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1  Introduction
Urban rail transit is the backbone of urban transportation, and its safety management 
and emergency response efficiency must be improved [1]. It is necessary to further 
increase the application of the Internet of Things, sensor networks and cloud computing 
in the field of rail transit safety emergency [2–4]. Increasing the application of Internet 
of things, sensor networks and cloud computing in the field of rail traffic safety emer-
gency, strengthening real-time perception, information sharing and intelligent analysis 
of passenger flow can effectively improve the dynamic monitoring of rail traffic, intel-
ligent judgment, and the ability to perceive and respond quickly to the scene of emer-
gency [5, 6].

The Internet of things refers to a network of intelligent identification, positioning, 
tracking, monitoring and management by connecting things with the Internet through 
information sensing devices [7, 8]. The Internet of Things has the characteristics of com-
prehensive perception, reliable transmission, and intelligent computing [9, 10]. People 
combine the existing transportation system with the Internet of Things technology and 
apply the Internet of Things technology to the construction of intelligent transportation 
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systems. As the related technologies of the Internet of Things are widely used in vari-
ous fields, the immediacy of information perception and collection technology becomes 
possible, and the perception ability of the transportation system has been unprecedent-
edly improved [11–13]. Cloud computing is a super computing model, which is a pool of 
resources [14, 15], but it is not only distributed processing, but also an intelligent pro-
cessing function which can be managed and coordinated independently on the basis of 
distributed architecture.

With the application of the Internet of Things, cloud computing and big data technol-
ogy, the amount of data generated during passenger travel and rail transit operations is 
showing a rapid growth trend. Comprehensive city perception brings a lot of real-time 
data. Massive, multi-source, heterogeneous traffic big data and personalized, diversified 
travel needs pose challenges to passenger flow forecasting methods. This provides a new 
perspective for scientific research [16–18].

With the continuous opening of new lines and the increasing degree of network, the 
proportion of citizens traveling by urban rail transit is getting higher and higher. At pre-
sent, most of the urban rail transit operation management practices rely on the expe-
rience of dispatchers to judge the current changes in passenger flow. The quantitative 
passenger flow forecasting methods or systems has not been applied, but the passen-
ger flow forecasted by experience often has a greater error with the actual situation [19, 
20]. Therefore, the short-term passenger flow forecast of urban rail transit plays a more 
important role, which can provide a corresponding basis for the metro operation and 
dispatching department, and is of great significance for the work of urban rail transit 
operation management.

The development trend of intelligent system of urban rail transit is to construct large-
scale integrated system by using advanced technologies such as computer technology, 
big data technology, automation technology and Internet of Things technology, which 
realizes the interconnection of platforms, information interaction and data sharing [21–
23]. At present, great progress has been made in the integration and application of intel-
ligent system for urban rail transit [24–26]. In this paper, a large number of diverse and 
real data information such as passenger flow data and weather are used to realize the 
intelligent data aggregation of information resources.

So far, the methods of short-term station passenger flow forecasting for urban rail 
transit can generally be divided into three categories (linear model, nonlinear model and 
combined model). The linear model methods include time series model, Kalman filter-
ing model [27–29]. The nonlinear model methods include genetic algorithm, neural net-
works, nonparametric regression model, gray system model, support vector machines, 
chaos theory, etc. [30–32].

The advantage of linear prediction algorithm is that the calculation complexity is low, 
but the effect is poor when dealing with complex passenger flow data. The nonlinear 
prediction model can deal with the volatility of passenger flow time series, but it has the 
shortcomings of complex theory and calculation. The linear model and nonlinear model 
are not able to fully characterize the short-term urban rail transit traffic, so the com-
bined model has gradually become the focus of research. Based on the ARIMA model 
and the SVM model to forecast traffic flow, [33] proposes a new approach for traffic flow 
prediction. [34] addressed two novel neural network structures for short-term railway 
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passenger demand forecasting. [35] proposes a novel hybrid optimization algorithm of 
computational intelligence techniques for highway passenger volume prediction. [36] 
proposes a hybrid EMD-BPN forecasting approach which combines empirical mode 
decomposition (EMD) and back-propagation neural networks (BPN).

At present, the short-term traffic passenger flow prediction method based on the com-
bined model can improve the fitting ability of the model to a certain extent, and thus 
effectively improve the prediction accuracy of the passenger flow.

Generally speaking, the relationship between short-term station passenger flow of 
urban rail transit and the historical station passenger traffic, large-scale event informa-
tion and weather conditions is very complicated, and it is not suitable to use a specific 
linear or nonlinear model to describe. Considering the regularity and time-varying char-
acteristics of urban rail transit passenger flow, based on season autoregressive integrat-
ing moving average model (SARIMA) and support vector machine model (SVM), this 
paper proposes the SARIMA-SVM combination model for urban rail transit short-term 
station passenger flow forecasting.

This paper proposes the combined model considers the periodic characteristics of 
passenger flow changes, and considers the nonlinear relationship between short-term 
passenger flow and passenger flow before and after the period. It makes full use of the 
existing passenger flow information and realizes the prediction of short-term station 
passenger flow of urban rail transit.

The rest of this paper is organized as follows. Section  2 discusses the principle of 
SARIMA model and SVM model, proposes the SARIMA-SVM combination model. The 
simulation experimental results are shown in Sects. 3, and 4 concludes the paper with 
summary and future research directions.

2 � Principle of SARIMA‑SVM combination model
2.1 � SARIMA model

The seasonal autoregressive integrated moving average model (SARIMA) [37, 38] is a 
variant and expansion of the autoregressive integrated moving average model (ARIMA), 
which fully takes into account the periodicity of the data and is suitable for the daily 
dynamics of traffic flow. It can not only guarantee the accuracy of the model but also be 
easily applied to real-time prediction.

The ARIMA model is composed of autoregressive model and moving average model, 
and is processed by d-order difference. ARIMA(p, d, q) is expressed by a mathematical 
formula such as Eq. (1):

In which, y(t) and ε(t) denote the original time series and the zero-mean 
white noise sequence, respectively. φ(B) = 1− φ1B− φ2B

2 − · · · − φpB
p , 

θ(B) = 1− θ1B− θ2B
2 − · · · θqB

q , B is a post-shift operator, which satisfies: 
Bny(t) = y(t − n), n = 1, 2, . . . , ∇d = (1− B)d is processed by d-order difference.

Considering account the periodic characteristics of the time series, the seasonal differ-
ence is made to the ARIMA(p, d, q) model, and the SARIMA(p, d, q)(P,D,Q)s model is 
obtained, which is expressed by a mathematical formula such as Eq. (2):

(1)φ(B)∇dy(t) = c + θ(B)ε(t)
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In which, �(BS) = 1−�1B
S − · · · −�p(B

S)p , �(BS) = 1−�1B
S − · · ·�q(B

S)q , BS 
denotes the season shift operator, B denotes the length of the seasonal cycle, D denotes 
the order of the seasonal difference, P denotes the lag order of the seasonal autoregres-
sive term, Q denotes the lag order of the seasonal moving average term.

2.2 � SVM model

Support vector machine (SVM) [39, 40] is based on the  Vapnik–Chervonenkis dimen-
sion theory of statistical learning theory and the principle of structural risk minimiza-
tion. The architecture of SVM is shown in Fig. 1, where K  is the kernel function:

Let {(xi, yi), i = 1, 2..., l} be a pair of l training set samples, where 
xi(xi = [x1i , x

2
i , . . . , x

d
i ]

T) is the input column vector of the i training set, and yi is the cor-
responding output value.

The SVM regression function is: f (x) = wφ(x)+ b , where φ(x) denotes a nonlinear 
mapping function, w denotes a weight coefficient matrix, b denotes a threshold. By intro-
ducing relaxation variables ξi , ξ∗i  and penalty factors C , and obtain the convex quadratic 
programming for solving w and b.

In which, ε denotes the factor of the insensitive loss function, ε specifies the error 
requirement of the regression function; C is larger, and the penalty for the sample with 
the training error greater than ε is greater.

2.3 � SARIMA‑SVM combination model

The schematic diagram of the SARIMA-SVM combined model in this paper is shown 
in Fig.  2. The basic idea is: firstly, the passenger flow at the station is forecasted by 

(2)φ(B)�(BS)(1− B)d(1− BS)Dy(t) = c + θ(B)�(BS)ε(t)
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Fig. 1  Architecture of SVM
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using the SARIMA model, and the linear variation law of the passenger flow at the 
station is obtained; secondly, the passenger flow at the station is forecasted by using 
the SVM model, and the nonlinear variation law of the passenger flow at the station is 
obtained. The forecasting results of the two models are used as the input of multivari-
ate linear fitting, and the final forecasting results are obtained after fusion.

The mathematical description of the combined prediction model in this paper is 
shown in Eq. (3).

In which, Y (f1, f2) denotes the station passenger flow data at a certain time; fit(t) denotes 
the predicted value of the i-th prediction method at time t; wi(t) denotes the weight of 
the i-th prediction method; C is a constant.

3 � Model application
3.1 � Basic data

The study uses the passenger flow data  from May 4, 2015 (Monday), to June 14, 2015 
(Sunday), avoiding major holidays and similar events,  with a major impact on urban 
traffic passenger flow.

To verify the practicability of the model, for  different types of subway stations, the 
15-min inbound statistics were selected for three stations: Beijing Taoranting Station 
(Ordinary Station), BeijingNan Station (Pivot Station) and Gongzhufen Station (Transfer 
Station). The study uses data on 6 weeks, 7 days a week, the sampling interval is 15 min, 
and the sampling time is 06:00 to 22:45 every day. The inbound traffic data of Taoranting 
Station, BeijingNan Railway Station and Gongzhufen Station are shown in Figs. 3, 4 and 
5.  Data on the first 5 weeks of passenger flow are used as the training set, data on the 
last week are used as the test set.

(3)
Y (f1, f2) =

2
∑

i=1

wi(t)fit(t)+ c

= wSARIMA(t)fSARIMA(t)+ wSVM(t)fSVM(t)+ c

Fig. 2  Schematic diagram of SARIMA-SVM predictive model
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As we all know, urban rail transit passenger flow has obvious differences between 
working days and weekends. It can also be seen from the inbound passenger flow trend 
graph that the difference between weekday passenger flow and weekend passenger flow 
is more obvious. Therefore, this paper divides passenger flow into two types, workday 
and weekend.

3.2 � SARIMA model

Rail transit passenger flow has a significant feature of daily periodicity, that is, there is a 
certain commonality at the corresponding time every day.

In order to predict the passenger flow V̂i(t) of the station at the t-th day of the i-th 
day (the measured value is Vi(t) ), the time series formed by the latest k-time passenger 

Fig. 3  Passenger trends of TaoRanTing station

Fig. 4  Passenger trends of BeiJingNan station
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flow recorded by the station before the predicted time t is the relevant time of V̂i(t) . 
The time series is shown in Eq. (4).

Step 1 Verify the stability of the passenger flow data;
Step 2 Set the initial values of the p, d, q, P, D, Q, and S parameters;
Step 3 Estimation SARIMA(p, d, q)(P,D,Q)s model;
Step 4 Estimate the obtained SARIMA(p, d, q)(P,D,Q)s model and test the analysis 

to verify the residual of the fitted model to confirm that the model can adequately 
describe the data;

Step 5 Select the optimal SARIMA model setting based on the corresponding 
Akaike information criterion (AIC) value or Schwarz information criterion (SIC) 
value.

Since the daily periodicity of the sequence is to be considered in the prediction model, 
the sampling interval is 15 min, the sampling time is 6:00 to 22:45 every day, the daily 
passenger flow data is 68, and the model parameter is S = 68.

Through the SPSS parameter estimation, the parameters of the optimal SARIMA 
model for the corresponding three station traffic flows are shown in Table 1.

3.3 � SVM prediction model

The passenger flow is a cyclical change of 7 days. Assume that the time period of short-
term forecast is T (15 min in this paper), 1 day can be divided into multiple observation 
periods, and the traffic volume of a certain observation period is closely related to the 
previous s observation period.

The passenger flow forecast for a certain observation period of a certain d-day t-period 
is obtained based on the passenger flow data of the previous m-week of the day, the 
n-days before the week, and the s-period of the day before, as shown in Eq. (5).

(4)V̂i(t) = {Vi(t − l), 1 ≤ l ≤ k}

Fig. 5  Passenger trends of GongZhuFen station
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In the Matlab platform, the LIBSVM toolbox is called by programming, the kernel func-
tion is RBF kernel function, and the 50-fold cross-validation is set. The genetic algorithm 
determines the optimal parameters of the SVM model, and uses the trained SVM model 
to predict. The model parameters are shown in Table 2.

3.4 � SARIMA‑SVM combined model

According to the previous analysis, the SARIMA and SVM model prediction results 
reflect the real passenger flow, and the multiple linear regression analysis is performed 
by SPSS to obtain the regression coefficient. The results are shown in Table 3. The com-
parison of inbound passenger traffic forecasts is shown in Figs. 6, 7, and 8.

3.5 � Results and analysis

In this study, the performance of the model  was evaluated by root-mean-square error 
(RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), see 
Eqs. (6), (7), and (8). The RMSE is suitable for comparison between different models of 
the same data set, and the MAPE can be used for comparison between different data 
sets. The RMSE can be used as the main evaluation index of model robustness.

(5)V t
d = f (V t

d−7m, . . . ,V
t
d−14,V

t
d−7;V

t
d−n, . . . ,V

t
d−2,V

t
d−1;V

t−s
d , . . . ,V t−2

d ,V t−1
d )

Table 1  Parameter of SARIMA

p d q P D Q S

Taoranting station

Workday 3 0 2 0 1 1 68

Weekend 0 1 1 1 1 1 68

Gongzhufen station

Workday 1 0 2 0 1 0 68

Weekend 0 1 1 1 1 1 68

BeijingNan station

Workday 1 1 1 0 1 1 68

Weekend 0 1 1 1 1 1 68

Table 2  Parameter of SVM

C G P

Taoranting station

Workday 52.8148 0.0002861 0.947

Weekend 12.713 0.000095368 0.19082

Gongzhufen station

Workday 96.2487 0.00085831 0.99795

Weekend 63.6687 0.000095368 0.49088

BeijingNan station

Workday 33.0745 0.00095368 0.024258

Weekend 36.8326 0.0045776 0.74796
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In which, yt indicates the actual observed value of the passenger flow, ŷt indicates the 
predicted value of the passenger flow, and n is the predicted sample. The model perfor-
mance evaluation pairs are shown in Table 4.

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yt − ŷt)2

(7)MAE =
1

n

n
∑

i=1

∣

∣yt − ŷt
∣

∣

(8)MAPE =

(

1

n

n
∑

i=1

∣

∣

∣

∣

(yt − ŷt)

yt

∣

∣

∣

∣

)

× 100%

Table 3  Multiple regression coefficient

WSARIMA WSVM (t) c

Taoranting station

Workday − 1.095 0.607 0.397

Weekend − 0.078 0.485 0.522

Gongzhufen station

Workday − 0.438 0.236 0.769

Weekend 2.405 0.403 0.591

BeijingNan station

Workday − 20.2 0.435 0.578

Weekend − 15.320 0.131 0.891

Fig. 6  Comparison chart of TaoRanTing passenger prediction
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Fig. 7  Comparison chart of BeiJingNan passenger prediction

Fig. 8  Comparison chart of GongZhuFen passenger prediction

Table 4  Performance evaluation comparison of model

Taoranting station Gongzhufen station BeijingNan 
station

SARIMA SVM SARIMA-
SVM

SARIMA SVM SARIMA-
SVM

SARIMA SVM SARIMA-SVM

RMSE 33.16 33.55 30.16 45.92 26.52 26.40 301.31 211.95 203.82

MAE 24.52 24.79 21.81 30.32 20.68 20.22 240.95 151.37 146.24

MAPE 10.11% 10.30% 8.92% 16.70% 11.98% 11.48% 28.37% 14.24% 15.57%
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It can be seen from Table  4 that the SARIMA-SVM model error is significantly 
reduced compared to SARIMA and SVM for Taoranting Station and Gongzhufen 
Station. For BeijingNan Railway Station, SARIMA-SVM model is more robust than 
SARIMA and SVM, and the error is significantly lower than SARIMA.

4 � Conclusion
Short-term passenger flow forecasting is essential for the operation and management 
of rail transit. However, the change of passenger flow in urban rail transit stations 
is characterized by complexity, nonlinearity and periodicity.  Thus, a single forecast-
ing method cannot fully describe the changing patterns of passenger flow and is not 
applicable to, daily passenger flow forecasting. Based on the Internet of Things tech-
nology and Sensor networks, aiming at the characteristics of the change of passenger 
flow in Beijing rail transit, this paper proposes a SARIMA-SVM passenger flow com-
bination forecasting model, realizes the accurate judgment and intelligent analysis of 
the large passenger flow. The test results show that the model effectively improves the 
accuracy of passenger traffic prediction, reduces the prediction error, and can well 
describe the variation law of passenger flow. It has broad application prospects in 
urban rail transit short-term passenger flow prediction.

In order to deeply study the problem of urban rail transit passenger flow predic-
tion, this paper proposes a rail transit passenger flow prediction model based on the 
SARIMA-SVM, which makes up for the deficiencies of previous studies. Compared 
with the existing forecasting method, this method is closer to the actual situation 
and provides strong support for the accurate forecast of passenger flow. This model 
provides a theoretical basis for the government and related departments to formulate 
traffic management measures. How to further update the data in the model to obtain 
more accurate results, study the daily changes of passenger behavior after short-term 
incidents, and develop passenger flow organization methods when short-term inci-
dents occur in subway stations are the directions of future research.
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