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Abstract
The distribution of the received signals in many array processing applications is
noncircular. Although optimal widely linear beamformer (WLB) can provide the best
performance for noncircular received signals, its performance degrades severely under
model mismatches in practical applications. As a remedy, we propose a robust WLB by
using precise reconstruction of extended interference-plus-noise covariance matrix
(EINCM) and low-complexity estimation of extended desired signal steering vector
(EDSSV). We propose to first determine the steering vectors, powers, and noncircularity
coefficients of all signals and the noise power. In contrast to the previous
reconstruction methods using the integration over a wide angular sector, we
reconstruct the interference-plus-noise covariance matrix (INCM) and the pseudo INCM
accurately according to their definitions. By using INCM and pseudo INCM, we can
precisely reconstruct the EINCM. We propose to estimate the EDSSV by intersecting
two extended subspaces, which are respectively formed by eigendecomposing the
extended sample covariance matrix and the extended desired signal covariance matrix.
Unlike the convex optimization methods, the proposed EDSSV estimation does not
require any optimization programming and yields a solution with closed expression in
low computational complexity. Simulation results show that the proposed robust WLB
provides near optimal performance under several model mismatch cases.

Keywords: Noncircular signal, Robust widely linear beamforming, Noncircularity
coefficient, Extended covariance matrix, Subspace intersection, Extended steering
vector

1 Introduction
Adaptive beamforming aims at extracting desired signal (DS) while suppressing inter-
ferences and noise and is a fundamental technique in array signal processing [1–5].
Traditional adaptive beamformers mostly focus on second-order circular signals with
stationary observations, such as minimum variance distortionless response (MVDR)
beamformer and linearly constrained minimum variance (LCMV) beamformer [6–10].
The second-order noncircular and nonstationary signals frequently appear in the fields
of radio communication and satellite communication, such as unbalanced quaternary
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phase shift keying (UQPSK), amplitude modulated (AM), amplitude-shift keying (ASK),
and binary phase-shift keying (BPSK) signals [11–13]. However, these beamformers
become suboptimal when they encounter noncircular signals. In such cases, the optimal
beamforming shall be as widely linear (WL) [14–20].
A variety of widely linear beamformers (WLBs) have been developed in the past decade

to exploit the noncircularity of noncircular signals. In [21], a WL MVDR beamformer
is introduced which outperforms the traditional MVDR beamformer for noncircular
interferences. However, the beamformer in [21] ignores the noncircularity of the DS.
As a result, this beamformer cannot fully exploit the noncircularity information which
becomes suboptimal. To fully utilize the noncircularity of DS, an optimal WL MVDR
is proposed in [22] where more DS components are retrieved through the orthogonal
decomposition of the conjugate DS. The optimal WL MVDR beamformer has better
performance than the WL MVDR beamformer and its excellent performance is further
analyzed in [23, 24]. However, the optimal WL MVDR beamformer relies on the prede-
fined noncircularity coefficient and the exact desired signal steering vector (DSSV), which
are not available in practical applications. Many unideal factors will lead to the DSSV
mismatches, such as imperfect array calibration, wavefront distortion, local scattering,
and look direction error. The mismatch of noncircularity coefficient is often caused by
phase offset, frequency offset, and partial waveform information of DS. The WL MVDR
beamformer will suffer serious performance degradation due to these mismatches.
The robust WLBs have been proposed to improve the robustness against various mis-

matches. A robust method for the optimal WL MVDR beamformer is proposed in [25]
to combat the mismatches of the noncircularity coefficient and the DSSV. However, this
robust WLB is sensitive to the large mismatch of noncircularity coefficient. A noncir-
cularity coefficient estimator is proposed in [26] by only using the noncircular DSSV.
However, this robust WLB relies on the exact DSSV and it is not effective in DSSV mis-
match case. The authors in [27] extend the robust Capon beamformer to the generalized
case with noncircular DS and noncircular interferences. Although this WLB is robust
against the errors in steering vector, sample covariance matrix (SCM), and DS noncircu-
larity coefficient, its performance degrades greatly in high signal-to-noise ratios (SNRs).
In [28], the authors propose twoWL minimum dispersion beamformers by fully utilizing
the noncircularity and sub-Gaussianity of signals to improve the beamforming perfor-
mance. A class of DS noncircularity coefficient estimators for WLB are proposed in [29],
which employ the algebraic structure of the extended covariance matrix in different view-
points. These methods have excellent performance in different scenarios of low SNR and
few numbers of snapshots. In [30], a spatial spectrum of noncircularity coefficient (SSNC)
is estimated and the extended interference-plus-noise covariance matrix (EINCM) is
reconstructed based on the Capon power and noncircularity coefficient spectra. This
robust WLB has robustness against look direction error and steering vector mismatch.
However, it requires the precise array sensor geometry. A robust WLB is proposed in
[31] which prevents the extended desired signal steering vector (EDSSV) from converging
to the interferences based on a projection constraint (PC). Three robust WLBs are pro-
posed in [32] by reconstructing the EINCM via modifying the SSNC and by estimating
the EDSSV using three different estimators. The EINCM outperforms the extended SCM
because the EINCM reduces the DS self-nulling effects that are usually caused by the
extended SCM. The robust WLBs using EINCM achieve near optimal WL beamforming
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performance while the WLBs using extended SCM suffer from performance degradation
at high SNRs. However, the existing EINCM reconstruction is still not precise because
the exploited Capon spatial spectrum is sensitive to array perturbation and the integra-
tion angular sector is too wide. Moreover, the computational complexity of the existing
EDSSV estimation is very high because it requires convex optimization programming.
In this paper, we propose a precise method for the EINCM reconstruction and an inex-

pensive and accurate method for the EDSSV estimation. Together, these methods lead
to a robust WLB with significant performance improvement which is computationally
efficient. We propose to compute the steering vectors of all signals by extending the iter-
ative robust Capon beamformer (IRCB) and propose to estimate the powers of all signals
by employing the covariance fitting approach. In our proposed method, the noncircular-
ity coefficients of all signals are estimated by extending the DS noncircularity coefficient
estimator and the noise power is estimated as the minimum eigenvalue of SCM. We
propose to reconstruct the interference-plus-noise covariance matrix (INCM) and the
pseudo INCM accurately according to their definitions instead of the integration over
interference-plus-noise angular sector. These accurate INCM and pseudo INCM ensure
that the EINCM is reconstructed precisely. We propose to estimate the EDSSV from the
intersection of two extended subspaces. The first extended signal-plus-interference sub-
space is formed by eigendecomposing the extended SCM, and the second extended DS
subspace is constructed by eigendecomposing the extended DS covariance matrix. The
estimated EDSSV has a closed-form solution with low complexity, which avoids any opti-
mization software. Simulation results indicate that the proposed WLB provides robust
performance against several types of model mismatches.
The rest of this paper is arranged as follows. In Section 2, we describe the noncircu-

lar signal array model and introduce the knowledge of optimal WL MDVR beamformer.
Section 3 presents the proposed robust WLB with EINCM reconstruction and EDSSV
estimation. In Section 4, we carry out the numerical simulations to compare the perfor-
mance of the proposed robust WLB with the existingWLBs. Finally, We make conclusion
in Section 5. For simplicity, we put the definitions of the symbols used in the paper into
Table 1 and add a short introduction of the abbreviations used in the paper into Table 2.

2 Signal model and optimal WLMVDR beamformer
We consider an array of N antennas receivingM narrowband signals. The array observa-
tion vector at the time index k can be modeled as

x(k) = a1s1(k) + v(k), (1)

where a1 and s1(k) are respectively the DSSV and the DS complex waveform, and
v(k) = ∑M

m=2 amsm(k) + n(k) is the whole interference-plus-noise vector. Here, {am}Mm=2
and {sm(k)}Mm=2 respectively denote the steering vectors and complex waveforms of
interferences, and n(k) is the noise vector which is assumed to be a zero-mean cir-
cularly symmetric Gaussian white process. The DS and interferences are potentially
second-order noncircular and statistically independent with each other. We denote the
noncircularity coefficient of the mth signal as γm = 〈E[ sm(k)2] 〉/σ 2

m = |γm|ejφm for
m = 1, 2, · · · ,M, where σ 2

m = 〈E[ |sm(k)|2] 〉 is the time-averaged power, |γm| is the non-
circularity rate with 0 ≤ |γm| ≤ 1, and φm is the noncircularity phase. Specially, |γ1| = 1
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Table 1 The definitions of the symbols used in the paper

Symbols Definitions

(·)∗ Conjugate operator
(·)T Transpose operator
(·)H Hermitian transpose operator
(·)−1 Matrix inversion operator
〈·〉 Time-averaging operation
E[ ·] Expectation operator
IN N × N identity matrix
diag{·} Diagonalization operator
| · | Absolute value operator
‖·‖ Euclidean norm
∩ Set intersection
eigmax(·) Maximum eigenvalue of a matrix
N Number of array antennas
M Number of narrowband signals
k Time index of snapshots
x Array observation vector
a Steering vector
s Complex waveform
v Whole interference-plus-noise vector
γ Noncircularity coefficient
σ 2 Time-averaged power
|γ | Noncircularity rate
φ Noncircularity phase
R Covariance matrix
C Pseudo covariance matrix
x̆ Extended observation vector
v̆ Extended interference-plus-noise vector
Rx̆ Extended covariance matrix
s⊥ Orthogonal decomposition of s
ă Extended steering vector
v̆γ Global noise vector
y WLB output
w̆ WLB weight vector
SINR Output signal-to-interference-plus-noise ratio
K Number of observed snapshots
δ̄ Minimum eigenvalue of Rˆ̆x
θ Signal direction
� Signal angular sector
αi Eigenvalue of Rx̂
gi Eigenvector of Rx̂
G Subspace projection matrix
� Diagonal matrix
β Adaptive uncertainty level
η Lagrange multiplier
� Threshold constant
λi Eigenvalue of Rˆ̆x
qi Eigenvector of Rˆ̆x
Q Matrix containing eigenvectors
� Diagonal matrix containing eigenvalues
f Projection value
Q Number of principal eigenvectors
F Extended subspace projection matrix
ε A predefined constant
� Extended subspace
π Subspace coefficient vector
p(θ) Spatial power spectrum
μl Eigenvalue of R̆s
ul Eigenvector of R̆s
U Matrix containing eigenvectors
U Number of principal eigenvectors
ζ A predefined constant
� Diagonal matrix containing eigenvalues
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Table 1 The definitions of the symbols used in the paper (Continued)

Symbols Definitions

� Extended subspace
ψ Subspace coefficient vector
J Number of grid points in complementary �1
I Number of iterations
d(θp) Coherently scattered paths
ϕp Scattered path phases
ξ Norm of random steering vector mismatch

represents the rectilinear signal whose complex waveform is on a line. The second-order
statistics of the noncircular data x(k) are expressed as

Rx = 〈E [
x(k)x(k)H

]〉 = σ 2
1 a1a

H
1 + Rv, (2)

Cx = 〈E
[
x(k)x(k)T

]
〉 = σ 2

1 γ1a1aT1 + Cv, (3)

where

Rv = 〈E [
v(k)v(k)H

]〉 =
M∑

m=2
σ 2
mamaHm + σ 2

n IN , (4)

Cv = 〈E
[
v(k)v(k)T

]
〉 =

M∑

m=2
σ 2
mγmamaTm. (5)

Here, Rx and Cx are respectively the theoretical covariance matrix and theoretical
pseudo covariance matrix of x(k), Rv and Cv are respectively the theoretical INCM and
theoretical pseudo INCM, and σ 2

n is the noise power.

Table 2 Introduction to the abbreviations used in this paper

Abbreviations Introduction

WLB Widely linear beamformer

EINCM Extended interference-plus-noise covariance matrix

INCM Interference-plus-noise covariance matrix

EDSSV Extended desired signal steering vector

DS Desired signal

MVDR Minimum variance distortionless response

LCMV Linearly constrained minimum variance

UQPSK Unbalanced quaternary phase shift keying

AM Amplitude modulated

ASK Amplitude-shift keying

BPSK Binary phase-shift keying

WL Widely linear

SNR Signal-to-noise ratio

DSSV Desired signal steering vector

SCM Sample covariance matrix

SSNC Spatial spectrum of noncircularity coefficient

PC Projection constraint

SINR Signal-to-interference-plus-noise ratio

IRCB Iterative robust Capon beamformer

ULA Uniform linear array

INR Interference-to-noise ratio

NC-RCB Noncircular robust Capon beamformer

IQCQP Iterative Quadratically constrained quadratic programming
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By stacking x(k) and its conjugate component, we define the extended observation
vector as

x̆(k) =
[
x(k)T , x(k)H

]T

= s1(k)b1 + s1(k)∗c1 + v̆(k), (6)

where b1 = [
aT1 , 0

T
N

]T , c1 = [
0TN , aH1

]T , and v̆(k) = [
v(k)T , v(k)H

]T . The extended
covariance matrix of x̆(k) is denoted as

Rx̆ = 〈E [
x̆(k)x̆(k)H

]〉 =
[
Rx Cx
C∗
x R∗

x

]

. (7)

To further utilize the noncircularity of the DS, we orthogonally decompose s1(k)∗ as

s1(k)∗ = γ ∗
1 s1(k) + [

σ 2
1

(
1 − |γ1|2

)]1/2 s⊥1 (k), (8)

where 〈E [
s1(k)s⊥1 (k)∗

]〉 = 0 and 〈E[ |s⊥1 (k)|2] 〉 = 1. In this way, we rewrite x̆(k) in (6) as

x̆(k) = s1(k)ă1 + v̆γ (k), (9)

with

ă1 = b1 + γ ∗
1 c1 =

[
aT1 , γ

∗
1 aH1

]T
, (10)

v̆γ (k) = s⊥1 (k)
[
σ 2
1

(
1 − |γ1|2

)]1/2 c1 + v̆(k), (11)

where ă1 is the noncircular EDSSV and v̆γ (k) is the global noise vector for x̆(k). TheWLB
output is denoted as

y(k) = w̆H x̆(k) = s1(k)w̆H ă1 + w̆H v̆γ (k), (12)

where w̆ is theWLB weight vector. The optimal WLMVDR beamformer can be designed
by solving [22]

min
w̆

w̆HRv̆γ w̆ s.t. w̆H ă1 = 1, (13)

where

Rv̆γ = 〈E[ v̆γ (k)v̆γ (k)H ] 〉 =
[
Rv Cv
C∗
v R∗

v

]

, (14)

denotes the theoretical EINCM. The solution of (13) is given by

w̆MVDR =
[
ăH1 R

−1
v̆γ ă1

]−1
R−1
v̆γ ă1. (15)

The output signal-to-interference-plus-noise ratio (SINR) of a WLB is defined as

SINR = σ 2
1 |w̆H ă1|2
w̆HRv̆γ w̆

. (16)

However, the theoretical Rv̆γ and ă1 are unfortunately not available in practice. In such
cases, one may approximate Rv̆γ as the following extended SCM

R ˆ̆x = 1
K

K∑

k=1

ˆ̆x(k) ˆ̆x(k)H =
[
Rx̂ Cx̂
C∗
x̂ R∗

x̂

]

, (17)

where Rx̂ = (1/K)
∑K

k=1 x̂(k)x̂(k)H and Cx̂ = (1/K)
∑K

k=1 x̂(k)x̂(k)T respectively repre-
sent the SCM and the pseudo SCM that are obtained using K observed snapshots. The
unknown vector ă1 is usually approximated by the presumed EDSSV ¯̆a1 with the exactly
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known DS noncircularity coefficient γ1. To facilitate the implementation of the WLB, the
authors in [26] propose to estimate the DS noncircularity coefficient as

γ̄1 = − aH1 Ea∗
1

aH1 Da1
· aH1 a1
aH1 (IN − δ̄R−1

x̂ )a1
, (18)

where D =
(
Rx̂ − Cx̂R∗−1

x̂ C∗
x̂

)−1
, E = −DCx̂R∗−1

x̂ , and δ̄ is the minimum eigenvalue of
R ˆ̆x.

3 Proposed robust WLB
From (15), we observe that the extended weight vector of a WLB is a function of
the EINCM and the EDSSV. In this section, we use this dependency to design a low-
complexity robust WLB by reconstructing precise EINCM and estimating accurate
EDSSV.

3.1 EINCM reconstruction

According to (14), reconstructing the EINCM requires the INCM and pseudo INCM.
From (4), the INCM is related to the powers and steering vectors of interferences and the
noise power. From (5), the pseudo INCM is related to the powers, noncircularity coeffi-
cients, and steering vectors of interferences. Therefore, we should estimate the steering
vectors of interferences first. Then, we estimate the powers and noncircularity coefficients
of interferences and estimate the noise power. Finally, we reconstruct the INCM, pseudo
INCM, and EINCM.
The rough directions of all signals can be easily determined by the beampattern nulling

method [7] or the low-resolution direction-of-arrival estimation method [33]. We respec-
tively denote the rough directions and angular sectors of all signals as {θ̄m}Mm=1 and
{�m}Mm=1. The steering vector corresponding to the signal with direction θ̄m is denoted as
ām form = 1, 2, · · · ,M.
It is obvious that the steering vector mismatches exist in {ām}Mm=1 due to the direc-

tion mismatches in {θ̄m}Mm=1. Hence, we have to correct the steering vectors {ām}Mm=1. In
[34], the IRCB can only estimate the DSSV. Here, we extend the IRCB to not only cor-
rect the DSSV but also correct the interference steering vectors. We eigendecompose the
SCM Rx̂ as

Rx̂ =
N∑

i=1
αigigHi = GH

s �sGs + GH
n �nGn, (19)

where α1 ≥ α2 ≥ · · · ≥ αN are the eigenvalues of Rx̂ and gi is the eigenvector associated
with the eigenvalue αi. Gs =[ g1, g2, · · · , gM] spans the signal-plus-interference subspace
and Gn =[ gM+1, gM+2, · · · , gN ] spans the noise subspace. �s = diag{α1,α2, · · · ,αM} and
�n = diag{αM+1,αM+1, · · · ,αN } are the diagonal matrices. We set the iterative initial
values as

â0m = √
N ām/‖ām‖, m = 1, 2, · · · ,M. (20)

The iteration process of IRCB for themth signal can be given by

β i+1
m =

∥
∥
∥
∥
∥

( √
N

‖GsGH
s âim‖ − 2

)

GsGH
s âim + âim

∥
∥
∥
∥
∥

2

, (21)
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min
âi+1
m

(
âi+1
m

)H R−1
x̂ âi+1

m s.t.‖âi+1
m − âim‖≤ β i+1

m , (22)

âi+1
m = √

N âi+1
m /‖âi+1

m ‖, (23)

where β i+1
m is the adaptive uncertainty level of the mth signal in the (i + 1)th iteration.

The solution of (22) is expressed as

âi+1
m = âim − (IN + ηRx̂)

−1 âim, (24)

where η is the Lagrange multiplier which is obtained as the solution to the following
equation

‖(IN + ηRx̂)
−1 âim‖2 = β i+1

m . (25)

The purpose of (23) is to obtain a maximal invariant and to avoid the norm ambiguity.
The iteration process in (21)–(23) will stop when β i

m − β i+1
m ≤ �, where � is a threshold

constant. After the whole iteration process is completed, we denote the final steering
vector estimate of themth signal as âm form = 1, 2, · · · ,M.
By using the covariance fitting approach, the power of themth signal is obtained from

σ̂ 2
m = 1

âHmR
−1
x̂ âm

, m = 1, 2, · · · ,M. (26)

According to (4), we reconstruct the INCM as

R̂v =
M∑

m=2
σ̂ 2
mâmâHm + αN IN , (27)

where αN is the minimum eigenvalue of Rx̂ which is treated as the estimated noise power.
The noncircularity coefficient estimator (18) can only estimate the DS noncircularity
coefficient. Here, we extend (18) to estimate the noncircularity coefficients of DS and
interferences. By replacing a1 in (18) with âm, we calculate the noncircularity coefficient
of themth noncircular signal as

γ̂m = − âHmEâ∗
m

âHmDâm
· âHmâm
âHm(IN − δ̄R−1

x̂ )âm
, (28)

form = 1, 2, · · · ,M. According to (5), we reconstruct the pseudo INCM as

Ĉv =
M∑

m=2
σ̂ 2
mγ̂mâmâTm. (29)

By using the reconstructed INCM R̂v and the reconstructed pseudo INCM Ĉv, we can
reconstruct the EINCM as

R̂v̆γ =
[
R̂v Ĉv
Ĉ∗
v R̂∗

v

]

. (30)

3.2 EDSSV estimation

By substituting â1 and γ̂1 into (10), we can compute the EDSSV as

˘̂a1 =
[
âT1 , γ̂

∗
1 âH1

]T
. (31)

However, the EDSSV ˘̂a1 may have relatively large error because both â1 and γ̂1 have esti-
mation errors. Hence, we have to further improve the accuracy of the EDSSV ˘̂a1. The
extended SCM R ˆ̆x can be eigendecomposed as
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R ˆ̆x =
2N∑

i=1
λiqiqHi = QH�Q, (32)

where λ1 ≥ λ2 ≥ · · · ≥ λ2N are the eigenvalues of R ˆ̆x, qi is the eigenvector associated
with the eigenvalue λi, Q =[q1,q2, · · · ,q2N ] and � = diag{λ1, λ2, · · · , λ2N }. In [35], the
signal-plus-interference subspace is formed by projecting the presumed DSSV onto the
eigenvectors of SCM. Here, we focus on forming the extended signal-plus-interference
subspace. We project the EDSSV ˘̂a1 onto the qi, i = 1, 2, · · · , 2N as

f (i) = |qHi ˘̂a1|, i = 1, 2, · · · , 2N . (33)

We sort {f (i)}2Ni=1 in descending order as f (2N) > f (2N −1) > · · · > f (1) and sort its cor-
responding eigenvectors as [q2N ,q2N−1, · · · ,q1]. By choosing Q principal eigenvectors,
the extended signal-plus-interference subspace projection matrix is constructed as

F = [
q2N ,q2N−1, · · · ,q2N−Q+1

]
, (34)

where Q is the minimum integer satisfying the following relationship
f (2N) + f (2N − 1) + · · · + f (2N − Q + 1)

2N
> ε, (35)

where 0 < ε < 1 is a predefined constant. It is clear that the actual EDSSV should lie in
the subspace spanned by the columns of F, which is denoted as

ă1 ∈ � =[ ă : ă = Fπ ] , (36)

where π is the subspace coefficient vector.
By integrating over DS angular sector �1, we construct the DS covariance matrix as

Rs =
∫

�1
p(θ)a(θ)a(θ)Hdθ , θ ∈ �1, (37)

where p(θ) can be chosen as 1/
[
a(θ)HR−1

x̂ a(θ)
]
[36] or 1/

[
a(θ)HR−2

x̂ a(θ)
]
[37]. The

corresponding pseudo DS covariance matrix is constructed as

Cs =
∫

�1
p(θ)γ̄ (θ)a(θ)a(θ)Tdθ , θ ∈ �1, (38)

where γ̄ (θ) is obtained by replacing a1 with a(θ) in (18), which is represented as

γ̄ (θ) = −a(θ)HEa(θ)∗

a(θ)HDa(θ)
· a(θ)Ha(θ)

a(θ)H(IN − δ̄R−1
x̂ )a(θ)

. (39)

By using Rs and Cs, the extended DS covariance matrix can be expressed as

R̆s =
[
Rs Cs
C∗
s R∗

s

]

. (40)

We perform eigendecomposition on R̆s as

R̆s =
2N∑

l=1
μluluHl = Us�sUH

s + Un�nUH
n , (41)

where μ1 ≥ μ2 ≥ · · · ≥ μ2N are the eigenvalues of R̆s, ul is the eigenvector associated
with the eigenvalue μl. Us =[u1,u2, · · · ,uU ] consists of U principal eigenvectors of R̆s,
where U is the minimum integer satisfying

∑U
l=1 |μl|

∑2N
l=1 |μl|

> ζ , (42)
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with a predefined constant 0 < ζ < 1. Un =[uU+1,uU+2, · · · ,u2N ] consists of the
remaining eigenvectors. �s = diag{μ1,μ2, · · · ,μU} contains U largest eigenvalues and
�n = diag{μU+1,μU+2, · · · ,μ2N } contains the remaining eigenvalues. Obviously, the
actual EDSSV also lies in the subspace spanned by the columns of Us, which is given by

ă1 ∈ � =[ ă : ă = Usψ] , (43)

where ψ is the subspace coefficient vector.
From (36) and (43), we can conclude that the actual EDSSV should lie in the intersection

of � and � , i.e. ă1 ∈ � ∩ � . We can use the alternating projection approach to update
ăj+1
1 in the (j + 1)th iteration as

ăj+1
1 = LaLbă

j
1, (44)

where ă01 = ˘̂a1, La = FFH and Lb = UsUH
s . As j → ∞, ăj1 should converge to the actual

EDSSV [38–40]. The maximum eigenvalue of LaLb is one, which is proven as [41]

eigmax(LaLb) ≤ max
h

hHh=1

hHLah eigmax(Lb)

= max
h

hHh=1

hHLah
hHh

= eigmax(La) = 1. (45)

Therefore, the EDSSV can be computed as

r̆ = √
2Nϒ(LaLb), (46)

where ϒ(LaLb) represents the eigenvector associated with the maximum eigenvalue of
LaLb. When we divide r̆ ∈ C

2N×1 into two subvectors as r̆ = [
rT1 , r

T
2
]T , r1, r2 ∈ C

N×1

should satisfy the special structure in (10), i.e. ,r2 = γ ∗
r r∗1. However, this relationship may

not be satisfied because of the existence of error. To further correct r̆, we have to solve the
following problem

min
γ ∗
r

‖r2 − γ ∗
r r1‖2. (47)

The solution of (47) is given by

γ̂ ∗
r = rH2 r

∗
1/

(
rT1 r

∗
1

)
. (48)

In such case, r̆ can be corrected as ˆ̆r = [
rT1 , γ̂ ∗

r rH1
]T . Finally, the EDSSV is corrected as

ˆ̂̆a1 = √
2N ˆ̆r/‖ˆ̆r‖. (49)

3.3 Extended weight vector calculation

By combining the EINCM R̂v̆γ and the EDSSV ˆ̂̆a1, the extended weight vector of the
proposed robust WLB is calculated as

ˆ̆w =
[ ˆ̂̆aH1 R̂−1

v̆γ
ˆ̂̆a1

]−1
R̂−1
v̆γ

ˆ̂̆a1. (50)

The proposed WL beamforming algorithm is summarized in Algorithm 1.
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3.4 Computational complexity

In the proposed WLB, the main computational cost of EINCM reconstruction lies in
the eigendecomposition of Rx̂ with a complexity of O(N3), and the EDSSV estima-
tion has a complexity of O(8N3) dominated by the eigendecomposition of R ˆ̆x from
the standpoint of computational complexity. Therefore, the main computational com-
plexity of the proposed WLB is O(8N3). The main computational complexity of the
WL-SSNC beamformer [30] is O

(
max

{
JN2,N3.5 + (2N)3.5

})
, where EINCM recon-

struction costs a complexity of O(JN2) with J grid points in the complement angu-
lar sector of �1 and EDSSV estimation costs a complexity of O

(
N3.5 + (2N)3.5

)
.

The main computational cost of the WL-PC beamformer [31] arises from solving
the convex optimization problem with a complexity O

(
(2N)3.5

)
. The computational

complexity of the WL via iterative quadratically constrained quadratic programming
(WL-IQCQP) beamformer [32] is O

(
max

{
JN2, IN3.5}), where I is the number of iter-

ations in [32]. As it can be seen, the proposed WLB has lower computational com-
plexity than WL-SSNC beamformer [30], WL-PC beamformer [31], and WL-IQCQP
beamformer [32].
We provide a visual comparison of computational complexity by plotting the flops

curves of WL-SSNC beamformer [30], WL-PC beamformer [31], WL-IQCQP beam-
former [32], and the proposed WLB. We set J to be 170 for the WL-SSNC beamformer
[30] and the WL-IQCQP beamformer [32]. I = 3 is selected for the WL-IQCQP
beamformer [32]. Figure 1 plots the flops curves of all the above WLBs versus the
number of array antennas N ranging from 10 to 100. Obviously, we can see that
the proposed WLB has the lowest computational complexity among the examined
WLBs.
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Fig. 1 Comparison of computational complexity. Flops curves versus the number of antennas N

4 Simulation results
In this section, we perform simulation examples to examine the performance of the pro-
posed robust WLB and compare it with other WLBs. We consider a uniform linear array
(ULA) of N = 10 omnidirectional sensors with inter-element spacing of half a wave-
length. Three BPSK signals including one desired signal and two interferences impinge
on the considered array. The DS arrives at the considered array from θ̄1 = 5◦ with the
noncircularity phase 60◦. Two interferences come from − 30◦ and 60◦ with the noncircu-
larity phases − 120◦ and 150◦, respectively. The interference-to-noise ratio (INR) is set as
10 dB. The additive noise is a complex circularly symmetric Gaussian white process with
zero mean and unit variance. Each point in the curves is an average of 200 Monte Carlo
trials.
The proposed WLB is compared to the WL-RCB [25], the noncircular robust Capon

beamformer (NC-RCB) [27], the WL-SSNC beamformer [30], the WL-PC beamformer
[31], and the WL-IQCQP beamformer [32]. For the proposed WLB, � = 10−5, ε = 0.9
and ζ = 0.7 are exploited. The values εγ = 0.1 and εa = 0.3N are used for the WL-RCB
beamformer [25]. ε̃ = 0.6 is chosen for the NC-RCB beamformer [27]. We set the DS
angular sector as �1 =[ 0◦, 10◦] for the WL-SSNC [30], the WL-PC [31], the WL-IQCQP
[32], and the proposedWLB. ρ = 0.9 is used for theWL-PC beamformer [31]. � is set to
be 10−4 for the WL-IQCQP beamformer [32].

Example 1 We investigate the effect of fixed look direction mismatch on the beamform-
ing performance. The presumed DS direction is set as 5◦ while the actual DS direction is
2◦, which means that the DS look direction mismatch is fixed at 3◦. The output SINR of
the aforementioned WLBs versus the input SNR with the fixed snapshots number K = 100
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Fig. 2 Example 1. Output SINR of all WLBs versus the input SNR

is depicted in Fig. 2. It can be observed that the WL-SSNC, the WL-IQCQP and the pro-
posed WLB have robust performance because these three WLBs remove the DS component
from the extended SCM by reconstructing EINCM. The proposed WLB has the best per-
formance among the tested WLBs because the proposed WLB reconstruct precise EINCM.
Figure 3 shows the output SINR of the examined WLBs versus the number of snapshots
with fixed SNR= 20 dB. We can see that the proposed WLB always achieves near optimal
performance and it outperforms the other WLBs.

Fig. 3 Example 1. Output SINR of all WLBs versus the number of snapshots K
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Fig. 4 Example 2. Output SINR of all WLBs versus the input SNR

Example 2 We consider the case of random look direction mismatch. We assume that
the random look direction mismatch of the DS is distributed in [− 4◦, 4◦]. In such case, the
actual DS direction is randomly produced from [ 1◦, 9◦]. It should be noted that the random
look direction mismatch changes from run to run while keeping constant from snapshot to
snapshot. Figures 4 and 5 display the output SINR versus the SNR with fixed snapshots

Fig. 5 Example 2. Output SINR of all WLBs versus the number of snapshots K
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number K = 100 and versus the number of snapshots with fixed SNR= 20 dB, respectively.
It can be seen that the proposedWLB yields higher SINRs than that of the other beamform-
ers, which demonstrates that the proposedWLB is robust against the random look direction
mismatch. This is because the proposed WLB not only reconstructs precise EINCM
but also estimates accurate EDSSV. The WL-RCB and the NC-RCB have performance
degradation owing to the exploitation of extended SCM and the steering vector mismatch
caused by random look direction mismatch.

Example 3 We simulate the scenario where the mismatch is caused by the coherent local
scattering. Under this type of mismatch, the actual DSSV is given by

a1 = a
(
θ̄1

) +
4∑

p=1
ejϕpd

(
θp

)
, (51)

where a(θ̄1) is the direct path with assumed direction θ̄1 and d(θp)(p = 1, 2, 3, 4) are
the coherently scattered paths. ϕp(p = 1, 2, 3, 4) are the scattered path phases that are
randomly produced from [ 0, 2π ]. θp(p = 1, 2, 3, 4) are the scattered path directions
that are independently produced from a random generator N (3◦, 1◦). Note that ϕp and
θp, p = 1, 2, 3, 4 change in each simulation run but all of them remain fixed over snap-
shots. The performance curves versus the input SNR with fixed snapshots number K = 100
and versus the number of snapshots with fixed SNR= 20 dB are depicted in Figs. 6 and 7,
respectively. Compared with the optimal WL MVDR, the proposed WLB encounters some
performance loss resulted from the influence of coherent local scattering. Nevertheless, the
performance of the proposed WLB is still superior to the other WLBs because of the precise
EINCM reconstruction and the accurate EDSSV estimation.

Fig. 6 Example 3. Output SINR of all WLBs versus the input SNR
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Fig. 7 Example 3. Output SINR of all WLBs versus the number of snapshots K

Example 4 We evaluate the beamforming performance in the presence of random steer-
ing vector mismatch. The actual DSSV is assumed to be randomly distributed in an
uncertainty set, which is expressed by

a1 = a(θ̄1) + ξ√
N

[
ejϕ1 , ejϕ2 , · · · , ejϕN ]T , (52)

Fig. 8 Example 4. Output SINR of all WLBs versus the input SNR
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where a(θ̄1) denotes the presumed DSSV and ξ denotes the norm of random steering vector
mismatch which is randomly produced from the interval [ 0,

√
0.5] in each simulation run.

ϕp(p = 1, · · · ,N) are the phases of the pth coordinate that are independently generated
from the interval [ 0, 2π ] in each simulation run. Figures 8 and 9 plot the output SINR
curves versus the input SNR with fixed snapshots number K = 100 and versus the number
of snapshots with fixed SNR= 20 dB, respectively. We can observe that the output SINRs of
the proposed WLB are close to that of the optimal WL MVDR in the whole range of input
SNR and snapshots number, which means that the proposedWLB is effective for the noncir-
cular signals. In addition, the proposed WLB performs better than the other WLBs, which
illustrates that the proposed WLB can deal with the random steering vector mismatch.

Example 5 We take the mismatch caused by the wavefront distortion into considera-
tion. We assume that the independent-increment phase distortions are accumulated by the
entries of DSSV. The phase increments remain fixed in each simulation run that are inde-
pendently produced from a random generator N (0, 0.04). The output SINR curves versus
the input SNR with fixed snapshots number K = 100 and versus the number of snap-
shots with fixed SNR= 20 dB are plotted in Figs. 10 and 11, respectively. It can be found
that the proposed WLB almost achieves the optimal beamforming performance, which
demonstrates that the reconstruction of EINCM is precise and the estimation of EDSSV is
accurate. In addition, the proposed WLB enjoys the best beamforming performance, which
means that the proposed WLB can provide robustness against the wavefront distortion
mismatch.

5 Conclusion
We proposed a robust WLB by combining the precise reconstruction of EINCM and
the low-complexity estimation of EDSSV. By estimating the steering vectors, powers and

Fig. 9 Example 4. Output SINR of all WLBs versus the number of snapshots K
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Fig. 10 Example 5. Output SINR of all WLBs versus the input SNR

noncircularity coefficients of all signals and the noise power, we propose to reconstruct
the INCM and the pseudo INCM accurately using their definitions. These accurate esti-
mates allow us to reconstruct the EINCM precisely. Moreover, we proposed to estimate
the EDSSV from the intersection of two extended subspaces which has a closed-from
expression and requires lower computational complexity than the traditional convex

Fig. 11 Example 5. Output SINR of all WLBs versus the number of snapshots K
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optimization methods. Simulation results demonstrate that the proposed WLB can pro-
vide robust performance against fixed look direction, random look direction, coherent
local scattering, random steering vector, and wavefront distortion mismatches.
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