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Abstract
How to achieve energy-efficient transmission in radio frequency energy harvesting
cognitive radio network (RF-CRN) is of great importance when nodes in CRN are
self-maintained. This paper presents a radio frequency (RF) energy harvesting
hardware-based underlay cognitive radio network (RH-CRN) structure, where a
secondary transmitter (ST) first harvests energy from RF signals source originating from
the primary network, and then communicates with a secondary receiver (SR) in
underlay mode by using the harvested energy. The total consumed energy by the
secondary user (SU) must be equal to or less than the total harvested energy referred to
as energy causality constraint, In addition, the ST possesses some initial energy which
may be the residual energy from the former transmission blocks, and we consider the
energy loss of energy harvesting circuit as a systematic factor as well. Our goal is to
achieve the maximum energy efficiency (EE) of the secondary network by jointly
optimizing transmitting time and power. To guarantee the quality of service (QoS) of
secondary transceiver, a minimum requirement of throughput constraint is imposed
on the ST in the process of EE maximization. As the EE maximization is a nonlinear
fractional programming problem, a quick iterative algorithm based on Dinkelbach’s
method is proposed to achieve the optimal resource allocation. Simulation results
show that the proposed strategy has fast convergence and can improve the system EE
greatly while ensuring the QoS.

Keywords: Energy harvesting, Cognitive radio network, Energy efficiency, Residual
energy, QoS, Dinkelbach, Resource allocation

1 Introduction
Radio frequency (RF) energy harvesting-based (EH) cognitive radio network (RF-CRN),
which has emerged as a promising way to address the problems of spectrum scarcity
and energy efficiency while consistent with the call for green communication at the same
time, has received extensive attention over the recent years [1]. RF energy harvesting
technique allows wireless nodes to collect energy of electromagnetic waves sent from RF
sources (e.g., TV, radio towers and cellular base-stations) and then convert it to electrical
energy, which can be utilized for data transmission and self-powering. Comparing to the

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01824-z&domain=pdf
mailto: bluelxl@163.com
http://creativecommons.org/licenses/by/4.0/


Tian et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:216 Page 2 of 18

traditional EH sources, such as solar, wind, wave, and heat, the RF energy harvesting is
more flexible and sustainable since the RF signals radiated by ambient transmitters could
be consistently available and has little limitations on time, space, or locations [2, 3].
RF energy sources can be mainly categorized into dedicated RF sources and ambient

RF sources. Dedicated RF sources can power the wireless nodes which require stable
and predictable energy due to on-demand power supply and directional transmission.
For example, wireless powered communication networks (WPCN) in which distributed
wireless devices are powered via dedicated wireless energy transfer (WET) by the hybrid
access point (H-AP) in the downlink (DL) for wireless information transmission (WIT)
in the uplink (UL) [4–9], unlike previous studies on simultaneous wireless information
and power transfer (SWIPT) in which the wireless information and energy are included
in downlink RF signals at the same time [10–12].
In the scenarios of CRN, ambient RF signals contain most of the radiations from nearby

RF sources such as base stations, primary licensed networks, and other secondary sources.
It is not dedicated for EH but freely available, can be used in self-powered scenarios where
its hard to change batteries or recharge frequently for low-power devices, such as wireless
sensor networks (WSNs). The RF signals radiated by the primary networks are not only
interference for the secondary users (SUs), but also can be regarded as the green energy
sources for EH, so that SUs can utilize both spectrum and energy of primary networks
during the working process.
Based on the approaches of collecting the ambient RF energy and access the licensed

spectrum, SUs in RF-CRN mainly operate in three typical modes, namely, interweave,
overlay, and underlay [13]. In interweave mode, SUs first harvest RF energy, and then
spend the energy on spectrum sensing and opportunistically access the licensed spectrum
for transmitting wireless information when primary users (PUs) are detected as inactive.
With the assumption that SUs have prior knowledge of PU’s transmitting sequence and
encoding scheme, the harvested energy is used to serve the transmission of both PU and
SU in overlay mode [3, 14–17]. Unlike the sensing energy consumption and discontinuous
data transmission in interweave mode and unnecessary collaboration of PUs and SUs
in overlay mode, SU should transmit along with PU as long as the interference caused
by the secondary transmission at primary receiver (PR) keeps below an acceptable peak
threshold in underlay mode, so the important detection and false alarm probabilities in
overlay mode need not be taken into consideration in underlay [13, 18–20].
For the sake of designing green communication networks, the SU nodes working in RF-

CRN are usually self-maintained by harvested environmental RF energy supplies other
than dedicated power supplies. However, the harvested energy supplies is somewhat
dynamic or unstable due to the transmitting power fluctuation of ambient RF sources
or unpredictable channel fading. Therefore, it is necessary to maximize the energy effi-
ciency (EE) in RF-CRN, which is defined as the ratio of the amount of average transmitted
data bits to the amount of consumed energy [21]. As an important indicator in energy-
efficient for RF-CRN communications, tremendous works have been done in explicitly
solving the EE maximization problem, which is a nonlinear fractional optimization prob-
lem [22] under the energy and interference constraints. Energy constraint requires that
the total energy consumed by SUsmust be equal to or less than the total harvested energy,
and interference constraint only enables the transmitting power of SUs must be restricted
to protect PUs from secondary interference . At the same time, throughput plays an
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important role in EE maximization for RF-CRNs. However, larger throughput threshold
means more energy consumption; it is essential to minimize throughput that meets the
QoS requirement of low priority users, so that they can harvest enough energy when pri-
mary users transmit high priority data continuously in data gathering, event monitoring,
and other multi-priority WSN applications.
In this paper, we consider an underlay ambient RF-CRN system in which a battery-free

SU first harvests energy from RF signal radiated by PU, and then transmits data by using
harvested energy. Our goal is achieving the maximum of EE optimization in RF-CRN
while guaranteeing the QoS requirement of SU, without affecting transmission of PU. We
summarize three contributions in this paper.

• First, we formulate a novel EE maximization model of underlay RF-CRN as a
nonlinear fractional programming problem under certain constraints, which is
different from the works that design the paradigm to enhance SE of underlay
RF-CRNs. Specifically, we take advantages of the residual energy after former
transmission block, which enables more flexibility to energy utilization of SUs and
generalizes the application scenario.

• Second, to ensure the QoS of SU, taking only energy and interference constraints
into consideration for optimizing EE is not enough. We impose a minimum
throughput requirement and residual energy of SU into the constraint conditions,
and study the EE maximization problem with respect to joint allocation of harvesting
time and transmitting power.

• Third, in order to solve the EE maximization which is a nonlinear fractional
optimization problem, an alternative energy-efficient resource allocation algorithm
based on Dinkelbach method and Lagrangian Dual model is proposed to obtain the
optimal solution, with the features of fast convergence and insensitivity to the initial
values of residual energy.

The rest of this paper is organized as follows. Section 2 reviews the related works
on RF-CRNs. Section 3 introduces the system model and the problem formulation for
the proposed RF-CRN. Section 4 presents the theoretical proof and solutions of the EE
optimization. Section 5 analyzes the convergence and simulation result of the proposed
algorithm. Section 6 concludes the paper and discusses the future work.

2 Related works andmotivation
In order to maximize EE in CRN, previous research works of energy reduction have been
done in CRN.
Feng and Gan [23] presents the EE maximization, in which the dynamically sens-

ing and transmission are formulated as a partially observable Markov decision process
and resolved by myopic policy. By joint control of multi-channel allocation and trans-
mitting power, EE is formulated as a nonlinear integer programming and solved by a
polynomial time heuristic algorithm [24]. In [25], EE is formulated as a multi-objective
optimization problem with respect to ergodic capacity and is solved by being trans-
ferred into a single objective problem with constraints. Furthermore, [26] proposes a
general framework to evaluate the tradeoff between EE and spectrum efficiency (SE) in
CRNs. Recently, [27] models the average EE maximization problem as a joint optimiza-
tion of spectrum sensing duration and ST transmit power under the constraints of outage
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probability of SUs transmissions. However, the above works focus only on the energy effi-
ciency of CRNs without considering EH technique, which may not be applicable on many
occasions, such as wireless nodes that cannot replace batteries or recharge frequently in
WSNs.
As a typical example of RF energy harvesting networks and a promising solution to

achieve perpetually operating wireless networks, WPCN technique has been investigated
in recent studies [4–9]. In [4], the authors consider an WPCN that nodes can save energy
for later blocks, the sum rate can be maximized by optimally allocating time and energy
without considering energy efficiency. Chen et al. [5] presents a wireless powering coop-
erative communication networks consisting of a hybrid access point(AP), a source, and a
relay. The source and relay harvest energy from broadcasted signals for the cooperative
transmission. In order to solve the near-far problem of EH efficiency due to UE random
locations, authors in [6] propose an adaptive harvest-cooperate protocol; every UE har-
vests the emitted energy then sends data to AP directly or via other UEs acting as relays in
a time division multiplexing (TDM) manner. The authors In [7] investigate the time and
power allocation for DL WET and UL WIT to maximize EE of WPCN systems. In [8, 9],
the authors present an iterative resource allocation based on the Dinkelbach structure and
particle-swarm optimization algorithm to optimize EE as a nonlinear fractional program-
ming problem. Since the RF signals can convey information and energy simultaneously,
various models for different SWIPT applications have been studied to characterize the
trade-offs between WET and WIT, including broadcast channels [10], interference [11],
and relays [12].
However, the works onWPCNs or SWIPTs mentioned above are based on the assump-

tion that the system can operate in exclusive frequency band, so there is no need to
consider the same frequency interference caused by the other wireless systems. Recently,
as a new type of CR enabled secondary WPCN, cognitive WPCN which shares spectrum
with the primary system is presented [28]. In [29], a wireless powered underlay CRN
where SUs first harvest energy in the DL wireless power transfer (WPT) phase and then
use the energy in the TDM UL wireless information transmission phase is introduced.
These works optimize SE for cognitive WPCN, so they mainly focus on maximizing
the sum rate of the SU system under different constraints without considering energy
efficiency.
Lastly, the literatures of ambient RF energy harvesting mainly focus on RF-CRN sys-

tems, in which SUs first harvest energy from PUs signals, and then use the harvested
energy on data transmission by sharing spectrum with PUs. While keeping PUs suffi-
ciently protected, [30] focuses on the harvesting-sensing-throughput tradeoff and jointly
optimizes efficiency ratio, sensing duration, sensing threshold, and fusion rule to max-
imize SUs expected achievable throughput. In [31], SUs are able to not only transmit
packets on an idle licensed channel, but also harvest RF energy from PUs transmitting
signals when the channel is occupied. Wu et al. [32] considers the EE maximization
of interweave RF-CRN by jointly optimizing sensing time and transmission power. A
CDMA-based underlay CRN with RF energy harvesting is presented in [33]. Unlike
the majority of previous RF-CRN studies, which consider CRNs under a single user
setting, the goal of [15] is investigating the joint impact of sensing probability, access
probability, and energy queue capacity on the maximum achievable throughput in a
multiuser EH-CRN. In [34], a two-hop underlay cognitive relay network with an EH
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relay is proposed. Authors in [35] maximizes the EE of the SU network in which the
ST needs to dynamically adjust the transmitting power according to the sensing results
of the PU’s state. When PUs stay active during most of the system’s working time,
SUs can hardly sense spectral holes for data transmission and there will be additional
energy and time consumption on spectrum sensing and collaborative transmission for
SUs respectively in interweave and overlay RF-CRN. Then, SUs can hardly have energy
and time to transmit their own information, even if the throughput requirement is
fairly low. So, the underlay RF-CRN framework can be proven to be potentially more
energy-efficient in many practical scenarios [19]. Recently, an underlay multi-hop RF-
CRN is analyzed in [13], in which all the SUs harvest energy from PU signals to be
self-powered.
These aforementioned works about RF-CRNsmainly focus on the fundamental tradeoff

between achievable throughput and harvested energy. Specifically, by jointly optimizing
the harvesting time and transmitting powers of SUs, the aim is to maximize the sum rate
of the network, subject to the primary interference constraint and the energy causality
constraint. Unfortunately, the energy harvesting efficiency of the nodes in small fac-
tor is usually low due to the design complexity of hardware. Achieving energy-efficient
transmissions for ambient RF-CRNs is important, so that they can avoid excessive
energy consumption and system outage [1]. To our best knowledge, the EE maximiza-
tion with QoS guarantee in underlay RF-CRN is still an open problem. More specifically,
complex constraints and the coupling of transmission time and power on SUs impose
enormous challenge on the optimal scheme design in underlay RF-CRNs with residual
energy.

3 Systemmodel
In this paper, we consider an underlay RF-CRN that can work in multi-priority services
transmission scenarios, in which a primary network consisting of a primary transmit-
ter (PT) and a primary receiver (PR) and a secondary network consisting of a secondary
transmitter (ST) and a secondary receiver (SR) coexist in the same frequency band. It is
reasonable to assume that the PU stays in a state of continuous mutual communication
under the licensed spectrum as the high priority service demands, so that ST can collect
energy from the emitted RF signals of PT to perform data transmission to SR which works
in the same band. Therefore, there are three kinds of links in the system, namely, energy
link (PT-ST), interference links (PT-SR and ST-PR), and data links (ST-SR and PT-PR), as
shown in Fig. 1a. We also assume the licensed channel follows block fading, meaning the
fading state between each block is constant, but may vary from one block to another. In
order to simplify the model complexity, without loss of generality, we assume that SR has
a separate stable power supply, and ST is completely self-powered by the harvested RF
energy.
SU works in the energy harvesting-data transmission mode, in which SU first collecting

energy and then transmitting data, so two steps need to be completed one after another.
As can be seen from Fig. 1b, a data framewith durationD considered for ST can be divided
into two time slots, i.e., energy harvesting slot D − t with duration and data transmission
slot with duration t. And it is assumed that ST is capable of managing the energy, so that
the residual energy from previous time slot can be reserved for the next time slot as initial
energy.
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b

Fig. 1 The model of RF-CRN. a System scenario. b Time slot structure

Energy harvesting slot: Firstly, SU enters the energy harvesting slot, in which the ST
collects energy for a duration D − t, and the harvested energy, denoted as Eharv, can be
given by

Eharv = εgePt(D − t) (1)

where ε depicts the energy harvesting efficiency of ST, ge denotes the channel gain of
energy link from PT to ST and Pt is the constant transmission power of PT. It is usually
assumed that the energy harvested by ST is kept in an embedded battery with infinite
capacity.
Data transmission slot: In data transmission slot, ST transmits information bits to SR

with energy stored in the energy storage device. The energy consumed by ST can not
exceed the total available energy consisting of harvested energy Eharv and initial energy
Qe, which is referred to as energy causality constraint [1]

(Ps + Pcir) t ≤ Eharv + Qe (2)

where Ps and Pcir are the transmission power and the circuit working power consumption
of ST, respectively. Since ST shares the same spectrum with PT in underlay mode, the
transmission power of ST must be constrained to keep the interference generated from
ST to PR within an acceptable threshold, namely interference constraint [1].

Psgsp ≤ Pth (3)
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where Pth is the peak permissible interference threshold for PR, gsp is the channel gain of
the interference link from ST to PR. Then, the achievable throughput of the secondary
network can be calculated as follows:

C (t,Ps) = tlog2
(
1 + Psgs

Ptgps + σ 2

)
(4)

where gs is channel gain of the data link from ST to SR and gps is channel gain of the
interference link from PT to SR. We model thermal noise and background interference as
additive white Gaussian noise (AWGN), with power spectral density σ 2 received at SR.
To ensure the QoS of secondary network, we impose a minimum throughput require-

ment Cmin on ST.

C (t,Ps) ≥ Cmin (5)

It is remarkable that the energy harvesting link and interference link are both related to
the distance between the primary network and secondary network. In this paper, we con-
sider the small scale fading and the channel gain can be modeled as gX = |GX |2S−α (X =
e, sp, ps, s), where α is the path loss exponent and S is the distance between the users.GX is
an exponentially distributed random variable with unit mean [13]. Energy efficiency max-
imization: During the energy efficiency maximization process, the total energy Etc (t,Ps)
consumed by ST consists of two parts: first part is the energy loss due to attenuation of
channel propagation in the EH slot and the other part is the energy consumed in data
transmission slot. Thus, the total consumed energy Etc (t,Ps) can be calculated as follows:

Etc (t,Ps) = Phw (D − t) + (Ps + Pcir) t (6)

where Phw(D − t) is the amount of RF energy consumed by the PT hardware and cannot
be harvested by ST. Combining aforementioned Eqs. (1)–(6), the EE maximization for the
underlay RF-CRN is presented as follows:

OP1 : max
t,Ps

EE (t,Ps) = C (t,Ps)
Etc (t,Ps)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 : (Ps + Pcir) t ≤ Eharv + Qe
C2 : Psgsp ≤ Pth
C3 : C(t,Ps) ≥ Cmin
C4 : 0 < t < D
C5 : 0 < Ps < Pmax

(7)

where constraint C1 means that under the current allocated energy harvesting time and
signal transmitting power, the energy consumption of data transmission cannot be higher
than the sum of initial energy Qe and energy Eharv harvested by the system; constraint
C2 indicates that the transmitting power of ST should not exceed the interference power
threshold Pth of PR. In this scenario, we use C2 to protect PR from being interfered by
ST severely. Constraint C3 is used to restrict the throughput requirement of SU in this
system, which defines the minimum throughput that SU should achieve, and it is the QoS
guarantee of the system. Constraint C4 indicates that the total consumed time of SU data
transmission cannot be larger than frame periodD. Finally, Pmax represents themaximum
transmitting power of ST authorized by the CRN system, while constraint C5 represents
the maximum transmitting power of ST that cannot exceed Pmax. Here, OP1 is a typical
nonlinear fractional programming problem, which is difficult to solve in an explicitly way.
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4 Theoretical analysis and algorithm design
Obviously, the objective function of OP1 is a non-convex problem and the product of the
optimization variables t and Ps occurs in constraint C1; hence,OP1 is a non-convex prob-
lem. To make OP1 solvable and realizable, a new variable η, which is defined as Ps = η

t
and can be regarded as the actual energy that ST uses for data transmission, is introduced
in this paper. Subsequently, the system model expression OP1 is further transformed into
the following form by substituting η into (1)–(6) as below

OP2 : max
t,η

EE (t, η) = C (t, η)

Etc (t, η)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 : η + Pcirt ≤ εgePt(D − t) + Qe
C2 : ηgsp ≤ tPth
C3 : C(t, η) ≥ Cmin
C4 : 0 < t < D
C5 : 0 < η < ηmax

(8)

where C (t, η) = tlog2
(
1 + η

t γ
)
, γ = gs

Ptgps+σ 2 and Etc(t, η) = Phw(D − t) + η +
Pcirt. C1,C2,C3 represent energy constraint, interference constraint, and throughput
constraint corresponding to (2), (3), (5), respectively.

Theorem 1 The objective function EE(t, η) of problem OP2 is the ratio of a concave
function to an affine function.

Proof According to Dinkelbach’s basic theory, C(t, η) = tlog2
(
1 + η

t γ
)
is the perspec-

tive transformation of a function f (η) � log2
(
1 + η

t γ
)
. It is clear that f (η) is a concave

function of η as the logarithmic function is concave. As perspective transformation pre-
serves convexity, soC(t, η) is a concave function related to t and η [36]. Besides, Etc(t, η) is
obviously an affine function in terms of t and η. Therefore, we get Theorem 1 proved.

Therefore, from Theorem 1, the optimization problem OP2 can be converted into a
parameterized concave maximization problem by utilizing the well-known Dinkelbach’s
method [37] as follows:

OP3 : max f (w)
t,η

= C(t, η) − wEtc(t, η)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C1 : η + Pct ≤ εgePt(D − t) + Qe
C2 : ηgsp ≤ tPth
C3 : C(t, η) ≥ Cmin
C4 : 0 < t < D
C5 : 0 < η < ηmax

(9)

where w ∈ R+ is a weight parameter used in OP2 to optimize EE(t, η) values. The maxi-
mum value of EE(t, η) can be achieved as long as a value of w∗ that makes f (w∗) = 0 can
be found. In addition, the maximum value of EE(t, η) is equal to w∗ [37]. Evidently, OP3
becomes a convex optimization problem with respect to t and η and satisfies Slater’s con-
dition, so we can solve its dual problem instead. The partial Lagrangian function of OP3
in term of C1 and C3 can be given as below
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L (t, η, λ,μ)

= C(t, η) − wEtc(t, η) + μ (C(t, η) − Cmin)

− λ
(
η + Pcirt − εgePt(D − t) − Qe

) (10)

where λ and μ are non-negative dual variables associated with C1 and C3, respectively.
Then, the Lagrangian dual function of OP3 can be derived as follows

g(λ,μ) = max
t,η≥0

L (t, η, λ,μ) (11)

Finally, the dual problem ofOP3 can be described as d(λ,μ) = min
λ,μ≥0

g (λ,μ). As known,

the dual function is concave since it is the pointwise infimum of affine functions of (λ,μ),
even when the problem is not convex.

Theorem 2 For given w ≥ 0, λ ≥ 0,μ ≥ 0 , the optimal time and energy allocation can
be derived by

t∗ =
[
−η∗γ W (θ)

W (θ) + 1

]+
(12)

where θ = − exp
(
−

(
ζ ln 2
1+μ

))
, W (•) denotes the Lambert W function and (x)+ �

max(0, x) [38]. Then, the optimal value of η can be obtained as

η∗ = min
[
t∗

(
1
γ

− 1 + μ

ln 2 (w + λ)
,
t∗Pth
gsp

)]+
(13)

Proof OP3 is a convex optimization problem and the Slater’s condition is satisfied. Thus,
the optimal t and η must satisfy Karush-Kuhn-Tucker (KKT) condition, given as follows"

∂L(t, η, λ,μ)

∂t
|t=t∗ = 0 (14)

∂L(t, η, λ,μ)

∂η
|η=η∗ = 0 (15)

In order to obtain t∗, we can obtain the results by calculating (14)

ln
(
1 + η∗

t∗
γ

)
−

η∗
t γ

1 + η∗
t∗ γ

= ζ ln 2
1 + μ

(16)

where ζ = wPhw +wPc + λPc + μgePt . Since Lambert W function is the inverse function
of f (z) = zez to solve t [38], we can calculate t∗ afterwards. Let x = η

t γ and λ = 1 + μ,
we get A = ζ ln 2

λ
. Then, we can convert (16) into
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ln (1 + x) − x
1 + x

= A

⇒ ln(1 + x)
1

1 + x
= A + 1

⇒ (1 + x) ln(1 + x) + 1 = (A + 1)(1 + x)

⇒ (1 + x) [ln(1 + x) − (A + 1)] + 1 = 0

⇒ (1 + x)
[
ln(1 + x) − ln

(
eA+1

)]
+ 1 = 0

⇒ (1 + x) ln
(
1 + x
eA+1

)
+ 1 = 0

⇒ 1 + x
eA+1 ln

(
1 + x
eA+1

)
+ 1

eA+1 = 0

⇒ ln
(
1 + x
eA+1

)
exp

(
ln

(
1 + x
eA+1

))
= − 1

eA+1

⇒ ln
(
1 + x
eA+1

)
= W

(
− 1
eA+1

)

⇒ x = eA+1 exp
(
W

(
− 1
eA+1

))
− 1

⇒ ηγ

t
= eA+1 exp

(
W

(
− 1
eA+1

))
− 1

⇒ t = ηγ

εA+1 exp
(
W

(−e−(A+1))) − 1

Then, we make use of the Lambert W function which is the inverse relation of the
function exp(W (x)) = x

W (x) [38], we have

t = ηγ

eA+1 exp
(
W

(−e−(A+1))) − 1

= ηγ

eA+1
(

(−e−(A+1))
W(−e−(A+1))

)
− 1

= ηγ

− 1
W(−e−(A+1))

− 1

= −ηγW
(−e−(A+1))

W
(−e−(A+1)) + 1

Let θ = −e−(A+1) = − exp
(
−

(
ζ ln 2
1+μ

+ 1
))

, then (12) can be obtained. Finally, as the
optimal solution of t∗ is given by (12), we can get η∗ by calculating (15) as

η∗ = t∗
(
1
γ

− 1 + μ

ln 2 (w + λ)

)
(17)

As the optimal η∗ also subjects to the interference power constraint C2 of OP2, so the
optimal η∗ can be obtained as (13). Unfortunately, as we can see from (12)-(13), t∗ and η∗

are coupling with each other in each iteration. To circumvent this problem, an iterative
process can be introduced as the innermost loop. More specifically, we first calculate t
by using (12) with given η and then update η by using (13) under the condition of t until
convergence.
Subsequently, the optimal dual variables λ∗ and μ∗ that minimize g(λ,μ) can be

achieved by using the sub-gradient method. Specifically, the variables λ and μ can be
iteratively updated based on the following iteration procedure until convergence.
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λ(k+1) = λ(k) − a∇L
(
λ(k)

)
(18)

μ(k+1) = μ(k) − a∇L
(
μ(k)

)
(19)

where ∇L
(
λ(k)) = − (

η∗ + Pct∗ − εgePt (D − t∗) − Qe
)

and ∇L
(
μ(k)) =

t∗log2
(
1 + η∗

t∗ γ
)

− Cmin, a denotes the step-size in the kth iteration.
Finally, we update w in the outermost iteration. As long as f (w∗) = 0 or

∣∣f (w∗)
∣∣ ≤ ε,

the optimal resource allocation policy and maximum EE can be achieved. We summarize
the solution method as Algorithm 1.

Algorithm 1 The energy-efficient resource allocation policy related to harvesting time
and transmitting power under QoS guarantee
1: Initialize parameters, w = w0;
2: repeat
3: Initialize λ(0),μ(0), k = 0;
4: repeat
5: Initialize t∗ = t0, η∗ = η0
6: Calculate t∗, η∗ according to (12), (13), respectively;
7: Update λ(k+1), μ(k+1) according to (18), (19), respectively;
8: until

∣∣g (
λ(k+1),μ(k+1)) − g

(
λ(k),μ(k))∣∣ ≤ ε

9: Calculate w = C(t∗,η∗)
Etc(t∗,η∗)

10: until
∣∣f (w)

∣∣ ≤ ε

11: Obtain the maximum EE∗(t, η) = w and the optimal power allocation P∗
s =

min
[(

η∗
t∗

)+
,Pmax

]
.

In order to obtain the optimal w∗ value, the classic Dinkelbach’s method is introduced
in this paper, which has unique advantages in solving the nonlinear fractional program-
ming problems and has a super-linear convergence rate [37]. Based on the Dinkelbach’s
method, an optimal resource allocation policy related to transmission time and power is
proposed to solve OP1. It is worth noting that since t and η following KKT condition are
iteratively optimized in the innermost loop, they will converge to the optimal value under
the updating process of λ and μ. Also, we ensure λ and μ can converge to the optimal
solution for given w due to the convexity of OP3 [36]. In summary, our proposed algo-
rithm has a fast convergence rate which consistent with the convergence of Dinkelbach’s
structure.
According to our analysis, the complexity of algorithm 1 is the computation time of

transmission power for Lagrangian dual problem in convex optimization theory. The
Lagrangian dual will not change the optimal solution of the original problem but will
affect the complexity. For original problem, the complexity of algorithm is related to the
sample dimension, while in the Lagrangian dual, the complexity is related to the num-
ber of samples, since algorithm 1 is a two-step nested structure of sub-gradient and
Lagrangian dual. Therefore, in each iteration of the algorithm, the computational com-
plexity of sub-gradient isO(N), where N is the number of Lagrangian operators. And the
total computational complexity should beO

(
N2).
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5 Simulation results
In this section, we present the simulation results to indicate the performance of proposed
iterative resource allocation policy updating algorithm. The relative distance between the
secondary network and the primary network is about 5 meters. We assume the value of
path loss exponent α as 2 [16]. Other scenario parameters are set as follows: normalized
frame length D = 1s, noise power σ 2 = −65dBm, circuit power consumption Pcir =
0.01W, PT’s transmission power Pt ≤ 30W, interference threshold for PU Pth ≤ 2W,
minimum throughput constraint for SU Cmin = 1bps/Hz and ε = 0.8.
Figure 2 demonstrates the convergence rate of the proposed algorithm. Obviously, the

proposed algorithm has the feature of fast convergence and insensitivity to the initial
values, which conforms to the convergence criterion of the Dinkelbach method [37].
Figure 3a depicts the EE performance versus different primary network settings of Pt ,

Pth and minimum throughput requirements of Cmin. We can see clearly that when Cmin
is small enough, the maximum EE can be obtained. It means that in the process of EE
optimization, ST always sends as few data bits as possible to save energy. When the min-
imum throughput requirement Cmin increases, EE will decrease. Although higher Cmin
will lead to increases in both throughput and energy consumption, the energy consump-
tion increases even more than the throughput which results in the decline of EE. Besides,
EE values stay the same under same values of Pt with different Pth. Although the expan-
sion of Pth enlarges the range of ST’s transmission power Ps, Ps will stop increasing
once it meets the Cmin. Then, we can see that EE decreases with the increases of Pt . As
larger Pt means more interference to the SR, transmission time t and transmission power
Ps of ST are enlarged in order to satisfy Cmin which makes ST consume more energy.
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Fig. 2 The convergence analysis result of the proposed algorithm
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Fig. 3 Comparison of expected EE performance under different Cmin and Qe constraints . a Expected EE
versus Cmin with Qe = 0. b Expected EE versus Qe with Pt = 10W and Pth = 2W

Finally, when the interference is large enough and Pth is tight, then ST cannot satisfy
any of the constraints, EE will dramatically decrease to near zero, and the system will be
interrupted [39].
Figure 3b demonstrates the EE versus different values of initial energy Qe. First, when

Qe = 0, ST relies solely on energy harvesting to support the minimum throughput
constraint Cmin and EE decreases with increasing of Cmin which is consistent with the
description of Fig. 3a. Subsequently, EE increases with the increasing of Qe. The reason
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is that when Qe increases, less time is needed for energy harvesting and more time is
allocated to data transmission, thereby the transmission power and the total consumed
energy can be reduced. Finally, when Qe continues to increase and can meet the require-
ment of Cmin, there is no need to allocate time for ST to harvest energy and the EE will
no longer change. It must be noted that, even though it is assumed in the beginning of
this paper that the harvested energy of each slot is greater than the energy loss during the
entire data block transmission, theQe size is inversely proportional to the energy harvest-
ing time, and the energy harvesting time is inversely proportional to the transmission time
as well, which will not change the influence of Qe during the whole operation process.
Assume Qe stays the same in the following analysis, say, Qe = 0. Figure 4 shows obvi-

ously that the system throughput increases with growth of the Pth, due to the fact that
the increasing Pth enlarges the feasible domain of ST’s transmit power Ps and further
increases C (t,Ps). Same as EE, C(t,Ps) also decrease with the growth of Pt . Larger Pt
means more harvested energy for SU, but also means more interference to SR. Therefore,
when interference power is large enough or Pth is tight, the SU cannot satisfy the pre-
scribed minimum throughput threshold, the network throughput dramatically decreases
to near zero, and the system interrupted.
Figure 5a, b demonstrate that the throughput and energy consumption of the network

system when the system achieves the maximum EE under different Cmin. From Fig. 5, we
can observe that Cmin has direct impacts on system throughput and energy consumption
performance. Although higher Cmin will lead to increases in both throughput and energy
consumption, the consumption increases more than throughput. Specifically, when Cmin
is high, more energy is needed to ensure the throughput, which would result in a serious
decrease in EE.
Figure 5a illustrates the system throughput versus the minimum rate requirement Cmin

when the maximum EE is achieved. First, we observe that each expected throughput
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Fig. 5 Expected system performance of throughput/energy consumption versus Cmin. a System throughput
analysis versus Cmin. b System energy consumption analysis versus Cmin

curve consists of two parts. The first part is almost fixed, while the second part increases
with the minimum rate requirement. Because when the rate requirement is low, very low
energy is needed for data transmission, which results in almost fixed throughput. On the
other hand, when the rate requirement becomes higher, more energy is needed to trans-
mit data, which results in higher expected throughput. Second, each curve indicates that
there exists an upper bound of Cmin beyond which the throughput becomes zero due
to lack of available solution. Third, in the process of energy efficiency optimization, ST
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always transmits data with same minimum throughput, i.e., Cmin under different situa-
tions in order to save energy, which leads to the same optimal energy efficiency, which
can also be supported by Fig. 4a.
Figure 5b shows the effects ofCmin on the expected energy consumption when themax-

imum EE is achieved. In general, the energy consumption increases with the increase of
Cmin and dramatically decreases to near zero when Cmin goes beyond the upper bound,
due to the fact that the increases of Cmin requirement increases throughput and leads to
more energy consumption. Obviously, when Cmin exceeds an upper value, no available
solution exists which means near-zero energy consumption. Lastly, we can observe that
larger Pt causesmore interference to SR leading to the decreasing of throughput, while the
transmitting time τ and Ps must be enlarged in order to satisfy the constraint of minimum
rate Cmin which needs to consume more energy.
In order to guarantee QoS in practical application, it is necessary to select a reason-

able throughput threshold; the corresponding constraints should be considered. Because
throughput and EE affect each other, a real RF-CRN system must tradeoff between
both optimization objectives according to the specific application scenarios. Such as the
following:

• For self-powered systems that require long-term operation, like WSNs, we only need
to maximize EE based on the basic QoS requirement;

• If the wireless networks need to maximize the total system throughput, then EE
optimization should not be treated as the major optimization objective.

6 Conclusion
The energy efficiency maximization problem of RF energy harvesting-based cognitive
wireless network in underlay mode is modeled and solved in this paper. The through-
put threshold is selected to meet the QoS requirements according to different application
scenarios and is reflected in the corresponding constraints of the optimization problem.
Based on the assumption that ST can reserve the residual energy after previous slot as
the initial energy for the next slot, we trade off the performance between energy-efficient
transmission and QoS. The optimization algorithm was proposed based on Dinkelbach
methods to jointly optimize the energy harvesting time and transmitting power, and the
conditions of optimal energy harvesting time and transmitting power were achieved to
maximize the energy efficiency of the SU network. The simulation results show that
there is a competitive relationship between energy efficiency optimization and through-
put requirements. Meanwhile, we found that the setting of PU network scenario and the
initial energy of secondary user power supply will have a great impact on the energy
efficiency and QoS guarantee of RF-CRN.
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