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1  Introduction
Edge computing is emerging as a new paradigm to allow processing data near the edge 
of the network, where the data is typically generated and collected. This enables compu-
tation at the edge in applications such as Internet of Things (IoT), in which an increasing 
number of devices (sensors, cameras, health monitoring devices, etc.) collect data that 
needs to be processed through computationally intensive algorithms with stringent reli-
ability, security and latency constraints.

One of the promising solutions to handle computationally intensive tasks is computa-
tion offloading, which advocates offloading tasks to remote servers or cloud. Yet, offload-
ing tasks to remote servers or cloud could be luxury that cannot be afforded by most of 
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the edge applications, where connectivity to remote servers can be lost or compromised, 
which makes edge computing crucial.

Edge computing advocates that computationally intensive tasks in a device (master) 
could be offloaded to other edge or end devices (workers) in close proximity. However, 
offloading tasks to other devices leaves the IoT and the applications it is supporting at 
the complete mercy of an attacker. Furthermore, exploiting the potential of edge com-
puting is challenging mainly due to the heterogeneous and time-varying nature of the 
devices at the edge. Thus, our goal is to develop a private, dynamic, adaptive, and hetero-
geneity-aware cooperative computation framework that provides both privacy and com-
putation efficiency guarantees. Note that the application of this work can be extended 
to cloud computing at remote data-centers. However, we focus on edge computing as 
heterogeneity and time-varying resources are more prevalent at the edge as compared to 
data-centers.

We assume the following setup throughout the paper. A master device referred to as 
master wishes to offload intensive computations to n helper devices referred to as work-
ers. The workers cannot be trusted with the privacy of the master’s data but will run the 
required computations. The workers have different computation and network resources 
that change with time which creates a time-varying and heterogeneous computing envi-
ronment. Workers that are slow or unresponsive are termed as stragglers. The goal of 
the master is to assign tasks that are proportional to the overall speed of the workers and 
tolerate the presence of straggling workers. This will be done by assigning a new task to a 
worker when it is expected to have finished its previous task.

Our key tool is the theory of coded computation, which advocates mixing data in com-
putationally intensive tasks by employing erasure codes and offloading these tasks to 
other devices for computation [2–14]. The following canonical example demonstrates 
the effectiveness of coded computation.

Example 1  Consider the setup where a master device wishes to offload a task to 
3 workers. The master has a large data matrix A and wants to compute matrix vector 
product Ax . The master device divides the matrix A row-wise equally into two smaller 
matrices A1 and A2 , which are then encoded using a (3, 2) Maximum Distance Separable 
(MDS) code1 to give B1 = A1 , B2 = A2 and B3 = A1 + A2 , and sends each to a differ-
ent worker. Also, the master device sends x to workers and ask them to compute Bix , 
i ∈ {1, 2, 3} . When the master receives the computed values (i.e., Bix ) from at least two 
out of three workers, it can decode its desired task, which is the computation of Ax . The 
power of coded computations is that it makes B3 = A1 + A2 act as a “joker” redundant 
task that can replace any of the other two tasks if they end up straggling or failing. �

The above example demonstrates the benefit of coding for edge computing. However, 
the very nature of task offloading from a master to worker devices makes the compu-
tation framework vulnerable to attacks. One of the attacks, which is also the focus of 
this work, is eavesdropper adversary, where one or more of workers can behave as an 

1  An (n,  k) MDS code divides the master’s data into k chunks and encodes it into n chunks ( n > k ) such that any k 
chunks out of n are sufficient to recover the original data.
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eavesdropper and can spy on the coded data sent to these devices for computations.2 
For example, B3 = A1 + A2 in Example 1 can be processed and spied by worker 3. Even 
though A1 + A2 is coded, the attacker can infer some information from this coded task. 
Privacy against eavesdropper attacks is extremely important in edge computing [15–17]. 
Thus, it is crucial to develop a private coded computation mechanism against eaves-
dropper adversary who can gain access to offloaded tasks.

In this paper, we develop a private and rateless adaptive coded computation (PRAC) 
mechanism. PRAC is (1) private as it is secure against eavesdropper adversary, (2) rate-
less, because it uses fountain codes [18–20] instead of Maximum Distance Separable 
(MDS) codes3 [21, 22], and (3) adaptive as the master device offloads tasks to workers by 
taking into account their heterogeneous and time-varying resources. Next, we illustrate 
the main idea of PRAC through an illustrative example.

Example 2  We consider the same setup in Example 1, where a master device offloads 
a task to 3 workers. The master has a large data matrix A and wants to compute matrix 
vector product Ax . The master device divides matrix A row-wise into 3 sub-matrices 
A1 , A2 , A3 ; and encodes these matrices using a fountain code4 [18–20]. An example set 
of coded packets is A2 , A3 , A1 + A3 , and A2 + A3 . However, prior to sending a coded 
packet to a worker, the master generates a random key matrix R with the same dimen-
sions as Ai and with entries drawn uniformly from the same alphabet as the entries of 
A. The key matrix is added to the coded packets to provide privacy as shown in Table 1. 
Since PRAC is adaptive, it requires the master to divide the tasks into smaller sub-tasks 
and send them sequentially (over time) to the workers. In particular, at the start of time 
slot 1, a key matrix R1 is created and combined with A1 + A3 and A3 , and transmitted to 
workers 2 and 3, respectively. R1 is also transmitted to worker 1 in order to obtain R1x 
that will help the master in the decoding process. The computation of (A1 + A3 + R1)x 
is completed at the end of time slot 1. Thus, at that time slot the master generates a 
new matrix, R2 , and sends it to worker 2. At the end of time slot 2, worker 1 finishes its 
computation, therefore the master adds R2 to A2 + A3 and sends it to worker 1. A simi-
lar process is repeated at the end of time slot 3. Now the master waits for worker 2 to 

Table 1  Example PRAC operation in heterogeneous and time-varying setup

The master distributes tasks to the workers in parallel. When a worker finishes its current task, the master assigns it a new 
task. The table depicts the behavior of the algorithm as a function of the times instances when a worker finishes its task at 
hand

2  Note that this work focuses specifically on eavesdropper adversary although there are other types of attacks; for exam-
ple Byzantine adversary, which is out of scope of this work.
3  Our security scheme can be applied to any linear code. However, we choose fountain code since they are a better fit 
for edge computing characterized by heterogeneous and time-varying behavior.
4  fountain codes are desirable here for two properties: (1) they provide a fluid abstraction of the coded packets so the 
master can always decode with high probability as long as it collects enough packets; (2) They have low decoding com-
plexity.
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return R2x and for any other worker to return its uncompleted task in order to decode 
Ax . Thanks to using key matrices R1 and R2 , and assuming that workers do not collude, 
privacy is guaranteed. On a high level, privacy is guaranteed because the observation of 
the workers is statistically independent from the data A.�  �

This example shows that PRAC can take advantage of coding for computation, and 
provide privacy.

Organization The structure of the rest of this paper is as follows. We summarize our 
contributions on a high level in Sect. 2. We give a brief overview of the related work in 
Sect. 3. We present the system model in Sect. 4. Section 5 presents the design of private 
and rateless adaptive coded computation (PRAC). We characterize and analyze PRAC in 
Sect. 6. We present evaluation results in Sect. 7. Section 8 concludes the paper.

2 � Results and discussion
We design PRAC for heterogeneous and time-varying private coded computing with 
colluding workers. In particular, PRAC codes sub-tasks using fountain codes, and deter-
mines how many coded packets and keys each worker should compute dynamically over 
time. We provide theoretical analysis of PRAC and show that it (1) guarantees privacy 
conditions, (2) uses minimum number of keys to satisfy privacy requirements, and (3) 
maintains the desired rateless property of non-private fountain codes. Furthermore, we 
provide a closed form task completion delay analysis of PRAC. Finally, we evaluate the 
performance of PRAC via simulations as well as in a test bed consisting of real Android-
based smartphones as compared to baselines.

Recently there has been significant interest in applying coding theoretic techniques to 
speed up machine learning algorithms, as detailed in the next section. While most of the 
literature has focused on mitigation of slow workers, several recent works consider secu-
rity on top of it, e.g., [10, 23–26]. In a recent work, the authors of [27] show that, under 
certain model assumptions, there are regimes, in terms of data splitting and number of 
workers used, where offloading tasks to the workers can be faster than doing the com-
putations locally for large dimensional data. In our paper, we assume that we are operat-
ing in these large-scale regimes where offloading is needed. In this context, we view the 
contribution of this paper as posing the problem of bringing and adapting coded compu-
tation tools to applications on the edge such as IoT. As such, our contribution includes 
two parts: (1) In IoT, the resource availability experiences high fluctuation over time. 
Adapting rateless codes, e.g., [28] to privacy is not immediate due to the need of MDS 
codes to satisfy the privacy constraints (cf. “Appendix 2”). This paper shows that even 
though MDS code is needed for privacy, the encoding of the data itself can be arbitrary. 
(2) We provide implementation on android devices (phones and tablets) to substantiate 
the suitability of our proposed algorithm to edge computing.

3 � Related work
Mobile cloud computing is a rapidly growing field with the aim of providing better expe-
rience of quality and extensive computing resources to mobile devices [29, 30]. The main 
solution to mobile computing is to offload tasks to the cloud or to neighboring devices 
by exploiting connectivity of the devices. With task offloading come several challenges 
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such as heterogeneity of the devices, time varying communication channels and energy 
efficiency, see e.g., [31–34]. We refer interested reader to [2] and references within for a 
detailed literature on edge computing and mobile cloud computing.

The problem of stragglers in distributed systems is initially studied by the distributed 
computing community, see e.g., [35–38]. Research interest in using coding theoretical 
techniques for straggler mitigation in distributed content download and distributed 
computing is rapidly growing. The early body of work focused on content download, see 
e.g., [39–43]. Using codes for straggler mitigation in distributed computing started in 
[12] where the authors proposed the use of MDS codes for distributed linear machine 
learning algorithms in homogeneous workers setting.

Following the work of [12], coding schemes for straggler mitigation in distributed 
matrix-matrix multiplication, coded computing and machine learning algorithms are 
introduced and the fundamental limits between the computation load and the commu-
nication cost are studied, see e.g., [8, 44] and references within for matrix-matrix mul-
tiplication, see [4, 7, 10–13, 24, 28, 45–53] for machine learning algorithms and [5, 6, 9, 
54] and references within for other topics.

Codes for privacy and straggler mitigation in distributed computing are first intro-
duced in [3, 26] where the authors consider a homogeneous setting and focus on matrix-
vector multiplication. The problem of private distributed matrix-matrix multiplication 
and private polynomial computation with straggler tolerance is studied [23, 55–59]. In 
the private matrix-matrix multiplication setting, the master wants to simultaneously 
maintain the privacy of both matrices which is a generalization of the matrix-vector 
multiplication setting. The former works are designed for the homogeneous static set-
ting in which the master has a prior knowledge on the computation capacities of the 
workers and pre-assigns the sub-tasks equally to them. In addition, the master sets a 
threshold on the number of stragglers that it can tolerate throughout the whole process. 
In contrast, PRAC is designed for the heterogeneous dynamic setting in which work-
ers have different computation capacities that can change over time. PRAC assigns the 
sub-tasks to the workers in an adaptive manner based on the estimated computation 
capacity of each worker. Furthermore, PRAC can tolerate a varying number of stragglers 
as it uses an underlying rateless code, which gives the master a higher flexibility in adap-
tively assigning the sub-tasks to the workers. Those properties of PRAC allow a better 
use of the workers over the whole process. On the other hand, PRAC is restricted to 
matrix-vector multiplication. Although coded computation is designed for linear opera-
tions, there is a recent effort to apply coded computation for nonlinear operations. For 
example, [25] applied coded computation to logistic regression, and the framework of 
Gradient coding started in [10] generalizes to any gradient-descent algorithm. Our work 
is complementary with these works. For example, our work can be directly used as com-
plementary to [25] to provide privacy and adaptive task offloading to logistic regression.

Secure multi-party communication (SMPC) [60] can be related to our work as follows. 
The setting of secure multi-party computing schemes assumes the presence of several 
parties (masters in our terminology) who want to compute a function of all the data 
owned by the different parties without revealing any information about the individual 
data of each party. This setting is a generalized version of the master/worker setting that 
we consider. More precisely, an SMPC scheme reduces to our Master/worker setting if 
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we assume that only one party owns data and the others have no data to include in the 
function to be computed. SMPC schemes use threshold secret sharing schemes, there-
fore they restrict the master to a fixed number of stragglers. Thus, showing that PRAC 
outperforms Staircase codes (which are the best known family of threshold secret shar-
ing schemes) implies that PRAC outperform the use of SMPC schemes that are reduced 
to this setting.

Works on privacy-preserving machine learning algorithms are also related to our 
work. However, the privacy constraint in this line of work is computational privacy and 
the proposed solutions do not take stragglers into account, see e.g., [61–63].

Private information retrieval [64] is also related to distributed coded computing as 
noted in [65]. A scheme designed for private matrix-vector multiplication can be used 
as a PIR scheme where the data of interest is replicated among the servers. Therefore, 
under some manipulation of the stored data, this scheme can be seen as a PIR scheme 
with flexible rate.

We restrict the scope of this paper to eavesdropping attacks, which are important 
on their own merit. We do not consider security against Byzantine attacks, where the 
malicious (adversarial) workers send corrupted data to the master in order to corrupt 
the whole computation process. Privacy and security can be achieved by using Maxi-
mum Distance Separable (MDS)-like codes which restrict the master to a fixed maxi-
mum number of stragglers [23, 58]. Our solution on the other hand addresses the 
privacy problem in an adaptive coded computation setup without such a restriction. In 
this setup, security cannot be addressed by expanding the results of [23, 58]. In fact, we 
developed a secure adaptive coded computation mechanism in our recent paper [66] 
against Byzantine attacks. The mechanism in [66] allows the master to detect with high 
probability the presence of malicious workers, yet it does not ensure privacy of the data. 
The private and secure adaptive coded computation obtained by combining this paper 
and [66] is out of scope of this paper.

4 � System model
Setup We consider a master/workers setup at the edge of the network, where the master 
device M offloads its computationally intensive tasks to workers wi, i ∈ [n], via device-
to-device (D2D) links such as Wi-Fi Direct and/or Bluetooth. The master device divides 
a task into smaller sub-tasks, and offloads them to workers that process these sub-tasks 
in parallel.

Task Model We focus on the computation of linear functions, i.e., matrix-vector 
multiplication. We suppose the master wants to compute the matrix vector product 
Ax , where A ∈ F

m×ℓ
q  can be thought of as the data matrix and x ∈ F

ℓ
q can be thought 

of as an attribute vector. We assume that the entries of A and x are drawn inde-
pendently and uniformly at random5 from Fq . The motivation stems from machine 
learning applications where computing linear functions is a building block of several 
iterative algorithms [67, 68]. For instance, the main computation of a gradient descent 
algorithm with squared error loss function is

5  We abuse notation and denote both the random matrix representing the data and its realization by A. We do the same 
for x.



Page 7 of 25Bitar et al. J Wireless Com Network         (2021) 2021:15 	

where x is the value of the attribute vector at a given iteration, x+ is the updated value 
of x at this iteration and the learning rate α is a parameter of the algorithm. Equation (1) 
consists of computing two linear functions Ax and ATw � AT (Ax − y).

Worker and attack model The workers incur random delays while executing the 
task assigned to them by the master device. The workers have different computation 
and communication specifications resulting in a heterogeneous environment which 
includes workers that are significantly slower than others, known as stragglers. More-
over, the workers cannot be trusted with the master’s data. We consider an eaves-
dropper adversary in this paper, where one or more of workers are compromised by 
an adversary who wants to spy on the coded data sent to these devices for computa-
tions. In a comprehensive solution for IoT networks, we assume that standard secu-
rity protocols (such as datagram transport layer security—DTLS) will be in place, in 
addition to our proposed scheme, in order to protect the wireless links from eaves-
dropping from nodes other than the intended workers in the master-worker links. We 
assume that up to z, z < n , workers can collude, i.e., z workers can share the data they 
received from the master in order to obtain information about A. The parameter z can 
be chosen based on the desired privacy level; a larger z means a higher privacy level 
and vice versa. One would want to set z to the largest possible value for maximum, 
z = n− 1 security purposes. However, this has the drawback of increasing the com-
plexity and the runtime of the algorithm. In our setup we assume that z is a fixed and 
given system parameter.

Coding and secret keys The matrix A can be divided into b row blocks (we assume that 
b divides m, otherwise all-zero rows can be added to the matrix to satisfy this property) 
denoted by Ai , i = 1, . . . , b . The master applies fountain coding [18–20] across row 
blocks to create information packets νj �

∑m
i=1 ci,jAi , j = 1, 2, . . . , where the ci,j ∈ {0, 1} . 

An information packet is a matrix of dimension m/b× ℓ , i.e., νj ∈ F
m/b×ℓ
q  . Note that 

information packets can be encoded using any linear code. Fountain codes enable a fluid 
encoding of the information and allow the master to obtain Ax as long as enough pack-
ets are collected from the workers, irrespective of their origin, which makes them a bet-
ter fit for the heterogeneous and time-varying setting considered in this paper [2]. In 
order to maintain privacy of the data, the master device generates random matrices Ri 
of dimension m/b× ℓ called keys. The entries of the Ri matrices are drawn uniformly 
at random from the same field as the entries of A. Each information packet νj is padded 
with a linear combination of z keys fj(Ri,1, . . . ,Ri,z) to create a secure packet sj ∈ F

m/b×ℓ
q  

defined as sj � νj + fj(Ri,1, . . . ,Ri,z) . We show in “Appendix 2” that encoding the random 
keys using an MDS code is necessary to guarantee the perfect privacy of the data. There-
fore, even though information packets are encoded using Fountain codes, the linear 
combinations of the random matrices are created using MDS codes.

The master device sends x to all workers, then it sends the keys and the sj ’s to the work-
ers according to our PRAC scheme described later. Each worker multiplies the received 
packet by x and sends the result back to the master. Since the encoding is rateless, the 
master keeps sending packets to the workers until it can decode Ax . The master then 
sends a stop message to all the workers.

(1)x+ = x − αAT (Ax − y),
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Privacy conditions Our primary requirement is that any collection of z (or less) work-
ers will not be able to obtain any information about A, in an information theoretic sense.

In particular, let Pi , i = 1 . . . , n , denote the collection of packets sent to worker wi . 
For any set B ⊆ {1, . . . , n} , let PB � {Pi, i ∈ B} denote the collection of packets given to 
worker wi for all i ∈ B . The privacy requirement6 can be expressed as

H(A) denotes the entropy, or uncertainty, about A and H(A|PZ) denotes the uncertainty 
about A after observing PZ.

Delay model We focus on the delays incurred by distributing the tasks to the work-
ers and overlook the time spent on encoding and decoding the tasks7 at the master. 
Each packet transmitted from the master to a worker wi, i = 1, 2, . . . , n, experiences the 
following delays: (1) transmission delay for sending the packet from the master to the 
worker, (2) computation delay for computing the multiplication of the packet by the vec-
tor x , and (3) transmission delay for sending the computed packet from the worker wi 
back to the master. We denote by βt,i the computation time of the tth packet at worker wi 
and RTTi denotes the average round-trip time spent to send and receive a packet from 
worker wi.

5 � Design of PRAC​
5.1 � Overview

We present the detailed explanation of PRAC. Let pt,i ∈ F
m/b×ℓ
q  be the tth packet 

sent to worker wi . This packet can be either a key, pt,i = Rt,i , or a secure packet 
pt,i = st,i = νt,i + fj(Rt,i, . . . ,Rt,z) . For each value of t, the master sends z keys denoted 
by Rt,1, . . . ,Rt,z to z different workers and up to n− z secure packets st,1, . . . , st,n−z to 
the remaining workers. The master needs the results of b+ ǫ information packets, i.e., 
νt,ix , to decode the final result Ax , where ǫ is the overhead required by fountain coding.8 
To obtain the results of b+ ǫ information packets, the master needs the results of b+ ǫ 
secure packets, st,ix = (νi,j + fj(Rt,i, . . . ,Rt,z))x , together with all the corresponding.9 
Rt,ix, i = 1, . . . , z . Therefore, only the results of the st,ix for which all the computed keys 
Rt,ix, i = 1, . . . , z, are received by the master can account for the total of b+ ǫ informa-
tion packets.

5.2 � Dynamic rate adaptation

The dynamic rate adaptation part of PRAC is based on [2]. In particular, the master 
offloads coded packets gradually to workers and receives two acknowledgements (ACK) 
from each worker for each transmitted packet; one confirming the receipt of the packet 

(2)H(A|PZ) = H(A), ∀Z ⊆ {1, . . . , n} s.t. |Z| ≤ z.

7  It is worth noting that fountain codes enjoy a linear time encoding and decoding complexity. Other codes such Reed-
Solomon codes require inverting a k × k matrix and have decoding complexity of at least O(k log k) if the generator 
matrix is a Vandermonde matrix and O(k2) in general.
8  We do not account for the probability of decoding failure because we assume that the master receives enough packets 
to decode with probability one. The overhead of packets required by fountain coding for the master to decode is typically 
as low as 5% [20], i.e., ǫ = 0.05b.
9  Recall that fj(Rt ,1 , . . . , Rt ,z) is a linear function, thus it is easy to extract (Rt ,i)x, i = 1, . . . , z , from (fj(Rt ,1 , . . . , Rt ,z))x.

6  In some cases the vector x may contain information about A and therefore must not be revealed to the workers. We 
explain in “Appendix 1” how to generalize our scheme to account for such cases.
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by the worker, and the second one (piggybacked to the computed packet) showing that 
the packet is computed by the worker. Then, based on the frequency of the received 
ACKs, the master decides to transmit more/less coded packets to that worker. In par-
ticular, each packet pt,i is transmitted to each worker wi before or right after the com-
puted packet pt−1,ix is received at the master. For this purpose, the average per packet 
computing time E[βt,i] is calculated for each worker wi dynamically based on the previ-
ously received ACKs. Each packet pt,i is transmitted after waiting E[βt,i] from the time 
pt−1,i is sent or right after packet pt−1,ix is received at the master, thus reducing the idle 
time at the workers. This policy is shown to approach the optimal task completion delay 
and maximizes the workers’ efficiency and is shown to improve task completion time 
significantly compared with the literature [2].

5.3 � Coding

We explain the coding scheme used in PRAC. We start with an example to build an intu-
ition and illustrate the scheme before going into details.

Example 3  Assume there are n = 4 workers out of which any z = 2 can collude. Let A 
and x be the data owned by the master and the vector to be multiplied by A, respectively. 
The master sends x to all the workers. For the sake of simplicity, assume A can be divided 
into b = 6 row blocks, i.e., A =

[

AT
1 AT

2 . . . AT
6

]T . The master encodes the Ai ’s using 
fountain code. We denote by round the event when the master sends a new packet to a 
worker. For example, we say that worker 1 is at round 3 if it has received 3 packets so far. 
For every round t, the master generates z = 2 random matrices Rt,1, Rt,2 (with the same 
size as A1 ) and encodes them using an (n, z) = (4, 2) systematic maximum distance sepa-
rable (MDS) code by multiplying Rt,1, Rt,2 by a generator matrix G as follows

This results in the encoded matrices of Rt,1 , Rt,2 , Rt,1 + Rt,2 , and Rt,1 + 2Rt,2 . Now let us 
assume that workers can be stragglers. At the beginning, the master initializes all the 
workers at round 1. Afterwards, when a worker wi finishes its task, the master checks 
how many packets this worker has received so far and how many other workers are at 
this round. If this worker wi is the first or second to be at round t, the master generates 
Rt,1 or Rt,2 , respectively, and sends it to wi . Otherwise, if wi is the jth worker ( j > 2 ) to be 
at round t, the master multiplies 

[

Rt,1 Rt,2

]T by the jth row of G, adds it to a generated 
fountain coded packet, and sends it to wi . The master keeps sending packets to the work-
ers until it can decode Ax . We illustrate the idea in Table 2.

We now explain the details of PRAC in the presence of z colluding workers. 

1	 Initialization The master divides A into b row blocks A1, . . . ,Ab and sends the vector 
x to the workers. Let G ∈ F

n×z
q  , q > n , be the generator matrix of an (n, z) systematic 

MDS code. For example one may use systematic Reed-Solomon codes that use Van-

(3)G

�

Rt,1

Rt,2

�

�







1 0
0 1
1 1
1 2







�

Rt,1

Rt,2

�

.
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dermonde matrix as generator matrix, see for example [69]. The master generates z 
random matrices R1,1, . . . ,R1,z and encodes them using G. The generation of truly 
random numbers can be done as in [70, 71], where the master harnesses entropy 
from internal and external sources to guarantee true randomness. Each coded key 
can be denoted by giR1 where gi is the ith row of G and R1 �

[

RT
1,1 . . . RT

1,z

]T . The 
master sends the z keys R1,1, . . . ,R1,z to the first z workers, generates n− z foun-
tain coded packets of the Ai’s, adds to each packet an encoded random key giR1 , 
i = z + 1, . . . n , and sends them to the remaining n− z workers.

2	 Encoding and adaptivity When the master wants to send a new packet to a worker 
(noting that a packet pt,i is transmitted to worker wi before, or right after, the com-
puted packet pt−1,ix is received at the master according to the strategy described in 
Sect. 5.2), it checks at which round this worker is, i.e., how many packets this worker 
has received so far, and checks how many other workers are at least at this round. 
Assume worker wi is at round t and j − 1 other workers are at least at this round. If 
j ≤ z , the master generates and sends Rt,j to the worker. However, if j > z the mas-
ter generates a fountain coded packet of the Ai ’s (e.g., A1 + A2 ), adds to it gjRt and 
sends the packet ( A1 + A2 + gjRt ) to the worker. Each worker computes the multi-
plication of the received packet by the vector x and sends the result to the master.

3	 Decoding and speed Let τi denote the number of packets sent to worker i. We 
define τmax as the largest value of τi for which the master has received all the Rt,ix 
for all i = 1, . . . , z and t = 1, . . . , τmax . The master can therefore subtract Rt,i , 
t = 1, . . . , τmax and i = 1, . . . , z , from all received secure information packets, and 
thus can decode the Ai ’s using the fountain code decoding process. The number of 
secure packets that can be used to decode the Ai ’s is dictated by the (z + 1) st fastest 
worker, i.e., the master can only use the results of secure information packets com-
puted at a given round if at least z + 1 workers have completed that round. Let ut 
denote the number of workers which completed round t, then the master can use 
max{ut − z, 0} information packets from round t in the decoding process. In order 
to decode Ax , the master needs 

∑τmax
t=1 ut = b+ ǫ information packets in total. For 

example, if the z fastest workers have completed round 100 and the (z + 1) st fastest 
worker has completed round 20, the master can only use the packets belonging to the 
first 20 rounds. The reason is that the master needs all the keys corresponding to a 
given round in order to use the secure information packet for decoding. In Lemma 2 

Table 2  Depiction of PRAC in the presence of stragglers

The master keeps generating packets using fountain codes until it can decode Ax . The master estimates the average task 
completion time of each worker. When a worker is expected to finish the task at hand, the master sends a new task to that 
worker. This mechanism avoids idle time at the workers. Thus, at every time instance in which a worker is expected to finish 
its task, the master creates a new packet and sends it to that worker. Each new packet sent to a worker must be secured with 
a new random key. The master can decode A1x, . . . , A6x after receiving all the packets not having R4,1 or R4,2 in them
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we prove that this scheme is optimal, i.e., in private coded computing the master 
cannot use the packets computed at rounds finished by less than z + 1 workers irre-
spective of the coding scheme.

6 � Performance analysis of PRAC​
6.1 � Privacy

In this section, we provide theoretical analysis of PRAC by particularly focusing on its 
privacy properties.

Theorem 1  PRAC is a rateless real-time adaptive coded computing scheme that allows 
a master device to run distributed linear computation on private data A via n workers 
while satisfying the privacy constraint given in (2) for a given z < n.

Proof  Since the random keys are generated independently at each round, it is sufficient 
to study the privacy of the data on one round and the privacy generalizes to the whole 
algorithm. We show that for any subset Z ⊂ {1, . . . , n}, |Z| = z , the collection of pack-
ets pZ � {pt,i, i ∈ Z} sent at round t reveals no information about the data A as given 
in (2), i.e., H(A) = H(A|pZ) . Let K denote the random variable representing all the 
keys generated at round t, then it is enough to show that H(K |A, pZ) = 0 as detailed 
in “Appendix  2.” Therefore, we need to show that given A as side information, any z 
workers can decode the random keys Rt,1, . . . ,Rt,z . Without loss of generality assume 
the workers are ordered from fastest to slowest, i.e., worker w1 is the fastest at the con-
sidered round t. Since the master sends z random keys to the fastest z workers, then 
pt,i = Rt,i, i = 1, . . . , z . The remaining n− z packets are secure information packets sent 
to the remaining n− z workers, i.e., pt,i = st,i = νt,i + f (Rt,1, . . . ,Rt,z) , where νt,i is a lin-
ear combination of row blocks of A and f (Rt,1, . . . ,Rt,z) is a linear combination of the 
random keys generated at round t. Given the data A as side information, any collection 
of z packets can be expressed as z codewords of the (n, z) MDS code encoding the ran-
dom keys. Thus, given the matrix A, any collection of z packets is enough to decode all 
the keys and H(K |A, pZ) = 0 which concludes the proof.�  �

Remark 1  PRAC requires the master to wait for the (z + 1) st fastest worker in order to 
be able to decode Ax . We show in Lemma 2 that this limitation is a byproduct of all pri-
vate coded computing schemes.

Remark 2  PRAC uses the minimum number of keys required to guarantee the privacy 
constraints. At each round PRAC uses exactly z random keys which is the minimum 
amount of required keys (c.f. Equation (12) in “Appendix 2”).

Lemma 2  Any private coded computing scheme for distributed linear computation lim-
its the master to the speed of the (z + 1)st fastest worker.

Proof  The proof of Lemma 2 is provided in “Appendix 3.” � �
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6.2 � Task completion delay

In this section, we characterize the task completion delay of PRAC and compare it with 
Staircase codes [3], which are secure against eavesdropping attacks in a coded computa-
tion setup with homogeneous resources. First, we start with task completion delay char-
acterization of PRAC.

Theorem 3  Let b be the number of row blocks in A, let βt,i denote the computation time 
of the tth packet at worker wi and let RTTi denote the average round-trip time spent to 
send and receive a packet from worker i. The task completion time of PRAC is approxi-
mated as

where wi’s are ordered indices of the workers from fastest to slowest, i.e., 
w1 = arg mini E[βt,i].

Proof  The proof of Theorem 3 is provided in “Appendix 4.” � �

Now that we characterized the task completion delay of PRAC, we can compare it with 
the state-of-the-art. Secure coded computing schemes that exist in the literature usually 
use static task allocation, where tasks are assigned to workers a priori. The most recent 
work in the area is Staircase codes, which is shown to outperform all existing schemes 
that use threshold secret sharing [3]. However, Staircase codes are static; they allocate 
fixed amount of tasks to workers a priori. Thus, Staircase codes cannot leverage the het-
erogeneity of the system, neither can it adapt to a system that is changing in time. On 
the other hand, our solution PRAC adaptively offloads tasks to workers by taking into 
account the heterogeneity and time-varying nature of resources at workers. Therefore, 
we restrict our focus on comparing PRAC to Staircase codes.

Staircase codes assigns a task of size b/(k − z) row blocks to each worker.10 Let Ti be 
the time spent at worker i to compute the whole assigned task. Denote by T(i) the ith 
order statistic of the Ti ’s and by TSC(n, k , z) the task completion time, i.e., time the mas-
ter waits until it can decode Ax , when using Staircase codes. In order to decode Ax the 
master needs to receive a fraction equal to (k − z)/(d − z) of the task assigned to each 
worker from any d workers where k ≤ d ≤ n . The task completion time of the master is 
expressed as [3]

(4)TPRAC ≈ max
i∈{1,...,n}

{RTTi} +
b+ ǫ

∑n
i=z+1 1/E[βt,i]

,

(5)≈
b+ ǫ

∑n
i=z+1 1/E[βt,i]

,

(6)TSC(n, k , z) = min
d∈{k ,...,n}

{

k − z

d − z
T(d)

}

.

10  Note that in addition to n and z, all threshold secret sharing based schemes require a parameter k, z < k < n, which is 
the minimum number of non stragglers that the master has to wait for before decoding Ax.



Page 13 of 25Bitar et al. J Wireless Com Network         (2021) 2021:15 	

Theorem  4  The gap between the completion time of PRAC and coded computation 
using staircase codes is lower bounded by:

where x =
n− d∗

E[βt,n]
 , y =

d∗ − z

E[βt,d∗ ]
 and d∗ is the value of d that minimizes Eq. (6).

Proof  We provide the proof of Theorem 4 in [72]. � �

Theorem 4 shows that the lower bound on the gap between secure coded computation 
using staircase codes and PRAC is in the order of number of row blocks of A. Hence, 
the gap between secure coded computation using Staircase codes and PRAC is linearly 
increasing with the number of row blocks of A. Note that, ǫ , the required overhead by 
fountain coding used in PRAC, becomes negligible as b increases.

Thus, PRAC outperforms secure coded computation using Staircase codes in hetero-
geneous systems. The more heterogeneous the workers are, the more improvement is 
obtained by using PRAC. However, Staircase codes can slightly outperform PRAC in the 
case where the slowest n− z workers are homogeneous, i.e., have similar compute ser-
vice times Ti . In this case both algorithms are restricted to the slowest n− z workers (see 
Lemma 2), but PRAC incurs an ǫ overhead of tasks (due to using fountain codes) which 
is not needed for Staircase codes. In particular, from (5) and (6), when the n− z slowest 
workers are homogeneous, the task completion time of PRAC and Staircase codes are 
equal to b+ǫ

n−zE[βt,n] and b
n−zE[βt,n] , respectively.

7 � Experimental performance evaluation
7.1 � Simulations

In this section, we present simulations run on MATLAB, and compare PRAC with 
the following baselines: (1) Staircase codes [3], (2) C3P [2] (which is not secure as it 
is not designed to be secure), and (3) Genie C3P (GC3P) that extends C3P by assum-
ing a knowledge of the identity of the eavesdroppers and ignoring them. We note that 
GC3P serves as a lower bound on private coded computing schemes for heterogeneous 
systems11 for the following reason: for a given number of z colluding workers the ideal 
coded computing scheme knows which workers are eavesdroppers and ignores them to 
use the remaining workers without need of randomness. If the identity of the collud-
ing workers is unknown, coded computing schemes require randomness and become 
limited to the (z + 1) st fastest worker (Lemma  2). GC3P and other coded computing 
schemes have similar performance if the z colluding workers are the fastest workers. If 
the z colluding workers are the slowest, then GC3P outperforms any coded computing 
scheme. Note that our solution PRAC considers the scenario of unknown eavesdrop-
pers. Comparing PRAC with G3CP shows how good PRAC is as compared to the best 
possible solution for heterogeneous systems. In terms of comparing PRAC to solutions 
designed for the homogeneous setting, we restrict our attention to Staircase codes which 

(7)E[TSC] − E[TPRAC] ≥
bx − ǫy

y(x + y)
,

11  If the system is homogeneous Staircase codes outperform GC3P, because pre-allocating tasks to the workers avoids 
the overhead needed by fountain codes.
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are a class of secret sharing schemes that enjoys a flexibility in the number of workers 
needed to decode the matrix-vector multiplication. Staircase codes are shown to outper-
form any coded computing scheme that requires a threshold on the number of stragglers 
[3].

In our simulations, we model the computation time of each worker wi by an 
independent shifted exponential random variable with rate �i and shift ci , i.e., 
F(Ti = t) = 1− exp(−�i(t − ci)) . We take ci = 1/�i and consider three different scenar-
ios for choosing the values of �i ’s for the workers as follows:

•	 Scenario  1 we assign �i = 3 for half of the workers, then we assign �i = 1 for one 
quarter of the workers and assign �i = 9 for the remaining workers.

•	 Scenario 2 we assign �i = 1 for one third of the workers, the second third have �i = 3 
and the remaining workers have �i = 9.

•	 Scenario 3 we draw the �i ’s independently and uniformly at random from the interval 
[0.5, 9].

When running Staircase codes, we choose the parameter k that minimizes the task com-
pletion time for the desired n and z. We do so by simulating Staircase codes for all pos-
sible values of k, z ≤ k ≤ n , and choose the one with the minimum completion time.

We take b = m , i.e., each row block is simply a row of A. The size of each element of 
A and vector x are assumed to be 1 Byte (or 8 bits). Therefore, the size of each trans-
mitted packet pt,i is 8 ∗ ℓ bits. For the simulation results, we assume that the matrix A 
is a square matrix, i.e., l = m . We take m = 1000 , unless explicitly stated otherwise. Ci 
denotes the average channel capacity of each worker wi and is selected uniformly from 
the interval [10, 20] Mbps. The rate of sending a packet to worker wi is sampled from a 
Poisson distribution with mean Ci.

In Fig. 1 we show the effect of the number of rows m on the completion time at the 
master. We fix the number of workers to 50 and the number of colluding workers to 
13 and plot the completion time for PRAC, C3P, GC3P and Staircase codes. Notice 
that PRAC and Staircase codes have close completion time in scenario 1 (Fig. 3a) and 
this completion time is far from that of C3P. The reason is that in this scenario we pick 
exactly 13 workers to be fast ( �i = 9 ) and the others to be significantly slower. Since 
PRAC assigns keys to the fastest z workers, the completion time is dictated by the slow 
workers. To compare PRAC with Staircase codes notice that the majority of the remain-
ing workers have �i = 3 therefore pre-allocating equal tasks to the workers is close to 
adaptively allocating the tasks.

In terms of lower bound on PRAC, observe that when the fastest workers are 
assumed to be adversarial, GC3P and PRAC have very similar task completion time. 
However, when the slowest workers are assumed to be adversarial the completion of 
GC3P is very close to C3P and far from PRAC. This observation is in accordance with 
Lemma 2. In scenarios 2 and 3 we pick the adversarial workers uniformly at random 
and observe that the completion time of PRAC becomes closer to GC3P when the 
workers are more heterogeneous. For instance, in scenario 3, GC3P and PRAC have 
closer performance when the workers’ computing times are chosen uniformly at ran-
dom from the interval [0.5, 9].
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In Fig. 2, we plot the task completion time as a function of the number of workers 
n for a fixed number of rows m = 1000 and �i ’s assigned according to scenario 1. In 
Fig. 2a, we change the number of workers from 10 to 100 and keep the ratio z/n = 1/4 
fixed. We notice that with the increase of n the completion time of PRAC becomes 
closer to GC3P. In Fig. 2b, we change the number of workers from 20 to 100 and keep 
z = 13 fixed. We notice that with the increase of n, the effect of the eavesdropper is 
amortized and the completion time of PRAC becomes closer to C3P. In this setting, 
PRAC always outperforms Staircase codes.

In Fig.  3, we plot the task completion time as a function of the number of collud-
ing workers. In Fig.  3a, we choose the computing time at the workers according to 
scenario 1. We change z from 1 to 40 and observe that the completion time of PRAC 

a Scenario 1 with the fastest 13 work-
ers as eavesdropper for GC3P 1 and
the slowest workers as eavesdropper for
GC3P 2.

b Scenario 2 with 13 workers picked
at random to be eavesdroppers.

c Scenario 3 with 13 workers picked at
random to be eavesdroppers.

Fig. 1  Comparison between PRAC and the baselines Staircase codes, GC3P, and C3P in different scenarios 
with n = 50 workers and z = 13 colluding eavesdroppers for different values of the number of rows m. 
For each value of m we run 100 experiments and average the results. When the eavesdropper are chosen 
to be the fastest workers, PRAC has very similar performance to GC3P. When the eavesdroppers are picked 
randomly, the performance of PRAC becomes closer to this of GC3P when the non adversarial workers are 
more heterogeneous
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deviates from that of GC3P with the increase of z. More importantly, we observe two 
inflection points of the average completion time of PRAC at z = 13 and z = 37 . Those 
inflection points are due to the fact that we have 12 fast workers ( � = 9 ) and 25 workers 
with medium speed ( � = 3 ) in the system. For z > 36 , the completion time of Staircase 
codes becomes less than that of PRAC because the 14 slowest workers are homogene-
ous. Therefore, pre-allocating the tasks is better than using fountain codes and paying 
for the overhead of computations. To confirm that Staircase codes always outperforms 
PRAC when the slowest n− z workers are homogeneous, we run a simulation in which 
we divide the workers into three clusters. The first cluster consists of ⌊z/2⌋ fast work-
ers ( � = 9 ), the second consists of ⌊z/2⌋ + 1 workers that are regular ( � = 3 ) and the 
remaining n− z workers are slow ( � = 1 ). In Fig. 3b we fix n to 50 and change z from 
1 to 40. We observe that Staircase codes always outperform PRAC in this setting. In 
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a Task completion time as a function
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b Task completion time as a function
of the number of workers with z = 13.

Fig. 2  Comparison between PRAC, Staircase codes and GC3P in scenario 1 for different values of the 
number workers and number of colluding workers. We fix the number of rows to m = 1000 . For each value 
of the x-axis we run 100 experiments and average the results. We observe that the difference between the 
completion time of PRAC and this of GC3P is large for small values of n− z and decreases with the increase 
of n− z
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Fig. 3  Comparison between PRAC and Staircase codes average completion time as a function of number 
of colluding workers z. We fix the number of rows to m = 1000 . Both codes are affected by the increase of 
number of colluding helpers because their runtime is restricted to the slowest n− z workers. We observe 
that PRAC outperforms Staircase codes except when the n− z slowest workers are homogeneous
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contrast to non secure C3P, Staircase codes and PRAC are always restricted to the slow-
est n− z workers and cannot leverage the increase of the number of fast workers. For 
GC3P, we assume that the fastest workers are eavesdroppers. We note that as expected 
from Lemma 2, when the fastest workers are assumed to be eavesdroppers the perfor-
mance of GC3P and PRAC becomes very close.

7.2 � Experiments

Setup The master device is a Nexus 5 Android-based smartphone running 6.0.1. The 
worker devices are Nexus 6Ps running Android 8.1.0. The master device connects to 
worker devices via Wi-Fi Direct links and the master is the group owner of Wi-Fi Direct 
group. The implementation of all the algorithms is done using an Android applica-
tion written in Java. The master and the workers form a star topology where the mas-
ter device is the center. The devices are placed approximately 10 inches away from each 
other. The devices communicate via TCP sockets. TCP sockets are wrapped by data out-
put and input stream to send and receive different data types such as integer, double and 
bytes. A simple communication protocol is built between the master and the workers. 
The master firstly sends the size of the data followed by the actual data for multiplication. 
The worker receives the data, process it and sends the acknowledgement and the results 
back to the master. The master retrieves the results and estimates the processing delay. 
To allow parallel processing, the master device utilize multi-threading and deals with 
each worker by independent threads. We denote this type of thread as “worker thread.” 
A main thread at the master controls all the worker threads. For PRAC, the main thread 
records the round of each worker. All the results from each worker thread are reported 
to the main thread as well.

The master device is required to complete one matrix multiplication ( y = Ax ) where 
A is of dimensions 60× 10,000 and x is a 10,000× 1 vector. We also take m = b i.e., each 
packet is a row of A. In our implementations the workers are dedicated to the master and 
do not run background applications or other computing tasks. Therefore, we introduced 
an artificial delay at the workers following an exponential distribution. The introduced 
delays serves to emulate real scenarios in which workers would be running other appli-
cations in the background. We manipulate the delays in the experiment to analyze the 
performance of PRAC and other baselines algorithms in the presence of stragglers and 
validate our theoretical findings. A worker device sends the result to the master after it 
is done calculating and the introduced delay has passed. Furthermore, we assume that 
z = 1 i.e., there is one unknown worker that is adversarial among all the workers. The 
experiments are conducted in a lab environment where there are other Wi-Fi networks 
operating in the background.

Baselines Our PRAC algorithm is compared to three baseline algorithms: (1) Stair-
case codes that preallocate the tasks based on n, the number of workers, k, the mini-
mum number of workers required to reconstruct the information, and z, the number of 
colluding workers; (2) GC3P in which we assume the adversarial worker is known and 
excluded during the task allocation; (3) Non secure C3P in which the security problem 
is ignored and the master device will utilize every resource without randomness. In this 
setup we run C3P on n− z workers.
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Results Figure 4 presents the task completion time with increasing number of work-
ers for the homogeneous setup, i.e., when all the workers have similar computing 
times. Computing delay for each packet follows an exponential distribution with mean 
µ = 1/� = 3  s in all workers. C3P performs the best in terms of completion time, but 
C3P does not provide any privacy guarantees. PRAC outperforms Staircase codes when 
the number of workers is 5. The reason is that PRAC performs better than Staircase 
codes in heterogeneous setup, and when the number of workers increases, the system 
becomes a bit more heterogeneous. GC3P significantly outperforms PRAC in terms of 
completion time. Yet, it requires a prior knowledge of which worker is adversarial, which 
is often not available in real world scenarios.

Now, we focus on heterogeneous setup. We group the workers into two groups; fast 
workers (per task delay follows exponential delay with mean 2 s) and slow workers (per 
task delay follows exponential distribution with mean 5 s). Figure 5 presents the comple-
tion time as a function of number of workers. In this setup, for the n-worker scenario, 
there are 

⌈

n
2

⌉

 fast and 
⌊

n
2

⌋

 slow workers. The difference between the setups of Fig. 5a, b 
is that we remove a fast worker (as adversarial) for GC3P in the former, whereas in the 
latter, we assume that the eavesdropper is a slow worker. As illustrated in Fig. 5, for the 
2-worker case, due to the 5% overhead introduced by fountain codes, PRAC performs 
worse than Staircase code. However, PRAC outperforms Staircase codes in terms of 
completion time for 3, 4, and 5 worker cases. This is due to the fact that PRAC can uti-
lize results calculated by slow workers more effectively when the number of workers is 
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Fig. 4  Completion time as function of the number of workers in homogeneous setup
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versarial for GC3P.
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Fig. 5  Completion time as function of the number of workers in heterogeneous setup
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large. On the other hand, the results computed by slow workers are often discarded in 
Staircase codes, which is a waste of computation resources. If a fast worker is removed 
as adversarial for GC3P, the difference between the performance of GC3P and PRAC 
becomes smaller. This result is intuitive as, in PRAC, the master has to wait for the 
(z + 1) st fastest worker to decode Ax , which is also the case for GC3P in this setting.

In Fig.  6, we consider the same setup with the exception that for the n-worker sce-
nario, there are 

⌈

n
2

⌉

 slow and 
⌊

n
2

⌋

 fast workers. Staircase codes perform more closely to 
PRAC in the 3-worker case as compared to Fig. 5 since the setup of Fig. 6 assumes that 
the n-z=2 slowest workers are homogeneous, whereas in Fig.  5 the n− z = 2 slowest 
workers are heterogeneous. Yet, for 5-worker case, PRAC outperforms Staircase codes 
when comparing to Fig. 5 since PRAC is adaptive to time-varying resources while Stair-
case codes assigns tasks a priori in a static manner.

Note that in all experiments when n− z slowest workers are homogeneous Staircase 
codes outperform GC3P and PRAC. This happens because pre-allocating the tasks to 
the workers avoids the overhead of sub-tasks required by fountain codes and utilizes all 
the workers to their fullest capacity.

8 � Conclusion
The focus of this paper is to develop a secure edge computing mechanism to mitigate 
the computational bottleneck of IoT devices by allowing these devices to help each other 
in their computations, with possible help from the cloud if available. Our key tool is the 
theory of coded computation, which advocates mixing data in computationally intensive 
tasks by employing erasure codes and offloading these tasks to other devices for com-
putation. Focusing on eavesdropping attacks, we designed a private and rateless adap-
tive coded computation (PRAC) mechanism considering (1) the privacy requirements 
of IoT applications and devices, and (2) the heterogeneous and time-varying resources 
of edge devices. Our proposed PRAC model can provide adequate security and latency 
guarantees to support real-time computation at the edge. We showed through analysis, 
MATLAB simulations, and experiments on Android-based smartphones that PRAC out-
performs known secure coded computing methods when resources are heterogeneous.
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Fig. 6  Completion time as function of the number of workers in heterogeneous setup
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Appendix 1: Hiding the vector x
In machine learning applications, the master runs iterative algorithms in which the 
vector x contains information about A and needs to be hidden from the workers. 
We describe how PRAC can be generalized to achieve privacy for both A and x . The 
idea is to divide the n workers into two disjoint groups and ask each of them to pri-
vately multiply A by a vector that is statistically independent of x . In addition, the 
master should be able to decode Ax from the results of both multiplications. The 
scheme works as follows. The master divides the workers into two groups of cardi-
nality n1 and n2 such that n1 + n2 = n and chooses the security parameters z1 < n1 
and z2 < n2 . To hide x , the master generates a random vector u of same size as x 
and sends x + u to the first group and u to the second group. Afterwards, the mas-
ter applies PRAC on both groups. According to our scheme, the master decodes 
A(x + u) and Au after receiving enough responses from the workers of each group. 
Hence, the master can decode Ax . Note that no information about x is revealed 
because it is one-time padded by u . Note that here we assume workers from group 1 
do not collude with workers from group 2. The same idea can be generalized to the 
case where workers from different groups can collude by creating more groups and 
encoding x using an appropriate secret sharing scheme. For instance, if the master 
divides the workers into 3 groups and workers from any 2 different groups can col-
lude, the master encodes x into u1 , u2 and u1 + u2 + x and sends each vector to a 
different group.
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Appendix 2: Extension of proof of privacy (i.e., Theorem 1)
Since at each round we generate new random matrices, it is enough to study the 
privacy condition at one round. Consider a given round t of PRAC. Let Pi denote 
the random variable representing packet pi sent to worker wi . For any sub-
set Z ⊂ {1, . . . , n}, |Z| = z , denote by PZ the collection of packets indexed by Z, 
i.e., PZ = {pi; i ∈ Z} . We prove that the information theoretic privacy constraint 
H(A | PZ) = H(A) , given in (2), is equivalent to H(K | PZ ,A) = 0 . The proof is stand-
ard [73–75] but we reproduce it here for completeness. In what follows, the loga-
rithms in the entropy function are taken base q, where q is a power of prime for 
which all matrices can be defined in a finite field Fq . We can write,

Equation (9) follows from the fact that given the data A and the keys R1, . . . ,Rz all pack-
ets generated by the master can be decoded, in particular the packets PZ received by 
any z workers can be decoded, i.e., H(PZ | A,K ) = 0 . Equation (12) follows because the 
random matrices are chosen independently from the data matrix A and Eq. (13) follows 
because PRAC uses z independent random matrices that are chosen uniformly at ran-
dom from the field Fq . Therefore, since the entropy H(.) is always positive, proving that 
H(A|PZ) = H(A) is equivalent to proving that H(K | PZ ,A) = 0 . In other words, we 
need to prove that the random matrices can be decoded given the collection of packets 
sent to any z workers and the data matrix A. This is the main reason behind encoding the 
random matrices using an (n, z) MDS code. We formally prove that H(K | PZ ,A) = 0 in 
the proof of Theorem 1. Note from Eq. (12) that for any code to be information theoreti-
cally private, H(K) cannot be less then H(PZ) = z . This means that a secure code must 
use at least z independent random matrices.

Appendix 3: Proof of Lemma 2
We prove the lemma by contradiction. Assume that there exists a private coded comput-
ing scheme for distributed linear computation that is secure against z colluding workers 
and allows the master to decode Ax using the help of the fastest z workers. Without loss 
of generality, assume that the workers are ordered from the fastest to the slowest, i.e., 

(8)H(A | PZ) = H(A)−H(PZ)+H(PZ | A)

(9)= H(A)−H(PZ)+H(PZ | A)−H(PZ | A,K )

(10)= H(A)−H(PZ)+ I(PZ;K | A)

(11)= H(A)−H(PZ)+H(K | A)−H(K | PZ ,A)

(12)= H(A)−H(PZ)+H(K )−H(K | PZ ,A)

(13)= H(A)− z + z −H(K | PZ ,A)

(14)= H(A)−H(K | PZ ,A).
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worker w1 is the fastest and worker wn is the slowest. The previous assumption implies 
that the results sent from the first z workers contain information about Ax , otherwise 
the master would have to wait at least for the (z + 1) st fastest worker to decode Ax . By 
linearity of the multiplication Ax , decoding information about Ax from the results of z 
workers implies decoding information about A from the packets sent to those z workers. 
Hence, there exists a set Z ⊂ {1, . . . , n} of z workers for which H(A|PZ) �= 0 , where PZ 
denotes the tasks allocated to a subset of z workers, hence violating the privacy con-
straint. Therefore, any private coded computing scheme for linear computation limits 
the master to the speed of the (z + 1) st fastest worker in order to decode the wanted 
result.

Appendix 4: Proof of Theorem 3
The total delay for receiving τi computed packets from worker wi is equal to

where RTTi is the average transmission delay for sending one packet to worker wi and 
receiving one computed packet from the worker, βt,i is the computation time spent on 
multiplying packet pt,i by x at worker wi , and the average E[βt,i] is taken over all τi pack-
ets. The reason is that PRAC is a dynamic algorithm that sends packets to each worker 
wi with the interval of E[βt,i] between each two consecutive packets and it utilizes the 
resources of workers fully [76]. The reason behind counting only one round-trip time 
(RTT) in Ti is that in PRAC, the packets are being transmitted to the workers while 
the previously transmitted packets are being computed at the worker. Therefore, in the 
overall delay only one RTTi is required for sending the first packet p1,i to worker wi and 
receiving the last computed packet pτi ,ix at the master. To approximate the total delay, 
we assume that the transmission delay of one packet is negligible compared to the com-
puting delay of all τi packets, which is a valid assumption in practice for IoT-devices at 
the edge.

On the other hand, in PRAC, the master stops sending packets to workers as soon as it 
collectively receives b+ ǫ computed packets from the n− z slowest workers (note that 
b+ ǫ is the number of computed packets required for successful decoding, where ǫ is the 
overhead due to fountain Coding), i.e., 

∑n
i=z+1 τi = b+ ǫ . Note that the z fastest work-

ers are assigned for computing the keys as described in the previous sections. Due to 
efficiently using the resources of workers by PRAC, all n− z workers will finish comput-
ing τi packets approximately at the same time, i.e., TPRAC ≈ Ti ≈ τiE[βt,i], i = z + 1, . . . , n . 
By replacing τi with TPRAC

E[βt,i]
 in 

∑n
i=z+1 τi = b+ ǫ , we can show that TPRAC ≈ b+ǫ

∑n
i=z+1 1/E[βt,i]

 . 

Note that the approximated value approaches the exact value by increasing b. The reason 
is that the workers’ efficiency increases with increasing b

Received: 10 May 2020   Accepted: 15 December 2020

Ti ≈ RTTi + τiE[βt,i] ≈ τiE[βt,i]
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