can be estimated from
ym(¢ — 1) and then included in the state space. Besides, channel quality can be quantified
by the channel vector 4,,(¢). To summarize, from the perspective of each user m, the state
space of slot ¢ can be defined as

Smt = [Bin(2), o (t — 1), hyy ()] . (22)

Action space: Based on the current state s, ¢ of the system observed by each user agent
m, an action ay, ; including the allocated powers for both local execution and computation
offloading will be selected for each slot ¢ € T as below:

ame = [Pim@®), Pom®)] - (23)

It is worth noting that, by applying the DDPG algorithm, either power allocation can be
elaborately optimized in a continuous action space, i.e., p;,,(£) €[0,P;,,] and p,,(t) €
[0, Py, x], to minimize the average computation cost, unlike other conventional DRL algo-
rithms to select from several predefined discrete power levels. Consequently, the high
dimension of discrete action spaces can be significantly reduced.

Reward function: As mentioned in Section 3.1, the behavior of each user agent is
reward-driven, and thus, the reward function plays a key role in the performance of DRL
algorithms. In order to learn an energy-aware dynamic computation offloading policy
which minimizes the long-term computation cost defined in (9), the reward function r, ;

that each user received after time step ¢ can be defined as

"mt = —Wm,1 - (Pl,m(t) +Po,m(t)) — W2 * B (t), (24)

which is the negative weighted sum of the instantaneous total power consumption and
the queue length of task buffer.

Remark 1. For each user agent, the value function is defined as the expected discounted
return starting from a state, which can be maximized by the optimal policy [21]. Specif-
ically, in the proposed MEC model, the policy learned by the DDPG-based algorithm
maximizes the value function of user m which starts from the initial state s,, 1 under policy

W 1.€.,

x
VI (1) = E [Z yf‘lrm,ﬁsm,l] , (25)
t=1
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which can be used to approximate the real expected infinite-horizon undiscounted return
at each user agent when y — 1 [39]. That is, the long-term average computation cost

T
- 1
Cin(sme) = E |:T1£noo T Z Wim,1 (pl,m(i) +po,m(i)) + Wm,ZBm(i)|5m,tj| ’ (26)

i=t

will be minimized by applying the learned computation offloading policy 1},

3.3 Training and testing

To learn and evaluate the learned policies for decentralized computation offloading, a
simulated environment with a group of user agents is constructed to conduct training
and testing. Particularly, training and testing data can be generated from the interac-
tions between the user agents and the simulated environment, which accepts the decision
of each user agent and returns the local observations. Also notice that the interaction

Algorithm 1 Training Stage for the DDPG based Framework

1: for each user agent m € M do
Randomly initialize the actor network 1.(s|6;,) and the critic network Q(s, a|9$);
Initialize the associated target networks with weights 6}, < 6/, and 0 6%

Initialize an empty experience replay buffer B,,;

. for each episode k = 1,2, ..., Kpax do
Reset simulation parameters for the multi-user MEC model environment;

2
3
4
5. end for
6
7
8 Randomly generate an initial state s,,,1 for each user agent m € M;
9

for each timeslott =1,2,..., Tmax do
10: for each user agent m € M do
1L Determine the power for local execution and computation offloading by

selecting an action @y, s = [4(S,t|0i) + A using running the current policy network

6}, and generating exploration noise Au;

12: Execute action a,,; independently at the user agent, and then receive
reward ry,; and observe the next state s, ;41 from the environment simulator;

13: Collect and save the tuple (Sys,t, @m,t> 't Sme+1) into the replay buffer 5,,;

14: Randomly sample a mini-batch of I tuples {(s;, a;, ri,sg)}ll.zl from B,;;

15: Update the critic network Q(s,a|92) by minimizing the loss L with the
samples:

I

L= (r+ Q) sl 169 — Qs aitdD)

i=1

2
B

16: Update the actor network 1(s|8);) by using the sampled policy gradient:

1

1
Vol ~ 7 > Va QUi alOD a6t * Vor i (sil0%);
i=1

17: Update the target networks by Hﬁ/ — 0+ (1- r)@% and 9,3/ <« 102 +
(1- )63

18: end for

19: end for

20: end for
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between the user agents and the environment is generally continuing RL tasks [21], which
does not break naturally into identifiable episodes®. Thus, in order to have better explo-
ration performance, the interaction will be manually started with a random initial state
Sm,1 for each user m and terminate at a predefined maximum steps Tpax for each episode.
The detailed training stage is illustrated in Algorithm 1. At each time step ¢ during
an episode, each agent’s experience tuple (sy.,t, da,t> Fim,t» Sme+1) Will be stored in its own
experience buffer B,,. Meanwhile, the use agent’s actor and critic network will be updated
accordingly using a mini-batch of experience tuples {(s;, a;, rl-,s;)}f:1 randomly sampled
from the replay buffer 5,,. In this way, after the training of Knax episodes, the dynamic
computation offloading policy will be gradually and independently learned at each user
agent. In order to improve the model with adequate exploration of the state space, one
major challenge is the trade-off between exploration and exploitation, which is even more
difficult for learning in continuous action spaces [35]. Since the exploration of DDPG
are treated independently from the learning process, the exploration policy ¢’ can be
constructed by adding noise Au sampled from a random noise process to the actor, i.e.,

w'(s) = u(sl6”) + Ap, (27)

where the random noise process needs to be elaborately selected. E.g., exploration noise
sampled from a temporally correlated random process can better preserve momentum.
As for the testing stage, each user agent will firstly load its actor network parameters
learned in the training stage. Then, the user agent will start with an empty data buffer and
interact with a randomly initialized environment, where it selects actions according to
the output of the actor network, using its local observation of the environment as current

state.

4 Results and discussion

In this section, numerical simulations are presented to illustrate the proposed DRL
framework for decentralized dynamic computation offloading in the proposed system.
Performance of the DDPG-based framework is demonstrated and compared with some

other baseline schemes in the scenarios of single user and multiple users, respectively.

4.1 Simulation setup

In the system, time is slotted by 7rp = 1ms. Task arrivals at each user m follow Poisson
distribution as a,,(t) ~ Pois(A,,), where the mean A, is referred as the task arrival rate,
i.e., Ay = E[am,(¢)]. For the beginning of every episode, each user m’s channel vector is
initialized as %,,,(0) ~ CN (0, ho(do/dm)* In), where path-loss constant /g = — 30dB, ref-
erence distance dgp = 1m, path-loss exponent « = 3, and d,, is the distance of user m to BS
in meters. In the following slots, h,,(t) will be updated according to (2), where the chan-
nel correlation coefficient p,; = 0.95 and the error vector e(t) ~ CN (0, ho(do/d,)*In)
with f; ,,, = 70Hz. Additionally, we set the system bandwidth to be 1MHz, the maximum
transmission power P, ,, = 2W, and the noise power O'I% = 107°W. On the other hand,
for local execution, we assume that ¥ = 10727, the required CPU cycles per bit L,, = 500
cycles/bit, and the maximum allowable CPU-cycle frequency F,,, = 1.26GHz, from which
we know that the maximum power required for local execution Py, = 2W.

>Note that for episodic RL tasks, each initial state of the user agent will terminate at a specific state.
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To implement the DDPG algorithm, the actor and critic networks at each user agent
m is a four-layer fully connected neural network with two hidden layers. The number
of neurons in the two hidden layers are 400 and 300, respectively. The neural networks
use the Reluy, i.e., f(x) = max(0, x), as the activation function for all hidden layers, while
the final output layer of the actor uses a sigmoid layer to bound the actions. Note that
for the critic, actions are not included until the second hidden layer of the Q-network.
Adaptive moment estimation (Adam) method [40] is used for learning the neural network
parameters with a learning rate of 0.0001 and 0.001 for the actor and critic respectively.
The soft update rate for the target networks is ¢ = 0.001. Moreover, in order to explore
well, the Ornstein-Uhlenbeck process [41] with 6 = 0.15 and ¢ = 0.12 is used to provide
temporal correlated noise. The experience replay buffer size is set as |B,,| = 2.5 x 10,
and the mini-batch size M = 16.

To better explore the tradeoff, a factor w,, €[0,1] is introduced to rephrase the two
nonnegative weighted factors as w;,,; = 10w,, and w,,» = 1 — wy, for each use agent
m € M. Note that the representation of w,,; indicates that energy consumption has more
contribution to computation cost. Thus, the reward function ry, ; in (24) can be written by

T = —10Wy, - (pl,m(t) +pu,m(t))_(1_wm) B (1), (28)

from which the tradeoff between energy consumption and buffering delay can be made
by simply setting a single factor wy,,. Moreover, the number of episodes is Kyax = 2000 in
the training stage, and the maximum steps of each episode is Tmax = 200.

For comparison, some baseline strategies are introduced:

e Greedy Local Execution First (GD-Local): For each slot, the user agent firstly execute
task data bits locally as many as possible and then the remaining buffered bits is
offloaded.

e Greedy Computation Offloading First (GD-Offload): Each user agent firstly offloads
data bits with best efforts and then execute the remaining buffered data bits locally.

® DQN-based Dynamic Offloading (DQN): The conventional discrete action space-
based DQN algorithm [22] is adopted. In order to have a fair comparison between
DDPG and DQN, we adopt the same neural network configurations as in DDPG.
Besides, the number of discrete power levels are selected such that both DQN and

DDPG can achieve the same convergence behavior. In this case, the power levels for
Py

local execution and computation offloading are defined as Py, = {0, 25, - - -, Ppym}
and P, = {0, %, .« oy Py}, i.e., the number of power levels is set as L = 8. The

action space for each user agent to select from is Py, x Py . Besides, e-greedy
exploration and Adam method are adopted for training.

4.2 Single user scenario
The user is set to be randomly located in a distance of d; = 100 meters to BS.

4.2.1 Training

As shown in Figs. 4 and 5, the training process of single-user dynamic computation
offloading is presented by setting w; = 0.5 and 0.8 respectively, where each curve is aver-
aged from 10 runs of numerical simulations. In each figure, two different cases, i.e., task
arrival rate A; = 2.0Mbps and 3.0Mbps, are also illustrated. It can be observed that for
both policies learned by DDPG and DQN, the average reward of each episode increases as
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Fig.4 Average reward per episode in the training process for a single user agent with wy = 0.5

the interaction between the user agent and the proposed system environment continues,
which indicates that efficient computation offloading policies can be gradually learned.
On the other hand, performance of each learned policy becomes stable after about 1500
episodes. In particular, the stable performance of the policy learned from DDPG is always
better than DQN for different scenarios, which demonstrates that for continuous con-
trol problems, DDPG-based strategies can explore the action space more efficiently than
DQN-based strategies.
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Fig. 5 Average reward per episode in the training process for a single user agent with wy; = 0.8
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Fig. 6 Comparison of testing results for a single user agent with wy = 0.5

4.2.2 Testing

After Kmax = 2000 episodes’ training, we have obtained dynamic computation offloading
policies learned by the DDPG-based and DQN-based strategies, respectively. To compare
the performance of different policies, tests are conducted under 100 runs of numerical
simulations, where each run consists of 10000 steps. As shown in Figs. 6 and 7, averaged
testing results are presented for w; = 0.5 and 0.8, respectively, each of which includes
the performance of average reward, power consumption, and buffering delay. It can be
observed from Fig. 6 that the average reward decreases as the task arrival rate grows,
which indicates the computation cost becomes higher when facing a larger computa-
tion demand. Specifically, the increased computation cost results from a higher power
consumption and a longer buffering delay. Also keep in mind that each user’s reward is
defined as the negative of its actual computation cost as in (24). Moreover, although the
DDPG-based strategy outperforms both greedy strategies, which, however, slightly com-
promises the buffering delay to achieve the lowest energy consumption. It is worth noting
that the averaged reward of the DQN-based strategy is lower than the greedy strategies
for task arrival rates higher than 3.5Mbps, which is due to the limited number of dis-
crete power levels of DQN-based strategy®. Meanwhile, the two greedy strategies, i.e.,
GD-Local and GD-Offload, have almost the same average buffering delay in Fig. 6, which
is due to the fact that both strategies attempt to execute buffered task bits with best effort
during each time slot, regardless of the factor wy. Actually, for lower task arrival rates,
e.g. A1 = 1.5 ~ 3.0Mbps, it is highly possible that task bits arrived in one slot can be
completely executed during the next slot for either greedy strategy. The only difference of
those two strategies is the priority of local execution and task offloading, which leads to
different average power consumption as shown in Fig. 6. Therefore, both average buffer-
ing delay are very close to the average amount of task bits arrived in one slot, which will
slightly increase as the task arrival rate A1 grows.

In Fig. 7, testing results for a larger tradeoff factor w; = 0.8 are also provided. From
(28), we know that a larger w; will give more penalty on power consumption in the reward
function. In this scenario, the average reward of the DDPG-based strategy outperforms
all the other strategies again, and the gap is much larger than that in the case of w; = 0.5.
Specifically, this is achieved by much lower power consumption and increased buffering

6 Although finer grained discretization of the action space will potentially lead to better performance, the number of
actions increases exponentially with the number of degrees of freedom, which makes it much more challenging to
explore efficiently and in turn significantly decreases the performance.

Page 16 of 21



Chen and Wang EURASIP Journal on Wireless Communications and Networking (2020) 2020:188 Page 17 of 21

—e— DDPG —e— DDPG 18| —e— DDPG
-4 DQN 251 DQN DQN
iy —¥— GD-Offload —¥— GD-Offload 16 —%— GD-Offload

—&— GD-Local

—&— GD-Local

—&— GD-Local
144

g
)

124

104

4]
204
0.5 |
-221 2

T T T T T T T T T T T 0 - T T T T T
1.5 2.0 25 3.0 35 4.0 15 2.0 2.5 3.0 3.5 4.0 15 2.0 2.5 3.0 3.5 4.0
Task Arraival Rate / Mbps Task Arraival Rate / Mbps Task Arraival Rate / Mbps

Average Reward

Average Power / Watt
= -
o v

Average Buffering Delay / ms

Fig. 7 Comparison of testing results for a single user agent with w; = 0.8

delay. As for the average buffering delay of GD-Local and GD-Offload in Fig. 7, they are
the same to that in Fig. 6, since the two greedy strategies are not impacted by w; and their
behaviors will not change as well.

4.2.3 Power-delay tradeoff

We also investigate testing results for the power-delay tradeoff by setting different values
of wy in Fig. 8. It can be inferred from the curves that, there is a tradeoff between the aver-
age power consumption and the average buffering delay. Specifically, with a larger w1, the
power consumption will be decreased by sacrificing the delay performance, which indi-
cates that in practice w; can be tuned to have a minimum power consumption with a given
delay constraint. It is also worth noting that for each value of wy, the policy learned form
DDPG always has better performance in terms of both power consumption and buffer-
ing delay, which demonstrates the superiority of the DDPG-based strategy for continuous
power control.

4.3 Multi-user scenario

There are M = 3 mobile users in the system, each of which is randomly located in a
distance of d,;, = 100 meters to BS, and the task arrival rate is X,, = m x 1.0Mbps, for
m € {1,2,3}.

—e— DDPG
1.6 DQN

g =
IS o

Average Power / Watt

=
w

1.24

“1 é é 1‘0 1‘2 1‘4
Average Delay / ms
Fig. 8 lllustration of power-delay tradeoff for a single user agent with A, = 3.0Mbps. Note that for the points
on each curve from left to right, the tradeoff factor wy varies from 0.3 ~ 0.8, correspondingly. Notice that there
is no trade-off curve for these two greedy algorithms, since they are not impacted by the tradeoff factors. The
power-delay points for GD-offload and GD-local are located at (1.85,3.148) and (1.91,3.147), respectively
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Fig. 9 lllustration of the average reward in the training process with w,, = 0.5 for all mobile users

4.3.1 Training
By setting w,, = 0.5 for all users, the training process has been shown in Fig. 9. It

can be observed that for each mobile user, the average reward increases gradually when
the mobile user interacts with the system environment after more episodes. Thus, we
know that for both the DDPG-based and DQN-based strategies, efficient decentralized
dynamic computation offloading policies can be learned at each mobile user, especially for
heterogeneous users with different computation demands. Moreover, it can be inferred
that the higher computation cost needs to be paid by the user with a higher computation
demand. Meanwhile, compared with the single user scenario, the average reward obtained
in the multi-user scenario is much lower for the same task arrival rate. It is due to the fact
that the spectral efficiency of data transmission will be degraded when more mobile users
are served by BS. Hence, more power will be consumed in computation offloading in the

multi-user scenario.

4.3.2 Testing
Loading the neural network parameters learned by the DDPG-based and DQN-based

algorithms after Kinax = 2000 episodes, testing results of different dynamic computation
offloading policies are compared in Tables 2 and 3. From Table 2, we know that the aver-
age rewards of user 2 and user 3 adopting DDPG-based strategies are better than all other
strategies under the scenario of w,, = 0.5. However, as for user 1, the DDPG-based strat-
egy is slightly worse than the GD-Local strategy, which indicates that the exploration of

Table 2 Comparison of testing results with w,, = 0.5 for all mobile users

Average reward Average power (watt) Average delay (ms)

User 1 User 2 User 3 User 1 User2 User3 Userl User2  User3
DDPG —1.770 — 5.670 —12.782 0.205 0.774 1.939 1.489 3.600 6.174
DQON — 2174 — 7.657 — 14.688 0.292 1.156 2.320 1428 3.753 6.176
GD-Offload — 2514 — 7597 — 18.690 0.402 1.309 3.143 1.007 2.103 5.951

GD-Local —1.633 —9504 — 20071 0.216 1678 3407 1.106 2.228 6.072
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Table 3 Comparison of testing results with w,, = 0.8 for all mobile users

Average reward Average power (watt) Average delay (ms)

User1 User 2 User 3 User 1 User2 User3 Userl User2  User3
DDPG —-1919 -6.366 —16.164 0.162 0.602 1.674 3.114 7.752 13.861
DQN —2.780 — 8915 — 18675 0.284 0915 1.954 2.539 7973 15.216
GD-Offload — 3417 —10.893 — 26334 0.402 1.309 3.143 1.007 2.103 5.951
GD-Local —1.949 — 13870 —28470 0.216 1.678 3407 1.106 2228 6.072

DDPG for a small allocated power needs to be further improved. Also, it can be observed
that both the DDPG-based and DQN-based strategies can achieve much lower power
consumption with a little compromised buffering delay.

By setting the tradeoff factor w,, = 0.8 as shown in Table 3, the DDPG-based strate-
gies obtain the best average reward at each user agent. Moreover, the performance gaps
between the DDPG-based strategies and other greedy strategies become larger. Besides,
with more penalty given to the power consumption, the consumed power of each user
is much lower than that of w,, = 0.5, which, however, results in a moderately increased
buffering delay. Thus, we know that for the multi-user scenario, power consumption
can be minimized with a satisfied average buffering delay, by selecting a proper value of
Wy, Again, the DDPG-based strategies outperform the DQN-based strategies in terms of
average reward for all users.

5 Conclusions and future directions

In this paper, we considered an MEC enabled multi-user MIMO system with stochas-
tic tasks arrivals and wireless channels. In order to minimize the long-term average
computation cost in terms of power consumption and buffering delay, the design of
decentralized dynamic computation offloading algorithms has been investigated. Specif-
ically, by adopting the continuous action space-based DDPG algorithm, an efficient
computation offloading policy has been successfully learned at each user, which allocates
powers for local execution and task offloading from its local observation of the proposed
system environment. Numerical simulations have been performed to verify the superi-
ority of the proposed DDPG-based strategy over some other baseline schemes. Besides,
power-delay tradeoff for both the DDPG-based and DQN-based strategies has been also
studied. For future directions, we would like firstly to investigate decentralized binary
computation offloading strategies for indivisible tasks, i.e., the task can only be offloaded
to the BS or executed locally as a whole. This may require a hierarchical DRL frame-
work to give a binary offloading decision and then continuous power allocation decision.
Moreover, collaboration among mobile users can also be introduced in the DDPG-based
framework to improve performance of learned policies, since currently policy is trained
independently at each user without considering other user agents’ behaviors.
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