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Abstract
Social collaborative coding is a popular trend in software development, and such
platforms as GitHub provide rich social and technical functionalities for developers to
collaborate on open source projects through multiple interactions. Developers often
follow popular developers and projects for learning, technical selection, and
collaboration. Thus, identifying popular developers and projects is very meaningful. In
this paper, we propose a multiplex bipartite network ranking model, M-BiRank, to
co-rank developers and projects using multiple developer-project interactions. Firstly,
multiple developer-project interactions such as commit, issue, and watch are extracted
and a multiplex developer-project bipartite network is constructed. Secondly, a
random layer is selected from this multiplex bipartite network and initial ranking scores
are calculated for developers and projects using BiRank. Finally, initial ranking scores
diffuse to other layers and mutual reinforcement is taken into consideration to
iteratively calculate ranking scores of developers and projects in different layers.
Experiments on real-world GitHub dataset show that M-BiRank outperforms degree
centrality, traditional single layer ranking methods, and multiplex ranking method.

Keywords: M-BiRank, Ranking, Multiplex bipartite network, Social collaborative
coding, GitHub

1 Introduction
Open source software community is now a main driven force of innovations, and plenty
of software developers collaborate on millions of open source software projects, among
which are many popular software projects that drive the innovations of different fields
[1, 2]. For example, deep learning frameworks such as TensorFlow, PyTorch, and MXNet
contributed by famous companies simplify the building of deep learning models, which to
some extent speed up the innovations in the field of artificial intelligence in both academia
and industry [3, 4].
In open source software community, developers from different areas usually take the

social collaborative coding paradigm and participate in different portions of a common
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project using the social and technical functionalities provided by the community [5, 6].
Taking GitHub as an example, developers from different areas and with different techni-
cal backgrounds can collaborate on a project by committing codes and commenting on
issues, star/fork a project for improving technical skills or technical selections, and fol-
low other professional developers for keeping pace with new trends. Much like the role of
opinion leaders in social networks, influential developers and projects drive the technical
trends and the prosperity of open source community. Thus, identifying influential devel-
opers and projects will be of great significance. Existing work on influence analysis for
open source software community mainly focused on applying traditional unipartite sin-
gle layer graph ranking methods [7, 8], including PageRank [9] and HITS [10], although
many new graph rankingmethods for more complex network structures, such as bipartite
network [11, 12] and multiplex network [13, 14], have been proposed. On the other hand,
existing graph ranking methods have not merged bipartite network and multiplex net-
work as a single networkmodel, which is necessary for our case tomodel multiple interac-
tions between developers and projects. Potential applications of influence analysis of open
source software community would include service recommendations [15–19] and risk
assessment [20].
In this paper, we focus on modeling multiple interactions between developers and

projects as a multiplex bipartite network and propose a new ranking method based on it
in an iterative and mutually enhanced way. The main contributions of this research are
many folds:

• We propose a multiplex bipartite network model to represent multiple interactions
between developers and projects.

• We propose a new ranking model called M-BiRank on multiplex bipartite network
which takes into account the mutual reinforcement between different types of nodes
as well as different layers.

• We apply the proposed model to real-world GitHub dataset, showing that our model
outperforms baseline ranking models.

The remainder of the paper is organized as follows. Section 2 gives a brief introduction
to related works on ranking models from the perspective of network and its applications
in software engineering. In Section 3, details about the proposed M-BiRank model are
illustrated. Then, the experiment results and discussions are given in Section 4. Finally,
we briefly summarize our work and explain future directions in Section 5.

2 Related work
Identifying influential nodes in social networks has been a hot topic for decades. Exist-
ing works mainly focus on either structural properties or diffusion dynamics. Plenty of
structure-based metrics and random walk-based methods have been proposed.
Structure-based metrics usually base itself on some intuition for centrality from either

local or global views. Degree is the most common local structure-based centrality met-
rics. Based on degree, Chen et al. [21] proposed a semi-local centrality metric, considering
both the nearest and the next nearest neighbors. Chen et al. [22] further considered the
negative impact of local clustering on information diffusion in networks and proposed
ClusterRank. In addition to extending degree, several local structure-based centrality
metrics are originated from H-index, which is originally used to measure the citation
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impact of a scholar or a journal [23]. Zhao et al. [24] first extended H-index concept to
networks and defined the h-Degree metrics for weighted networks. Liu et al. [25] com-
bined the H-index of both node itself and its neighbors and proposed a local H-index
centrality. Lü et al. [26] revealed the relation among degree, H-index, and coreness and
introduced a family of H-indices.
Local structure-based centrality metrics benefit from low computational complexity

at the cost of reducing effectiveness. While global structure-based centrality metrics
can better identify influential nodes from a global view of the whole network. Ear-
lier researches in sociology introduced several global structure-based centrality metrics,
including closeness centrality [27], betweenness centrality [28], and eigenvector central-
ity [29]. Recently, researches introduced eigenvector centrality to more complex network
structures. Wang et al. [30, 31] extended eigenvector centrality to multilayer networks
under a framework of tensor decomposition.
Random walk-based methods apply resource diffusion dynamic process in networks

and measure node’s influence according to the final resource the node obtains at
stationary state of the dynamic process. Typical random walk-based ranking meth-
ods include PageRank [9] and HITS [10]. To solve the problem of dangling nodes
of PageRank, Lü et al. [32] added a ground node to the original network, mak-
ing the original network connected, and proposed the parameter-free LeaderRank
method. Halu et al. [13] extended PageRank to multiplex network and proposed Mul-
tiplex PageRank, which included four kinds of intra-layer enhancement mechanism
[33]. To address the ranking problem on bipartite networks, He et al. [11] proposed
the BiRank method. Instead of modeling pairwise interactions, higher-order network
models have recently been proposed and applied to ranking nodes with group inter-
actions. Treating scientific collaboration as a group interaction, Liang et al. [34] mod-
eled it as a hypergraph and proposed HHGBiRank. From another view of higher-
order structure of networks, that is motif, Zhao et al. [35] proposed motif-based
PageRank.
In addition to identifying influential nodes for general purpose social networks, needs

have also emerged for open source software community, a special kind of social network.
Xuan et al. [8] constructed several social networks based on the communications between
developers in Apache and applied degree, PageRank, and HITS for developer ranking. Hu
et al. [7] studied the problem of influence identification of developers in GitHub and pro-
posed a Following-Star-Fork-Activity-based approach. Joblin et al. [5] employed several
activity counts, centrality metrics, and network structural properties to distinguish core
and peripheral developers.

3 Method
In this section, we will present a Multiplex Bipartite Ranking method, called M-BiRank,
for co-ranking developers and projects in open source software community. As shown
in Fig. 1, the proposed M-BiRank consists of three parts and incorporates two basic
assumptions that address the issues in Section 1. We will start by giving the definition of
multiplex bipartite network and introducing the notations. Then, thorough explanations
and mathematical formulations are given for the two basic assumptions, that is, mutual
reinforcement between different types of entities and between different layers of network.
Finally, we will introduce the overall algorithm and time complexity analysis of it.
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Step 1.  Ranking iteration in Layer A Step 2. Ranking scores in Layer A diffuse
 to Layer B

Step 3. Ranking iteration in Layer B
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Layer B

Layer A

Layer B

Fig. 1 M-BiRank framework. M-BiRank contains three iterative steps

3.1 Multiplex bipartite network

Definition 1 Multiplex bipartite network. A multiplex bipartite network is a set of M
bipartite networks GA = (U ∪ P,EA) where A = 1, ...,M. U and P represent two different
kinds of nodes and all layers have the same sets of nodes U and P, while the set of edges EA

depends on the layer A. Specially, there is no edge between same kinds of nodes. Amultiplex
bipartite network is formally defined as G = (G1, ...,GM). Each network GA is described
by the bipartite weight matrix WA (∈ R

|U|×|P|) with elements wA
ij , where w

A
ij > 0 if there is

a link with weight wA
ij between nodes ui and pj in layer A, and wA

ij = 0 otherwise.

In this paper, we model multiple interactions between developers and projects as a
developer-project multiplex bipartite network. The notations we will use throughout the
article are summarized in Table 1.

3.2 Mutual reinforcement between developers and projects

Most ranking methods in networks adopt the intuition as PageRank and HITS that an
influential node should be linked by many other influential nodes, which is also appli-
cable in the case of developer-project bipartite network. For example, an elite developer
usually participates in popular projects. In open source software community, it is quite a
practice to estimate the influence of a developer by how popular the projects she/he par-
ticipates in are and howmuch she/he contributes to these popular projects. And a project
with influential developers or organizations as major contributors always attracts a large

Table 1 Notations and explanations

Notation Explanation

uAi Ranking score of developer i in layer A

pAj Ranking score of project j in layer A

WA Weight matrix of layer A, its element wA
ij represents the edge weight

between developer i and project j in layer A

γ , λ Hyperparameters

u0i , p
0
j Query vectors for developer i and project j

θ Threshold for SIR simulation

|UA|, |PA| Numbers of developers and projects in layer A

dAi , d
A
j Degrees of developer i and project j in layer A

SA Symmetric normalization of weight matrixWA
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number of attention. Taking TensorFlow as an example, it got thousands of stars quickly
upon its first release in GitHub because it is supported by Google.
This intuition forms our first assumption that a developer (project) should be ranked

high if it is connected to high-ranked projects (developers) in a certain layer A, which can
be formulized as follows:

pAj =
|U|∑

i=1
wA
ij u

A
i (1)

uAi =
|P|∑

j=1
wA
ij p

A
j (2)

In order to employ a prior belief on nodes’ importance and provide better ranking
results, we also adopt query vector and symmetric normalization as BiRank. The prior
belief on nodes’ importance and rankings from network structure are balanced with
two parameters γ and λ. The final formulation of the mutual reinforcement between
developers and projects is as follows:

pAj = γ

|U|∑

i=1

wA
ij√

dAi
√
dAj

uAi + (1 − γ )p0j (3)

uAi = λ

|P|∑

j=1

wA
ij√

dAi
√
dAj

pAj + (1 − λ)u0i (4)

3.3 Mutual reinforcement between different layers

Besides considering the mutual reinforcement between developers and projects in each
single layer, we also take into account the mutual reinforcement between different layers.
From our experience as open source software developers, we could firmly assume differ-
ent interactions between developers and projects reflect different aspects of influence and
only a composition of all the aspects could reflect a comprehensive influence of develop-
ers and projects. For example, committing code to a project indicates a developer’s coding
skill and commenting issues of a project may show a developer’s design skill or bug-fixing
skill. The influence of a developer should be measured by summarization of both coding
and design skills.
To implement mutual reinforcement between different layers, we choose to incorporate

the ranking scores of developers and projects from the first layer as an enhancement of
the query vectors of the second layer. The mathematical formulations are given in Eqs. (5)
and (6).

pBj = γ

|U|∑

i=1

wB
ij√

dBi
√
dBj

uBi + (1 − γ )pAj (5)

uBi = λ

|P|∑

j=1

wB
ij√

dBi
√
dBj

pBj + (1 − λ)uAi (6)
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To be more clearer, we transform Eqs. (5) and (6) to their equivalent matrix form in
Eqs. (7) and (8):

pB = γ
(
SB

)T uB + (1 − γ ) pA (7)

uB = λ
(
SB

)
pB + (1 − λ)uA (8)

where SB = (
DB
u
)− 1

2 WB
(
DB
p

)− 1
2 is the symmetric normalization of weight matrixWB.

3.4 Overall algorithm

By combing both the mutual reinforcement between developers and projects in each sin-
gle layer and that between different layers, we finally propose the M-BiRank method
to co-rank developers and projects in open source software community and the overall
algorithm is shown in Algorithm 1.

Algorithm 1M-BiRank Algorithm
Input:

Weight matrixWA andWB, query vectors u0, p0 and hyper-parameters γ , λ;
Output:

Ranking vectors u, p;
1: Symmetrically normalizeWA : SA = (DA

u )− 1
2WA(DA

p )− 1
2 ;

2: Randomly initialize pA and uA;
3: while Stopping criteria is not met do
4: pA ← γ (SA)TuA + (1 − γ )p0;
5: uA ← λSApA + (1 − λ)u0;
6: end while
7: Symmetrically normalizeWB : SB = (DB

u)− 1
2WB(DB

p)− 1
2 ;

8: Initialize pB and uB using pA and uA, respectively;
9: while Stopping criteria is not met do

10: pB ← γ (SB)TuB + (1 − γ )pA;
11: uB ← λSBpB + (1 − λ)uA;
12: end while
13: p ← pB, u ← uB;
14: return u and p.

3.5 Time complexity analysis

The overall time complexity of M-BiRank is a summarization of each layer’s time com-
plexity. For each layer, according to Eqs. (7) and (8), the time cost mainly depends on the
multiplication of (SB)TuB and (SB)pB, showing a time complexity of O(|U| · |P|). How-
ever, most real-world networks are usually very sparse and only non-zero elements (which
correspond to existing edges) should be stored and computed regarding matrix multipli-
cation of (SB)TuB and (SB)pB. Thus, the time complexity of layer A is O(cA|EA|) and the
overall time complexity of M-BiRank is O(

∑M
A=1 cA|EA|), where cA denotes the number

of iterations in layer A and |EA| denotes the number of edges in layer A.
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4 Experiment
In this section, the performance of M-BiRank model is evaluated against the GHTorrent
dataset [36].

4.1 Datasets

GHTorrent [36] monitors the GitHub public event timeline and retrieves information of
developers, projects, and interaction details between them from these events [37]. We
choose the GHTorrent dataset as of November 1, 2018, and extract the relationships
between developers and projects, both of which mainly belong to PHP community. The
steps of data preprocess include the following: (1) choose issues and commits which
belong to PHP projects, (2) keep developers and projects which exist in both issues and
commits, and (3) construct multiplex developer-project bipartite network, using a func-
tion of issue/commit number as edge weight, that is, wissue

ij = log(#issues) + 0.3 or
wcommit
ij = log(#commits) + 0.3. The detailed information about the dataset used in our

experiment is shown in Table 2.

4.2 Evaluation metrics

In order to evaluate and compare the performance of M-BiRank and baseline methods,
both correlation analysis and SIR model are adopted.
Correlation analysis mainly focuses on comparing predictions against the ground truth,

and Pearson’s correlation coefficient (PCC) [38] is chosen. In our experiment, the num-
ber of watch of projects and the number of followers of developers are set as the ground
truth for the rankings of projects and developers, respectively. PCC reflects the corre-
lation degree of two variables through the linear correlation between vectors, which is
defined as follows:

PCC(x, y) = n
∑

xiyi − ∑
xi

∑
yi√

n
∑

x2i − (∑
xi

)2√n
∑

y2i − (∑
yi

)2
(9)

where n represents the number of elements; xi and yi represent the ith element of sample
x and y, respectively; and the value range of PCC is [−1, 1].
However, the ground truth in correlation analysis is some kinds of degree in networks,

which is a rough metric in evaluating the influence of developers or projects. To rank
more precisely, dynamic models are needed for simulating the influence diffusion process
[39]. SIR model [40] is a classical epidemic model and is often used to evaluate the abil-
ity of information spreading of a node in social networks. Generally, an influential user
with a higher ranking score will spread his/her opinions to more developers. The trans-
mission process of SIR model is shown in Fig. 2, where S (Susceptible), I (Infected), and R
(Removed) denote the susceptible, infected, and recovered nodes. At the initial step of the

Table 2 The statistics of the dataset

Data Count

Developers 147,105

Projects 126,415

Developer-project commit relations 205,478

Developer-project issue relations 441,558

Developer-project watch relations 68,566

Developer-developer follow relations 10,701
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Fig. 2 SIR model. Source: the figure is adapted from Pastor-Satorras et al. [43]

transmission process, several infected nodes are set, and then, the transmission is itera-
tively repeated until no new nodes are infected [41]. At each step, infected nodes infect
its susceptible neighbors with the probability α, and infected nodes’ recovery to removed
status with the probability β . So SIR model is suitable for evaluating the ability of infor-
mation spreading of a node. By applying nodes with highest ranking scores of different
ranking methods as the initial infected nodes and comparing the final number of affected
nodes (both infected and removed nodes), the effectiveness of different ranking methods
can be compared.

4.3 Baseline methods

We compare M-BiRank with several baseline methods:
Degree [42]. The degrees of developers and projects in different layers of multiplex

developer-project bipartite network are calculated and averaged.
PageRank [9]. PageRank ranks nodes by iteratively propagating scores on the network

and is usually suitable for single layer monopartite network. In this experiment, we apply
it to multiplex developer-project bipartite network with two different setups. PageRank-
Avg ignores types of nodes and applies PageRank algorithm directly to different layers of
the multiplex developer-project bipartite network. The final ranking score of a node is the
average of different layers. PageRank-Add merges different layers of multiplex developer-
project bipartite network into a single layer of developer-project bipartite network and
uses the average edge weights of different layers as edge weights of this single layer bipar-
tite network. Then, we apply PageRank algorithm to this single layer of developer-project
bipartite network ignoring types of nodes. Finally, both PageRank-Avg and PageRank-
Add rank developers and projects separately according their final ranking scores. The
hyperparameter is set to 0.85.
BiRank [11]. BiRank is a propagation-based ranking method on bipartite networks and

adopts a normalization strategy in the iterative process. BiRank-Avg applies BiRank algo-
rithm to different layers of multiplex developer-project bipartite network separately and
averages the ranking scores in different layers as the final ranking scores. BiRank-Add
firstly merges different layers of multiplex developer-project bipartite network into a sin-
gle layer of developer-project bipartite network with the average of the edge weights in
different layers as edge weights. Both of the hyperparameters are set to 0.85.
Multiplex PageRank [13]. Multiplex PageRank considers the impact of the centrality of a

node in one layer on that in another layer and introduces nodes’ centrality of the preceding
layer to current layer in four ways. In this experiment, we choose the Additive Multiplex
PageRank and have two different setups, that is, MPR-Commit uses the commit layer as
the first layer andMPR-Issue uses the issue layer as the first layer. The hyperparameter is
set to 0.85.
M-BiRank. M-BiRank is the method we proposed for ranking nodes in multiplex bipar-

tite network. As the setup in Multiplex PageRank, M-BiRank-Commit uses the commit
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layer as the first layer andM-BiRank-Issue uses the issue layer as the first layer. The hyper-
parameters γ and λ are set to 0.85. Each element of the query vector u0 (p0) for the
corresponding node (developer/project) is set to the sum of its all edges’ weights over the
total sum of all edges’ weights of the whole developer-project bipartite network of the first
layer.

4.4 Results

We compare the experimental results of M-BiRank with baseline methods by both corre-
lation analysis and SIR modeling. The hyperparameters for M-BiRank γ and λ are both
set to 0.85.

4.4.1 Correlation analysis

In correlation analysis, the follower number of developers and the watch number of
projects are set as the ground truth for ranking developers and projects, respectively.
Pearson’s correlation coefficient (PCC) is calculated between the ranking results from
M-BiRank and baseline methods and ground truth rankings. The results are shown in
Table 3.
From the results of correlation analysis, we have the following observations:
(1) M-BiRank model we proposed outperforms all the baseline methods for both devel-

oper ranking and project ranking. This indicates that it is necessary to model multiple
interactions between developers and projects as a multiplex bipartite network, which not
only considers mutual enhancement between developers and projects but also takes into
accountmutual enhancement between different interactions. This highly agrees with real-
world practice. For example, a project with elite developers participating in is usually a
popular project and a developer participating in popular projects is often an elite devel-
oper. Developers have different ways to take part in certain projects such as committing
code or solving issues, and different ways are tightly coupled.
(2) Comparing the different settings of M-BiRank itself, M-BiRank-Commit performs

better than M-BiRank-Issue in most cases, which means it is better to take the commit
layer of themultiplex developer-project bipartite network as the initial layer forM-BiRank
model. This also agrees with real-world practice. Issue is a helper function in social col-
laborative coding which provides a discussion board for software developers about bugs
and designs. While commit is a main function during software development for develop-
ers, thus, the commit layer is more important. So M-BiRank-Commit performs better in

Table 3 Correlation analysis

Method
Top 20 Top 50 Top 100

Project Developer Project Developer Project Developer

Degree 0.441 0.090 0.383 0.173 0.393 0.219

BiRank-Avg 0.402 −0.014 0.442 0.091 0.462 0.016

BiRank-Add 0.398 −0.022 0.422 −0.062 0.487 0.030

PageRank-Avg 0.430 −0.116 0.450 −0.027 0.498 −0.035

PageRank-Add 0.357 −0.111 0.419 −0.067 0.475 −0.004

MPR-Issue 0.350 0.113 0.437 0.160 0.458 0.202

MPR-Commit 0.464 −0.066 0.459 −0.013 0.516 0.017

M-BiRank-Issue 0.374 0.057 0.423 0.068 0.447 0.273

M-BiRank-Commit 0.468 0.152 0.459 0.261 0.541 0.143
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Fig. 3 Performance comparison between M-BiRank-Commit and M-BiRank-Issue. The horizontal axis t
indicates the number of iterations in SIR modeling. The vertical axis NI indicates the number of final infected
nodes (developers or projects, including infected and removed nodes)

identifying more influential developers and projects. In Section 4.4.2, we only compare
M-BiRank-Commit with benchmark methods.

4.4.2 SIR simulation

In this section, to evaluate the information spreading ability of top 100 developers ranked
by differentmethods, SIRmodel is adopted on commit layer of the developer-projectmul-
tiplex bipartite network. M-BiRank is compared against each baseline method separately.
For each comparison, the initial infected nodes (developers) for SIR model are the top
100 developers ranked by each method excluding those ranked top 100 by both methods.
During the SIR process, an infected node infects each of its neighbors with probability
α = 0.005 simultaneously and recoveries to removed state with probability β = 0.006.
For each SIR simulation, we run 300 iterations at most and repeat 10 times to average the
value of each step. The results are shown in Figs. 3, 4, 5, 6, and 7, and several significant
observations are found:
(1) The result of comparison between different settings of M-BiRank itself in Fig. 3 indi-

cates M-BiRank-Commit performs better, which is in perfect accordance with the result
found in correlation analysis in Section 4.4.1. Thus, only M-BiRank-Commit is compared
against baseline methods in the rest part of this section.
(2) M-BiRank outperforms all the baseline methods in identifying influential develop-

ers, which means nodes’ types and mutual reinforcement among different interactions
play important roles and multiplex bipartite network can model multiple interactions
between two different types of nodes more precisely. Specially, the performance differ-
ence betweenM-BiRank and BiRank is larger than that betweenM-BiRank andMultiplex
PageRank (MPR), from which we can conclude that considering mutual reinforcement
among different interactions is of more importance than distinguishing nodes’ types.
(3) The number of final infected projects is more than that of developers in both M-

BiRank and all the baseline methods. According to researches on epidemics on networks,
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Fig. 4 Performance comparison between M-BiRank and Degree. The horizontal axis t indicates the number
of iterations in SIR modeling. The vertical axis NI indicates the number of final infected nodes (developers or
projects, including infected and removed nodes)

(a) (b)

Fig. 5 Performance comparison between M-BiRank and PageRank. The horizontal axis t indicates the
number of iterations in SIR modeling. The vertical axis NI indicates the number of final infected nodes
(developers or projects, including infected and removed nodes)

(a) (b)

Fig. 6 Performance comparison between M-BiRank and BiRank. The horizontal axis t indicates the number of
iterations in SIR modeling. The vertical axis NI indicates the number of final infected nodes (developers or
projects, including infected and removed nodes)
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(a) (b)

Fig. 7 Performance comparison between M-BiRank and MPR. The horizontal axis t indicates the number of
iterations in SIR modeling. The vertical axis NI indicates the number of final infected nodes (developers or
projects, including infected and removed nodes)

information spreads faster and broader in networks with shorter average path length.
From Table 2, we can see the average degree of projects is larger than that of developers.

4.5 Case study

In addition to correlation analysis and SIR simulation, we further do a detailed case study
to show the effectiveness of our model in identifying influential developers and projects.
The top 20 developers and projects ranked by our model M-BiRank are listed in Tables 4
and 5, respectively, followed by their ranks in baseline methods.
Table 4 indicates baseline methods, and M-BiRank ranks the first six developers sim-

ilarly, while some influential PHP developers ranked in top 20 by M-BiRank are not
identified or rankedwith lower scores by baselinemethods. For example, Fabien Potencier
(GitHub ID: fabpot) and Taylor Otwell (GitHub ID: taylorotwell), the most active contrib-
utors of the two most popular PHP frameworks, Symfony and Laravel, are not identified
as influential developers by some of the baseline methods. From GitHub as of June 1,
2020, Symfony and Laravel have 23.3k and 59.4k stars, respectively, and Fabien Potencier
and Taylor Otwell have 10.4k and 18.6k followers, respectively. Taylor Otwell has more
followers than Fabien Potencier, and Laravel is more popular than Symfony, but Fabien
Potencier is ranked higher than Taylor Otwell because Laravel is based on some popular
components of Symfony. Thus, we can conclude that Fabien Potencier is more influential
than Taylor Otwell.
As for projects, from Table 5, we can see both M-BiRank and baseline methods rank

popular PHP frameworks with higher scores. But some important PHP components iden-
tified by M-BiRank are not identified as influential projects or ranked with lower scores
by baseline methods. For example, illuminate/database, a popular ORM library, is ranked
with a high score by M-BiRank but is ranked with a lower score by BiRank-Add and
PageRank-Add, and is never identified as influential projects by BiRank-Avg, PageRank-
Avg, and MPR-Commit. As we know, in modern web development, ORM is quite critical
because it is responsible for accessing database.

4.6 Experimental settings discussion

In the experiment, several key settings will affect the performance of M-BiRank and a
brief discussion about these settings is shown as follows.
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Fig. 8 Impact of edge weight. The horizontal axis K indicates the number of initial infected nodes in SIR
modeling. The vertical axis NI indicates the number of final infected nodes (including infected and removed
nodes)

First, we will study the impact of edge weight in the ranking process. Both unweighted
and weighted developer-project multiplex bipartite networks are constructed, and for
weighted case, the interaction times are summed as edge weight. Then, correlation anal-
ysis on top k developers and projects is applied and the results are shown in Fig. 8,
from which it can be concluded that weighted developer-project multiplex bipartite net-
work performs better than unweighted case and edge weight plays an important role in
identifying influential developers and projects.
Then, experimental settings for SIR simulation are discussed. It can be seen from Fig. 9

that themore initial infected nodes are set, themore final infected nodes. It is also obvious

Fig. 9 Impact of the number of initial infected nodes on final infected nodes
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(a) (b)

Fig. 10 Hyperparameter analysis

that the same number of top k projects being set as initial infected nodes will result in
more final infected nodes.
Finally, the hyperparameters γ and λ of our proposed M-BiRank model are analyzed.

For simplicity, we consider the condition that γ and λ are equal. It can be concluded
from Fig. 10 that both prior belief of developers’ (projects’) importance and rankings
from network structure play roles in the final rankings of developers (projects) and their
contributions to final rankings are approximately equal.

5 Conclusions
In this work, we study the problem of identifying influential developers and projects in
open source software community. We model multiple interactions between developers
and projects as a multiplex bipartite network and propose an iterative refinement rank-
ing method M-BiRank by incorporating the mutual reinforcement between developers
and projects as well as between multiple developer-project interactions. The proposed
M-BiRank is evaluated against four baseline methods on real-world GitHub dataset.
Extensive experimental analysis and case study showM-BiRank significantly outperforms
baseline methods in both correlation analysis and SIR simulation.
The general idea behind the proposed M-BiRank is modeling multiple kinds of entities

and interactions in open source software community into a single network and incor-
porating mutual reinforcement between different kinds of entities as well as between
different types of interactions when ranking. As we know, there are other entities such
as blogs and organizations in addition to developers and projects in open source soft-
ware community and plenty of interactions between them such as user-user following and
project-project dependency. In future work, more entities and interactions could be intro-
duced and modeled as a heterogeneous information network and mutual reinforcement
in ranking would be generalized using meta-path.
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