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1  Introduction
Distributed detection is an application of wireless sensor networks (WSNs) to decide 
whether an event of interest is happening in a monitored area [1, 2]. Basically, it consists 
of a set of sensor nodes and a fusion center (FC). Sensor nodes are deployed over this 
area to observe the event and make local decisions. The sensor nodes send these deci-
sions to the FC over wireless channels. The FC collects the local decisions and applies 
a fusion rule to compute a final decision about the existence of the event. As a result, 
designing a distributed detection system will concern about the operations at sensor 
nodes and the operations at the FC. A basic structure of distributed detection is shown 
in Fig. 1. Unlike classical detection [3], distributed detection does not involve only detec-
tion methods but also communication techniques [4–6], communication protocols 
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[7–9], transceiver-receiver structures [10–13], transmission channels [14–16], network 
structures [17–19] etc. An ultimate goal of distributed detection is to derive an optimal 
fusion rule that is aware of this information. The design of fusion rules is known as a 
cross-layer design problem [20, 21].

Designing distributed detection also encounters a resource-constrained problem. In a 
large sensor network, the FC might not be able to collect local decisions from all sensor 
nodes because of limited bandwidth or/and limited time (delay). Therefore, transmission 
strategies between the FC and sensor nodes play an important role to achieve a desired 
performance under this resource constraint. When the time/banwidth does not allow 
the FC to collect local decisions from all sensor nodes, the FC might collect only reliable 
local decisions. This strategy is known as sensor censoring [15, 22, 23]. To minimize the 
collection time or to optimize the performance (given a limited time), distributed detec-
tion can be designed such that local decisions are sent to the FC in descending order of 
their reliability known as ordered transmissions [8, 24–26] and reliability-based splitting 
algorithms [9].

A suitable medium access control (MAC) protocol is a key to make the transmission 
strategies above possible in limited bandwidth and time constraints. A problem of apply-
ing these transmission strategies is that the transmission scheduling cannot be per-
formed in advance since decision reliability is not known yet. A random access protocol 
is a method applicable in this scenario. Distributed detection using slotted ALOHA has 
been studied in many papers [7–9, 20], where sensor nodes randomly choose time slots 
to send their decisions. However, if two or more decisions are sent at the same time slot, 
a collision time slot happens. The distributed detection schemes in these papers neglect 
the collision time slots since the local decisions on these time slots cannot be recovered. 
Therefore, their performance drops as the number of collisions increases.

1.1 � Contributions

In this paper, we study a distributed detection system with a large number of sensor 
nodes N. A time duration T time slots (assume T ≪ N  ) over a single channel is provided 
to collect local decisions. If two or more sensor nodes send their local decisions at the 
same time slot, a packet collision happens and the FC cannot decode the transmitted 
local decisions inside this time slot. Since T is less than N, the FC can collect only some 
local decisions but not all of them. For example, in a distributed detection system using 
the time division multiple access (TDMA) as its MAC protocol, the FC will be able to 
collect only up to T local decisions. Therefore, the collection time T will limit the perfor-
mance of this distributed detection.
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Fig. 1  A basic structure of distributed detection. Distributed detection generally consists of the following 
basic components: event model, sensor-node processing, channel model, and fusion-center processing
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We are interested in jointly designing a transmission strategy, a MAC protocol, and 
fusion rules at the FC to improve the performance of the distributed detection with a 
limited collection time over a single channel. A key design is that, with properly revising 
a transmission strategy and a random access protocol such that the packet collisions will 
be from the same local decisions, a packet collision indicates two or more sensor nodes 
have the same decision. As a result, the packet collisions are informative [27–30]. The 
main contributions and results of this paper can be summarized as follows.

We propose a transmission protocol (i.e., a transmission strategy and a MAC proto-
col) based on a population-splitting algorithm called population-splitting-based random 
access (PSRA), which is a modification of slotted ALOHA. We use the term “popula-
tion splitting” because the sensor nodes (i.e., population) are split into groups based on 
their observation values. By using this algorithm, the observation range is divided into 
censored regions (unreliable observations) and M uncensored regions (reliable observa-
tions). Only groups of sensor nodes whose observations are in the uncensored regions 
will send their data to the FC. We also divide the collection time T into M frames, where 
each frame contains K time slots. The sensor nodes whose observations are in the mth 
uncensored region will send their data in the mth frame. Since the frame itself indicates 
the observation region (i.e., the local data found in the mth frame corresponds to the 
observation in the mth uncensored region), we assume that the sensor nodes send a data 
bit 1 (i.e., no need to make a local decision). However, because we do not know which 
sensor nodes will send their data bits in the mth frame, a fixed transmission schedul-
ing such as TDMA cannot be applied. A slotted ALOHA protocol is exploited. A sensor 
node whose observation is in the mth region will send the data bit at a time slot in the 
mth frame with a probability ρmK  , where ρm is called transmission probability at the mth 
frame. The parameter ρm indicates the probability that a sensor node whose observation 
is in the mth region will send its data in the mth frame. The scaling 1K  is a normalized 
factor (per frame). By using a slotted ALOHA protocol, collision time slots, when two 
or more sensor nodes send their data bits at the same time slot, will happen. However, 
unlike [7–9, 20], we design and propose collision-aware distributed detection whose FC 
is aware of collisions and utilizes them in making a final decision.

The performance of the collision-aware distributed detection is affected by the trans-
mission probabilities ρ = (ρ1, ρ2, . . . , ρM) , where ρm controls the number of sensor 
nodes sending the data bits in the mth frame (i.e., network traffic). A higher value of ρm 
induces a larger number of collision time slots in that frame. We, then, propose a method 
to approximate the optimal transmission probabilities, which minimize the probability 
of error. We can show that, for the collision-aware distributed detection scheme, unlike 
data networks [31], the transmission probabilities maximizing the throughput are not 
optimal. On the other hand, the numerical results show that the transmission probabili-
ties inducing a lot of collision time slots are optimal. This is because, in the collision-
aware distributed detection, the collision time slots are informative.

1.2 � Related work

Transmission strategies have been broadly exploited to improve the performance 
of distributed detection in a resource-constrained scenario. In addition to sensor 
censoring [15, 22, 23, 32], ordered transmissions [8, 24–26], and reliability-based 
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splitting algorithms [9], a transmission strategy called type-based multiple access 
(TBMA) has been proposed [33, 34] over a multiple access channel. In the TBMA 
scheme, the observation is quantized into M levels and M orthogonal waveforms 
{φm(t)} , for m = 1, 2, . . . ,M , are provided. Sensor nodes whose observations are in 
the mth level will send a waveform φm(t) to the FC. The received waveforms are then 
combined to each other. The amplitude of the waveform φm(t) detected at the FC 
indicates the number of sensor nodes in the mth level, which will be used further in 
making a final decision. As an extension of the TBMA, a transmission strategy called 
type-based random access (TBRA) over a multiple access channel has been proposed 
in [35]. The term “random” here emphasizes that the number of sensor nodes involv-
ing in transmissions is random. Our proposed PSRA is different from the TBMA 
and TBRA in the following aspects. First, we study a problem of distributed detec-
tion when only a single collision channel is provided. Second, in the PSRA, the sen-
sor nodes whose observations are in the mth level will send their data bits in the mth 
frame using slotted ALOHA. As a result, the FC observes the states of time slots 
(i.e., idle, successful, collision time slots) in making a final decision.

Random-access protocols have been applied in many distributed detection 
schemes especially when a proper transmission scheduling is not allowed [7–9, 20]. 
However, packet collisions, as an intrinsic property of random access, deteriorate the 
performance of the schemes in these papers since the packet collisions are neglected. 
With properly revising a transmission strategy such that the packet collisions will be 
from the same data, a packet collision indicates two or more sensor nodes have the 
same data. As a result, the packet collisions can be used in making a final decision 
[27–30]. Similarly, in the proposed PSRA, since the data bits sent in the same frame 
will be from the observations in the same level, the collision time slots in each frame 
are meaningful and will be used in making a final decision.

Transmission protocols based on population-splitting algorithms for distributed 
detection/estimation have been studied in [29, 36, 37], where the sensor nodes will 
share a collision channel to send their decisions. By using these protocols, the obser-
vation range is divided into M levels and the collect time is divided into M frames. 
The sensor nodes whose observations are in the mth level will send their decisions 
in the mth frame. The FC observes the time-slot states to make a final decision or 
compute an estimate. The transmission protocol proposed in this paper is different 
from those in [29, 36, 37] as follows. Here, we apply the sensor-censoring strategy to 
a population-splitting algorithm, where the observation range is divided into cen-
sored regions (unreliable observations) and uncensored regions (reliable observa-
tions). The uncensored regions are further divided into M levels. Only the sensor 
nodes whose observations are in the uncensored regions will send their data bits in 
the corresponding frames.

1.3 � Organization

The remainder of this paper is organized as follows. The system model is intro-
duced in Sect.  2. Collision-aware distributed detection with a population-split-
ting algorithm is proposed in Sect.  3. Approximations of the optimal transmission 
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probabilities are determined in Sect. 4. The numerical results are evaluated and dis-
cussed in Sect. 5. Finally, conclusions are provided in Sect. 6.

2 � System model
2.1 � Centralized fusion system

We consider a distributed detection system with N sensor nodes deployed in an area 
to monitor an event of interest. To start the local-decision collection process, the 
FC will broadcast an inquiry about the existence of this event. Each sensor node will 
draw an observation, compute a data bit, and send it to the FC via a single-hop and 
shared collision channel by using the transmission protocol proposed in Sect. 3.2.

2.2 � Transmission channel

The sensor nodes will share a collision channel to send their data bits to the FC. This 
collision channel is divided into time slots, with the FC and sensor nodes knowing 
when a time slot begins and ends (i.e., synchronous time slot). In a collision-channel 
model, a time slot is classified into the following time-slot states [31]:

•	 a time slot is called as an idle time slot if no data packets are sent at this time slot,
•	 a time slot is called as a successful time slot if only one data packet is sent at this 

time slot,
•	 a time slot is called as a collision time slot if two or more data packets are sent at 

this time slot.

We assume that the collisions are solely from the transmissions of the sensor nodes in 
the considered network. The length of each time slot is equal to the packet containing 
a data bit.

2.3 � Binary hypothesis testing model

The noisy observation x at a sensor node is governed by the following binary hypoth-
esis model:

where fX (x|Hi) is the conditional probability density function (PDF) of x. The obser-
vations are assumed to be independent and identically distributed (IID) given Hi , for 
i = 0, 1 , and among the sensor nodes and time slots. The prior probability that H0 hap-
pens, Pr(H0) , is equal to P0 , and, the prior probability that H1 happens, Pr(H1) , is equal 
to P1 = 1− P0.

3 � Methods
3.1 � Overview of the proposed method

We consider a distributed detection system with a shared collision channel and a 
limited collection time. There are N sensor nodes deployed in the area to monitor 
whether the event H0 or the event H1 happens. These sensor nodes will send their 
decisions over a shared collision channel to the FC. The FC is allowed to collect local 

(1)H0 : x ∼ fX (x|H0) and H1 : x ∼ fX (x|H1),
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decisions within a time duration equal to T time slots, which is less than the num-
ber of nodes N. As a result, the FC cannot collect all local decisions from N sensor 
nodes. To handle this issue and improve the performance of this distributed detection 
system, we propose collision-aware distributed detection with a population-splitting 
algorithm.

The proposed method consists of two parts: a transmission protocol called popula-
tion-splitting-based random access (PSRA) and a detection strategy called collision-
aware distributed detection. As shown in Fig. 2, each sensor node will apply the PSRA 
to send its decision over a shared channel to the FC. By using the PSRA, the collec-
tion time (whose length is equal to T time slots) is organized into M frames (each 
frame consists of K time slots) and the observation range is divided into censored 
regions and M uncensored regions. The sensor nodes whose observations are within 
a censored region will decide not to send their decisions to the FC. On the other hand, 
the sensor nodes whose observations are within the mth uncensored region will send 
their binary bits b = 1 at a time slot in the mth frame by using a slotted Aloha proto-
col. At the end of the collection time T, the FC will observe the time-slot states (idle, 
successful, and collision) in each frame and use them to estimate the number of sen-
sor nodes ( ̂nm , for 1 ≤ m ≤ M ) who send their binary bits in that frame by using the 
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Fig. 2  A diagram to display the proposed method. There are N sensor nodes in the area to monitor the status 
of the event of interest. These sensor nodes send their decisions to the FC over a shared collision channel by 
using the PSRA protocol. At the end of the collection time T time slots, the FC observes the time-slot states 
and make a final decision by using the collision-aware distributed detection
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population estimator. Finally, the FC applies these estimated node numbers n̂1 , n̂2 , ..., 
n̂M into the population-based fusion rule to make a final decision whether the event 
H0 or the event H1 happens. The details of the transmission protocol PSRA and the 
collision-aware distributed detection are explained in Sects. 3.2 and 3.3, respectively.

3.2 � Population‑splitting‑based random access

The PSRA is shown in Algorithm 1. The censored regions and uncensored regions are 
chosen according to the observation reliability [9]. The censored regions cover the 
ranges of those unreliable observations, which are unlikely to help in detection. On 
the other hand, the uncensored regions consist of the ranges of reliable observation, 
which would be useful in detection. Only the sensor nodes whose observations are in 
the uncensored regions might send their data bits b = 1 to the FC. 

The algorithm’s specific details are explained and modeled as follows. Let nm , for 
1 ≤ m ≤ M , be the number of sensor nodes whose observation x ∈ Um . Since the sen-
sor nodes draw an observation at the beginning of the collection time, the variables 
n1, n2, . . . , nM can be modeled as multinomial random variables. The probability mass 
function (PMF) of n = (n1, n2, . . . , nM) given Hi is expressed as

where 0 ≤ nm ≤ N  , qm|i =
∫ τUm
τLm

fX (x|Hi) dx , nM+1 = N −
∑M

m=1 nm , and 

qM+1|i = 1−
∑M

m=1 qm|i . The set n = (n1, n2, . . . , nM) can be used to differentiate 
whether the event H0 or H1 is happening. Note that qm|i is the probability that an obser-
vation value will be in the mth uncensored region and qM+1|i is the probability that an 
observation value will be in the censored regions.

Each frame is used to indicate an uncensored region Um . The sensor nodes who 
have their observation x ∈ Um will send their data bits b = 1 in the mth frame with a 
probability ρm (the rest will keep silent). However, these sensor nodes are unknown. 
Transmission scheduling cannot be arranged in advance. We, then, apply slotted 

(3)Pr(n|Hi) =
N !

n1!n2! · · · nM+1!
q
n1
1|iq

n2
2|i · · · q

nM+1

M+1|i,
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ALOHA to handle the multiple access problem. In each time slot, these sensor nodes 
will decide to send their data bit with the probability 1K  . Similar to [27–29], a collision 
time slot is meaningful and recognized since a collision time slot indicates that there 
are two or more sensor nodes whose observation x ∈ Um (Fig. 3).

At the end of each time slot, the FC observes the state of that time slot. Let dk ,m be the 
time-slot state of the kth time slot in the mth frame. We have dk ,m ∈ {0, S, C} , where 
dk ,m = 0 , dk ,m = S , and dk ,m = C indicate the idle time slot, the successful time slot, and 
the collision time slot, respectively. Therefore, a time slot will be an idle, successful, or 
collision time slot with the following conditional probabilities:

The probabilities p0,m , pS,m , and pC,m are called as the probability of no transmission, the 
probability of successful transmission, and the probability of collisions, respectively. As a 
result, the conditional PMF of dk ,m given nm can be expressed as

where 1{·} is the indicator function.
At the end of the mth frame, the FC observes the following time-slot states 

d1,m, d2,m, . . . , dK ,m , whose joint conditional PMF is

where dm = (d1,m, d2,m, . . . , dK ,m) . In addition, the FC observes that there are z0,m idle 
time slots (i.e., dk ,m = 0 ), zS,m successful time slots (i.e., dk ,m = S ), and zC,m collision 
time slots ( dk ,m = C ) in the mth frame. Therefore, the joint PMF (6) is equivalent to, 
when the FC observes z0,m , zS,m , and zC,m:

where zm = (z0,m, zS,m, zC,m) . Note that z0,m + zS,m + zC,m = K  . In addition, we can 
write the joint conditional PMF of z0,m , zS,m , and zC,m given Hi as

(4)

Pr(dk ,m = 0|nm) = p0,m =
(

1− ρm

K

)nm
,

Pr(dk ,m = S|nm) = pS,m = nm

(ρm

K

)(

1− ρm

K

)nm−1
,

Pr(dk ,m = C|nm) = pC,m = 1− p0,m − pS,m.

(5)Pr(dk ,m|nm) = (p0,m)
1{dk ,m=0}(pS,m)

1{dk ,m=S}(pC,m)
1{dk ,m=C} ,

(6)Pr(dm|nm) =
K
∏

k=1

Pr(dk ,m|nm),

(7)Pr(zm|nm) =
K !

z0,m!zS,m!zC,m!
p
z0,m
0,m p

zS,m
S,m p

zC,m
C,m ,

1st Frame
1 2

2nd Frame Mth Frame
1 2 1 2

The collection time is equal to T time slots.

K K K

Fig. 3  The structure of the collection time. The collection time (T time slots) is divided into M frames, where 
each frame consists of K time slots
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At the end of the collection time, the FC has observed the time-slot states z1, z2, . . . , ..zM . 
The joint conditional PMF of z = (z1, z2, . . . , ..zM) given Hi can be expressed as

Therefore, we devise distributed detection that is aware of these collision time slots in 
addition to successful time slots and idle time slots as shown in Sect. 3.3, where the FC 
will exploit the time-slot states z to decide whether H0 or H1 is happening.

The transmission probability ρm is a key parameter since it controls the network traffic 
(the number of transmitting nodes) in the mth frame. As a result, numbers of idle, suc-
cessful, and collision time slots depend on ρm . A large value of ρm induces a large number 
of transmitting nodes and a large number of collision time slots in the mth frame. There 
will be a set of transmission probabilities ρ∗ = (ρ∗

1 , ρ
∗
2 , . . . , ρ

∗
M) maximizing the perfor-

mance of the proposed distributed detection, which will be studied in Sects. 4 and 5. We 
would like to note that finding the optimal thresholds ν∗ = (νL∗1 , νU∗

2 , . . . , νL∗I , νU∗
I ) and 

τ
∗ = (τL∗1 , τU∗

1 , . . . , τL∗M , τU∗
M ) , which is also known as quantizer design,1 is beyond the 

scope of this paper.

(8)Pr(zm|Hi) =
N
∑

nm=0

Pr(zm|nm)Pr(nm|Hi).

(9)

Pr(z|Hi) =
M
∏

m=1

Pr(zm|Hi)

=
M
∏

m=1

N
∑

nm=0

Pr(zm|nm)Pr(nm|Hi).

Fig. 4  An example illustrates the idea of the PSRA protocol, where the range of the observation x is divided 
in to one censored region ( C1 ) and four uncensored regions ( U1 , U2 , U3 , U4 ). The collection time (T) is equal to 
16 and divided into M = 4 and K = 4 . Assume that there are nm sensor nodes with x ∈ Um , for m = 1, 2, 3, 4 . 
They will send their data bits at a time slot in the mth frame with a probability ρm

K
 . As a result, idle time slots (I), 

successful time slots (S), and collision time slots (C) will happen

1  For example, the papers that deals with this problem are [9, 38–42].
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An example showing the main idea of the PSRA is provided in Fig.  4. The range of 
the observation is divided into a censored region ( C1 ) and four uncensored regions ( U1 , 
U2 , U3 , and U4 ). Assume that the event Hi is happening. The distribution of observa-
tions is fX (x|Hi) . There is nm sensor nodes whose observations x ∈ Um . According to the 
PSRA protocol, these sensor nodes will decide to send their data bits at each time slot 
in the mth frame with the probability ρmK  . As a result, the FC observes the time-slot state 
zm = (z0,m, zS,m, zC,m) in the mth frame, where z0,m , zS,m , and zC,m are the numbers of the 
idle, successful, and collision time slots, respectively. The FC will exploit these time-slot 
states zm , for m = 1, 2, . . . ,M , in making a final decision. Note that if the parallel access 
channels (PACs)2 are assumed, the FC would clearly see the number of sensor nodes nm , 
for m = 1, 2, . . . ,M , and would directly use them in making a final decision instead.

3.3 � Collision‑aware distributed detection: estimate‑then‑fuse approach

The optimal fusion rule of the proposed distributed detection can be directly derived 
from Pr(z|H1)

Pr(z|H0)
 , where Pr(z|Hi) is from (9). However, this optimal fusion rule is complicated 

and untraceable in analysis, which no insightful meaning can be discovered or proved. 
Similar to [1, 4–6, 10–16], we aim to devise suboptimal fusion that allows us to derive 
some meaningful properties.

In this section, we consider that the FC compute a final decision based on the estimate-
then-fuse approach [29, 36, 37] as shown in Fig. 5a, which consists of two stages: a popu-
lation estimator of the node numbers and a population-based fusion rule. First, the FC 
will use the estimator to compute the estimates of n1 , n2 , . . . , and nM , which are denoted 
as n̂1 , n̂2 , . . . , and n̂M , respectively, from the observed time-slot states z = (z1, z2, . . . , zM) . 
Thereafter, the FC exploits these estimates n̂ = (n̂1, n̂2, . . . , n̂M) in the proposed popula-
tion-based fusion rule. The population estimator and the population-based fusion rule 
are described next.

Population
Estimator
Eq. (10)

Population-Based
Fusion Rule

Eq. (13)

Fusion Center

z Final
Decision

Observed 
Channel 
States

Collision-Aware Distributed Detection

n̂

Fusion Center

Final
Decision

cz Population
Estimator
Eq. (12)

Population-Based
Fusion Rule

Eq. (13)

Numbers 
of 

Collisions

Collision-Aware Distributed Detection

n̂

a

b

Fig. 5  Diagrams to display the structure of the proposed collision-aware distributed detection

2  An example of PACs is the frequency division multiple access (FDMA). Each sensor node exploits its own frequency 
channel to send the decision. However, using the PACs is not a bandwidth-efficient approach in this scenario.
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In the first stage, the FC will estimate the number of sensor nodes nm in each frame 
by exploiting the population estimator. The details are shown in the proposition below. 
Note that, from now on, we omit the fact that nm is an integer and, then, consider nm as 
a real number instead. Therefore, we can derive and prove some meaningful properties. 
We would like to note that Proposition 1 and Corollary 1 have been shown in [36, 37].

Proposition 1  (Population estimate) The maximum-likelihood (ML) estimate of the 
number of sensor nodes whose x ∈ Um based on the observed time-slot states zm is

For a large K, the PDF of n̂m can be asymptotically expressed as a Gaussian PDF: 
n̂m

a∼ N
(

nm, υ
2
m

)

 , where a∼ denotes “asymptotically distributed according to” and, for a 
large nm and nm ≫ K ,

Proof  An outline of the proof has been shown in [36, 37]. The full derivation is shown 
in Appendix A. � □

Note that the variance υ2
m will affect the quality of the proposed distributed detection, 

which will be discussed in the next section. In addition, we can show that log Pr(zm|nm) 
is a concave function of nm , and, then, we have an alternative form of the population 
estimate n̂m as shown in Corollary 1 below.

Corollary 1  (Equivalent population estimate of nm ) For a large nm , the ML estimate n̂m 
obtained from (10) is equal to the value nm satisfying

Note that nm is inside pC,m.

Proof  An outline of the proof has been shown in [36, 37]. The full derivation is shown 
in Appendix B. � □

From Corollary 1, we see that only the number of collision time slots zC,m is needed to 
estimate nm . As a result, the input to the diagram of the proposed distributed detection 
can be revised as shown in Fig. 5b.

In the second stage, the FC will apply the estimates n̂ = (n̂1, n̂2, . . . , n̂M) into the popu-
lation-based fusion rule to compute a final decision. The population-based fusion rule is 
described in the proposition below.

(10)n̂m = arg max
nm∈[0,N ]

[

z0,m log(p0,m)+ zS,m log(pS,m)+ zC,m log(pC,m)
]

.

(11)υ2
m ≈

{

K
(1− pC,m

pC,m

)

[

log
(

1− ρm

K

)

]2}−1

.

(12)
1− pC,m

pC,m
= K − zC,m

zC,m
.
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Proposition 2  (Population-based fusion rule given n̂ ) Given a set of estimated numbers 
of sensor nodes, n̂ = (n̂1, n̂2, . . . , n̂M) . The population-based fusion rule is expressed as

where the decision threshold γ is adjusted to achieve the desired performance.

Proof  The test statistic � is directly obtained from the following log-likelihood ratio 

� = Pr(n|H1)
Pr(n|H0)

∣

∣

∣

∣

n=n̂

 , where n = (n1, n2, . . . , nM) will be substituted by the estimates 

n̂ = (n̂1, n̂2, . . . , n̂M) . From (3), we can show that

Since the first term on the right-hand side of the equation above is a constant, we can 
write the test statistic � as shown in (13) after replacing n with n̂ . � □

Recall that the collision-aware distributed detection here is parameterized by the 
number of sensor nodes N, the number of frames M, and the number of time slots in 
a frame K. It is worth to mention the computational complexity of the proposed dis-
tributed detection according to these parameters. In the first stage, the FC will estimate 
the number of sensor nodes n̂m in each frame according to (10). To do this, the FC will 
observe and count the numbers of time slot states in each frame (i.e., z0,m , zS,m , and 
zC,m ), compute the probabilities in (4), and, then, check all nm ∈ [0,N ] by using (10). As 
a result, for M frames, the first stage incurs the complexity O(MK +MN ) . In the second 
stage, to make a final decision, given the estimate n̂m from the first stage, the FC applies 
the fusion rule (13) which requires the complexity O(M) . Finally, the overall computa-
tional complexity of the proposed distributed detection is of order O(MK +MN +M).

4 � Approximations of optimal transmission probabilities
The performance of the proposed distributed detection can be shown via the probability 
of detection ( PD ) and the probability of false alarm ( PF ). These probabilities are affected 
by a set of transmission probabilities ρ = (ρ1, ρ2, . . . , ρM) . A small transmission prob-
ability ρm will allow only a few sensor nodes to send their data bits in the mth frame, and, 
then, induce a large number of idle time slots in the mth frame. On the other hand, a 
large transmission probability ρm will allow many sensor nodes to send their data bits in 
the mth frame, and, then, induce a large number of collision time slots in the mth frame. 
The transmission probabilities ρ = (ρ1, ρ2, . . . , ρM) will impact on the estimation’s qual-
ity of the ML estimator (shown in Proposition 1), and, then, the final decision’s quality of 
the population-based fusion rule (shown in Proposition 3). Therefore, there will be a set 
of transmission probabilities ρ∗ = (ρ∗

1 , ρ
∗
2 , . . . , ρ

∗
M) optimizing the performance of the 

proposed distributed detection. However, finding the optimal transmission probabilities 
ρ
∗ numerically will be cumbersome. An analytical way is needed. In what follows, we 

(13)

(14)
Pr(n|H1)

Pr(n|H0)
= N log

(qM+1|1
qM+1|0

)

+
M
∑

m=1

nm log

[

( qm|1
qM+1|1

)

− log
( qm|0
qM+1|0

)

]

.



Page 13 of 28Laitrakun ﻿J Wireless Com Network         (2021) 2021:67 	

will derive approximations of the transmission probabilities minimizing the proposed 
distributed detection’s error probability.

We need to derive the conditional PDF of � given Hi , denoted by Pr(�|Hi) . How-
ever, the exact form of Pr(�|Hi) is not yet found. Instead, we will derive an asymptotic 
approximation of Pr(�|Hi) , denoted by P̃r(�|Hi) , as shown in the proposition below.

Proposition 3  (Asymptotic PDF approximation) An approximation of the conditional 
PDF of � given Hi , denoted by P̃r(�|Hi) , can be expressed as a Gaussian PDF N

(

µi, σ
2
i

)

 , 
for i = 0, 1 , whose

where n̄m|i = Nqm|i , p̄C,m|i = 1− p̄0,m|i − p̄S,m|i , p̄0,m|i = (1− ρm
K )n̄m|i , and 

p̄S,m|i = n̄m|i(
ρm
K )(1− ρm

K )n̄m|i−1.

Proof  Please see Appendix C. � □

The value n̄m|i is the average number of sensor nodes whose x ∈ Um (i.e., in the mth 
frame) given Hi . Correspondingly, the probabilities p̄0,m|i , p̄S,m|i , and p̄C,m|i are com-
puted at n̄m|i . We see that the variance σ 2

i  from (16) is a weighted sum of the variance υ2
m 

from (11). Therefore, the quality of the estimates n̂ from the population estimator will 
directly affect the quality of the decision making obtained from the population-based 
fusion rule.

Subsequently, we will approximate a set of transmission probabilities 
ρ
⋆ = (ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M) minimizing the probability of error PE = P0PF + P1PM , where PM 

is the probability of miss and equal to 1− PD . From Proposition 3, we have the following 
approximations of the probability of detection PD and the probability of false alarm PF:

where the conditional probability P̃r(�|Hi) , for i = 0, 1 , is defined in Proposition 3, and 
Q(·) is the Q-function. In order to find ρ⋆ , we have the following optimization problem:

The necessary conditions of ρ⋆ in (19) are derived in the proposition below.

(15)µi = N

M
∑

m=1

qm|i

[

log
( qm|1
qM+1|1

)

− log
( qm|0
qM+1|0

)

]

,

(16)σ 2
i = 1

K

M
∑

m=1

[

log
( qm|1
qM+1|1

)

− log
( qm|0
qM+1|0

)

]2

( 1−p̄C,m|i
p̄C,m|i

)

[

log
(

1− ρm
K

)

]2
,

(17)PD = P̃r(� > γ |H1) = Q
(γ − µ1

σ1

)

,

(18)PF = P̃r(� > γ |H0) = Q
(γ − µ0

σ0

)

,

(19)ρ
⋆ = arg min

ρ∈[0, 1]M

(

P0PF + P1PM
)

.
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Proposition 4  (Necessary conditions of ρ
⋆ ) The transmission probabilities 

ρ
⋆ = (ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M) in (19) must satisfy the following conditions:

	(i)	 Let gm(ρm) be a function of ρm defined as

for all m, where n̄m|i , p̄S,m|i , and p̄C,m|i are defined in Proposition 3. We have

	(ii)	 The function gm(ρ⋆
m) , for all m, must be equal to

where ϕ(·) is the standard Gaussian PDF and σ⋆
i  is the standard deviation σi in (16) 

with substituting ρ⋆ = (ρ⋆
1, ρ

⋆
2, . . . , ρ

⋆
M).

	(iii)	 With properly choosing γ such that µ0 ≤ γ ≤ µ1 , the value gm(ρ⋆
m) is less than or 

equal to zero for all m.

Proof  Please see Appendix D. � □

The necessary conditions in Proposition  4 help us in searching for the transmission 
probabilities ρ⋆ . First, we can find a range of feasible values of ρ⋆

m by using the neces-
sary conditions (i) and (iii). Thereafter, we limit to specific candidates of ρ∗

m by using 
the necessary condition (ii). An example of finding the transmission probabilities 
ρ
⋆ = (ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M) is explained below.

Example 1  Consider the observation x governed by the following binary hypothesis 
testing model

where N (a, b) is the Gaussian PDF whose mean and variance are equal to a and b, 
respectively. Assume further that P0 = P1 = 1

2 and N = 400 . We consider the proposed 
distributed detection when T = 80 , M = 4 , K = 20 , and γ = 1

2 . The observation range is 
divided into one censored region:

and four uncensored regions:

(20)

(1−p̄C,m|0)2

2p̄C,m|0(1−p̄C,m|0)−(1−n̄m|0)p̄S,m|0
[

log
(

1− ρm
K

)]

(1−p̄C,m|1)2

2p̄C,m|1(1−p̄C,m|1)−(1−n̄m|1)p̄S,m|1
[

log
(

1− ρm
K

)]

,

(21)g1(ρ
⋆
1) = g2(ρ

⋆
2) = . . . = gM(ρ⋆

M).

(22)
(σ⋆

1

σ⋆
0

)3
[P0ϕ

(

γ−µ0
σ⋆
0

)

(γ − µ0)

P1ϕ
(

γ−µ1
σ⋆
1

)

(γ − µ1)

]

,

(23)H0 : x ∼ N (0, 5) and H1 : x ∼ N (1, 5),

(24)C1 = {x : 0 < x ≤ 1},
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Note that the thresholds in the uncensored regions are selected such that 
the probability qm|0P0 + qm|1P1 , for m = 1, 2, 3, 4 , are identical (specifically, 
qm|0P0 + qm|1P1 = 1−(P0qM+1|0+P1qM+1|1)

M  ). The function gm(ρm) defined in (20), for 
m = 1, 2, 3, 4 , are shown in Fig. 6a. Only the negative values are displayed because of the 
necessary condition (iii). From (21) and the fact that gm(ρ∗

m) ≤ 0 , for all m, Fig. 6b shows 
that the feasible values of ρ⋆

1 , ρ⋆
2 , ρ⋆

3 , and ρ⋆
4 are

(25)

U1 = {x : −∞ < x ≤ −1.385},
U2 = {x : −1.385 < x ≤ 0},
U3 = {x : 1 < x ≤ 2.385},
U4 = {x : 2.385 < x < ∞}.

0.261 ≤ ρ⋆
1 ≤ 0.486, 0.301 ≤ ρ⋆

2 ≤ 0.379,

0.301 ≤ ρ⋆
3 ≤ 0.379, 0.261 ≤ ρ⋆

4 ≤ 0.486.
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a
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Fig. 6  Illustrations of Examples 1 and 2
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To find the transmission probabilities ρ⋆
1 , ρ⋆

2 , ρ⋆
3 , and ρ⋆

4 , we vary ρ1 , ρ2 , ρ3 , and ρ4 within 
the feasible ranges identified above such that the necessary condition (ii) is true. The cor-
responding transmission probabilities ρ⋆ = (ρ⋆

1, ρ
⋆
2, ρ

⋆
3, ρ

⋆
4) minimize the probability of 

error in (19). As a result, we obtain ρ⋆
1 = 0.282 , ρ⋆

2 = 0.324 , ρ⋆
3 = 0.324 , and ρ⋆

4 = 0.282 . 
� □

A feasible region of ρ⋆
m as shown in the example above can be determined in the 

following way.

Proposition 5  (A feasible region of ρ⋆
m ) The optimal transmission probabilities ρ⋆

m is 
between ρ⋆

m|0 and ρ⋆
m|1 , where ρ⋆

m|i is obtained from

p̄⋆C,m|i = 1− p̄⋆0,m|i − p̄⋆S,m|i , p̄⋆0,m|i =
(

1− ρ⋆m|i
K

)n̄m|i , and 
p̄⋆S,m|i = n̄m|i

(ρ⋆m|i
K

)(

1− ρ⋆m|i
K

)n̄m|i−1 . The transmission probabilities ρ⋆
1|0 , ρ

⋆
2|0 , . . . , ρ

⋆
M|0 

minimize the probability of false alarm PF . The transmission probabilities ρ⋆
1|1 , ρ

⋆
2|1 , . . . , 

ρ⋆
M|1 minimize the probability of miss PM.

Proof  Please see Appendix E. � □

Consider Example 1. We find the transmission probabilities ρ⋆
1|0 and ρ⋆

1|1 by using 
(26). As a result, we have ρ⋆

1|0 = 0.261 and ρ⋆
1|1 = 0.486 . From Proposition 5, the feasi-

ble region of ρ⋆
1 is 0.261 ≤ ρ⋆

1 ≤ 0.486 , which is similar to that specified in Example 1.
The transmission probabilities ρ⋆ = (ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M) are easily found when the fol-

lowing conditions are true.

Corollary 2  (Special case) Assume M is even, the threshold γ = 1
2 (µ0 + µ1) , and 

qm|0 = qM+1−m|1 for all m. The transmission probabilities ρ⋆ = (ρ⋆
1, ρ

⋆
2, . . . , ρ

⋆
M) in (19) 

must satisfy the following conditions: 

	(i)	 The optimal transmission probabilities satisfy

	(ii)	 The function gm(ρ⋆
m) defined in (20) must be equal to −P0

P1
 , for all m.

(26)
(1− p̄⋆C,m|i)p̄

⋆
C,m|i

p̄⋆S,m|i
= (1− n̄m|i)

2

[

log
(

1−
ρ⋆
m|i
K

)

]

,

(27)ρ⋆
m = ρ⋆

M+1−m, ∀m.
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Proof  First, we can prove the condition (i) as follows. From the given assumption that 
qm|0 = qM+1−m|1 , we have n̄m|0 = n̄M+1−m|1 , where n̄m|i = Nqm|i . Recall that the func-
tion gm(ρm) defined in (20) is a function of n̄m|0 , n̄m|1 , and ρm . Since n̄m|0 = n̄M+1−m|1 
and gm(ρ⋆

m) = gM+1−m(ρ
⋆
M+1−m) from (21), we have ρ⋆

m = ρ⋆
M+1−m for all m.

Second, we can prove the condition (ii) as follows. Since M is even, qm|0 = qM+1−m|1 , 
n̄m|i = Nqm|i , and ρ⋆

m = ρ⋆
M+1−m , we have µ0 = −µ1 and σ⋆

0 = σ⋆
1  , where µi and σ 2

i  are 
defined in (15) and (16), respectively. Recall that σ⋆

i  is the standard deviation σi in (16) 
with substituting ρ⋆ = (ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M) . In addition, from the given assumption that 

γ = 1
2 (µ0 + µ1) , we have γ = 0 . As considering (22), we have (γ − µ0) = −(γ − µ1) 

and ϕ
(

γ−µ0
σ⋆
0

)

= ϕ
(

γ−µ1
σ⋆
1

)

 . As a result, (22) is reduced to −P0
P1

 , which is the value of 

gm(ρ
⋆
m) . � □

The example below shows how easy to find the optimal transmission probabilities ρ⋆ 
when the assumptions in Corollary 2 are true.

Example 2  Reconsider Example 1. We can see that the parameter setup in Example 1 
follows the assumptions in Corollary 2. From Corollary 2, we will have ρ⋆

1 = ρ⋆
4 , ρ⋆

2 = ρ⋆
3 , 

and gm(ρ⋆
m) = −1 , for all m. Considering Fig.  6b, we obtain ρ⋆

1 = 0.282 , ρ⋆
2 = 0.324 , 

ρ⋆
3 = 0.324 , and ρ⋆

4 = 0.282 . � □

5 � Results and discussion
In this section, we will evaluate and show the performance of the collision-aware distrib-
uted detection with the PSRA. Throughout this section, we assume that the observation 
x is governed by the model shown in (23) in Example  1 whose observation signal-to-
noise ratio (SNR) is equal to −7 dB. As a result, according to [9], the reliability of the 
observation will be equal to |x − 0.5| . The value of x that is further away from 0.5 is more 
reliable. Therefore, as seen later, our censored regions (cover unreliable observations) 
will be around x = 0.5 . Note that the probabilities of error PE shown in this section are 
obtained from simulation and the probabilities P0 and P1 are equal to 12.

5.1 � Network traffic and optimal transmission probabilities

In a data network using slotted ALOHA, the optimal transmission probability will be 
the probability that maximizing the network throughput (i.e., the probability of success-
ful transmission) [31]. However, in this paper, our optimal transmission probabilities 
ρ
∗ = (ρ∗

1 , ρ
∗
2 , . . . , ρ

∗
M) are to minimize the proposed distributed detection’s error prob-

ability PE . We study the role of the transmission probabilities on the probability of error 
PE in the following scenario. We consider a distributed detection system with 500 sensor 
nodes. The collection time T is equal to 30 time slots, which is divided into two frames. 
Each frame consists of 15 time slots. The observation range is divided into one censored 
region C1 = {x : −1 < x ≤ 2} and two uncensored regions U1 = {x : −∞ < x ≤ −1} and 
U2 = {x : 2 < x < ∞} . We have q1|0 = q2|1 and q1|1 = q2|0 . The probability that the event 
Hi (i.e., Pi ) happens is equal to 12 . As a result, we have P0q1|0 + P1q1|1 = P0q2|0 + P1q2|1.
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According to the parameter setup above, the transmission probability ρ∗
1 will be equal 

to the transmission probability ρ∗
2 . Therefore, we vary the transmission probability ρm 

such that ρ1 = ρ2 = ρ . From simulations, the probability of error PE versus ρ is shown 
in Fig. 7. In addition, we show the network traffic (which is measured by p0,m|i , pS,m|i , 
and pC,m|i ) versus ρ for m = 1, 2 and i = 0, 1 in Fig.  7a–d. We can see that the trans-
mission probabilities minimizing PE are ρ∗

1 = ρ∗
2 ≈ 0.33 . We further notice that the 

optimal transmission probabilities ρ∗ = (ρ∗
1 , ρ

∗
2 , . . . , ρ

∗
M) do not maximize the net-

work throughput (i.e., pS,m|i ). However, by using the optimal transmission probabilities 
ρ
∗ = (ρ∗

1 , ρ
∗
2 , . . . , ρ

∗
M) , a lot of collisions occur (i.e., high pC,m|i ) in each frame. A rea-

son is that, unlike the sensor networks whose collisions are non-informative and, then, 
neglected [7–9, 20, 31], in the proposed distributed detection, the collision time slots 
can be exploited in making a final decision.

Next, we show the optimal transmission probabilities ρ∗ = (ρ∗
1 , ρ

∗
2 , . . . , ρ

∗
M) (minimiz-

ing the probability PE ) when increasing N in Fig. 8. The same scenario described above 
is assumed except the value of N. Since ρ∗

1 is equal to ρ∗
2 , only ρ∗

1 is shown. Increasing 
N means that there are more sensor nodes in each uncensored region Rm . Recall that 
these sensor nodes will send their data bits in the mth frame with the transmission prob-
ability ρm . The number N and the probability ρm will affect to the numbers of time-slot 
states (z0,m, zS,m, zC,m) . For a fixed ρm , increasing N will result in higher collision time 
slots zC,m and lower idle time slots z0,m . The proposed scheme exploits the numbers of 
time-slot states (z0,m, zS,m, zC,m) to differentiate between the event H0 and the event H1 . 

a b

c d

Fig. 7  Simulation results showing the role of the transmission probability on the proposed distributed 
detection’s network traffic and probability of error PE . The parameters are set up as follows: N = 500 , T = 30 , 
M = 2 , and K = 15 . The range of the observation is divided into a censored region C1 = {x : −1 < x ≤ 2} 
and two uncensored regions U1 = {x : −∞ < x ≤ −1} and U2 = {x : 2 < x < ∞}
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As a result, increasing N lowers the optimal transmission probability ρ∗
1 such that the 

corresponding time-slot states (z0,m, zS,m, zC,m) are best used in detection.
In addition, we also show the transmission probability ρ⋆

1 , which is an approximation 
of the optimal transmission probability ρ∗

1 , versus N in Fig. 8. The probability ρ⋆
1 is easily 

obtained from Proposition 4. We see that there is an acceptable gap between ρ∗
1 and ρ⋆

1 , 
which is smaller when increasing N.

5.2 � Performance comparison

In this section, we demonstrate

•	 the estimated number of sensor nodes n̂m obtained from the population estimator 
(10),

•	 the effect of N on the probability of error PE of the proposed distributed detection 
scheme,

•	 the effect of censored regions on the probability of error PE of the proposed distrib-
uted detection scheme.

However, finding the optimal transmission probabilities ρ∗ = (ρ∗
1 , ρ

∗
2 , . . . , ρ

∗
M) is cum-

bersome. Therefore, we will find the transmission probabilities ρ⋆ = (ρ⋆
1, ρ

⋆
2, . . . , ρ

⋆
M) , 

which can be obtained from Proposition 4, and use them instead.
Figure  9 compares the estimated number of sensor nodes n̂m obtained from (10) 

with the actual number of sensor nodes nm in the mth frame for 50 trials when M = 2 , 
T = 60 , K = 30 , and N = 500 . We assume that the event H1 is happening. The other 
parameters are specified in the figure’s caption. We see that the estimate n̂m has fluctu-
ated around the actual number nm.

Figure  10 shows the effect of N on the proposed distributed detection (specified as 
PSRA) when M = 2 and M = 6 . The parameter setup is specified in the figure’s caption. 
Recall that for a given K (the number of time slots in each frame), there will be a set of 

500 600 700 800 900 1000 1100 1200
0
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0.15

0.2

0.25

0.3
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0.4

Fig. 8  A comparison between the optimal transmission probability ρ∗
1 obtained from simulations and the 

approximation ρ⋆
1 obtained from Proposition 4. The parameters are set up as follows: T = 30 , M = 2 , and 

K = 15 . The range of the observation is divided into a censored region C1 = {x : −1 < x ≤ 2} and two 
uncensored regions U1 = {x : −∞ < x ≤ −1} and U2 = {x : 2 < x < ∞}
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z0,m , zS,m , and zC,m that are best used in differentiating between the event H0 and the 
event H1 . Increasing N will introduce higher number of sensor nodes in each observa-
tion interval. The transmission probabilities ρ = (ρ1, ρ2, . . . , ρM) are used to adjust the 
number z0,m , zS,m , and zC,m , which will be further exploited by the FC to make a final 
decision. By using the transmission probabilities ρ⋆ = (ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M) , a set of suitable 

z0,m , zS,m , and zC,m will be seen by the fusion center. This is roughly independent on N. 
Therefore, increasing N slightly affects the probability PE.

In Fig. 10, we also show the probability of error PE of the distributed detection using 
a time division multiple access (TDMA) protocol. In the TDMA protocol, each sen-
sor node is assigned a specific time slot to send its data in advance to avoid packet 
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Fig. 9  A comparison between the estimated number of sensor nodes n̂m and the actual number of sensor 
nodes nm in the mth frame for 50 trials when M = 2 , T = 60 , K = 30 , and N = 500 . We assume that the 
event H1 is happening. The range of the observation is divided into a censored region C1 = {x : −1 < x ≤ 2} 
and two uncensored regions U1 = {x : −∞ < x ≤ −1} and U2 = {x : 2 < x < ∞} . As a result, we have 
qm|0P0 + qm|1P1 , for 1 ≤ m ≤ 2 , are identical. The approximations of the optimal transmission probabilities 
ρ
⋆ = (ρ⋆

1 , ρ
⋆
2) are obtained from Proposition 4, where we have ρ⋆

1 = ρ⋆
2 = 0.28
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Fig. 10  Simulation results showing the probability of error PE of the proposed distributed detection versus 
N. In addition, we compare the probability of error PE of the proposed distributed detection (specified 
as PSRA) to the distributed detection using TDMA (specified as TDMA). The parameters are set up as 
follows. The collection time T is equal to 60 time slots. The number of frames (M) is specified in the figure. 
The approximations of the optimal transmission probabilities ρ⋆ = (ρ⋆

1 , ρ
⋆
2 , . . . , ρ

⋆
M) from Proposition 4 

are applied. The range of the observation is divided into a censored region C1 = {x : −1 < x ≤ 2} and 
M uncensored regions U1 , U2 , . . . , UM . The thresholds of Um which are τ Lm and τUm , are selected such that 
qm|0P0 + qm|1P1 , for all m, are identical
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collisions. In our scenario, since T < N  , a group of 60 sensor nodes are randomly 
selected and assigned exclusive time slots to send their local decisions. The local 
decision is computed as follows: if the observation x is larger than 0.5 (i.e., the local 
threshold obtained from our scenario assumption), the local decision is one; other-
wise, the local decision is zero. The FC receives 60 local decisions without collisions 
and sums them together to compute its test statistic. If the test statistic is larger than 
zero, the FC announces the event H1 ; otherwise, the FC announces the event H0 . As 
shown in the figure, the corresponding probability PE of the TDMA-based distrib-
uted detection is about 0.0647, which is higher than that of the proposed distributed 
detection.

Figure 11 shows the effect of the censored area on the proposed distributed detec-
tion (specified as PSRA) when M = 2 and M = 6 . Increasing the censored area indi-
cates that only data bits obtained from higher reliable observations will be sent to the 
FC (and, as a result, lowers the number of sensor nodes who will send their data bits 
to the FC). The censored area is computed from P0qM+1|0 + P1qM+1|1 . In this figure, 
we consider that the range of the observation is divided into a censored region 
C1 = {x : νL1 < x ≤ νU1 } and M uncensored regions. The value of qM+1|i is obtained 
from 

∫ νU1

νL1
fX (x|Hi) dx . We set the thresholds νL1 = 0.5− a and νU1 = 0.5+ a , for a > 0 , 

and vary a to get the desired censored area. The other parameters are set up as shown 
in the figure’s caption. We see that increasing the censored area such that only data 
bits obtained from reliable observations are sent to the FC significantly helps improv-
ing the probability of error PE . We also show the probability PE of the TDMA-based 
distributed detection for a comparison. The proposed distributed detection outper-
forms the TDMA-based distributed detection when the censored area is larger than 
0.42 and 0.32 for M = 2 and M = 6 , respectively.
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Fig. 11  Simulation results showing the probability of error PE of the proposed distributed detection versus 
the censored area (which is equal to P0qM+1|0 + P1qM+1|1 ). In addition, we compare the probability of 
error PE of the proposed distributed detection (specified as PSRA) to the distributed detection using TDMA 
(specified as TDMA). The parameters are set up as follows: N = 800 and T = 60 . The number of frames (M) is 
specified in the figure. The approximations of the optimal transmission probabilities ρ⋆ = (ρ⋆

1 , ρ
⋆
2 , . . . , ρ

⋆
M) 

from Proposition 4 are applied. The range of the observation is divided into a censored region 
C1 = {x :< νL1 < x ≤ νU1 } and M uncensored regions U1 , U2 , . . . , UM . The thresholds of C1 , which are νL1 and νU1  , 
are adjusted to get the desired censored area. The thresholds of Um which are τ Lm and τUm , are selected such 
that qm|0P0 + qm|1P1 , for all m, are identical
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6 � Conclusions
We have proposed a collision-aware distributed detection scheme with the PSRA 
for a single-hop WSN whose collection time is limited and only a collision chan-
nel between sensor nodes and the FC is provided. We have shown that, unlike many 
other random-access distributed detection schemes, the proposed distributed detec-
tion favors a large number of collision time slots since the collisions are useful and 
applicable in making a final decisions. The following are possible extensions of the 
proposed distributed detection such that its performance is improved and/or it is 
applied in other scenarios. 

	 i.	 Composite Hypothesis Testing: In this paper, we assume that the distributions of 
the observation given H0 and H1 are known and we, then, formulate the problem 
as simple binary hypothesis testing. However, in many scenarios, for example, the 
distribution of the observation given H1 generally is unknown since its distribution 
would depend on the location and the strength of the event. Study, analysis, and 
evaluation of the proposed distributed detection in the composite hypothesis test-
ing is an interesting extension.

	 ii.	 Energy Detection: In this paper, we design and analyze the proposed distributed 
detection by assuming that the FC is able to detect the time slot states: idle, suc-
cessful, and collision time slots. A method to identify these time slot states are 
open. Specifically, what we study here is from the MAC layer’s point of view. We 
can extend the proposed distributed detection towards the physical layer’s point of 
view by including an energy detection into the proposed distributed detection to 
detect the time slot states. Furthermore, we, then, are able to investigate the effect 
of the fading channels on the proposed distributed detection.

Appendix A: Proof of Proposition 1
The ML estimate of the variable nm , n̂m as shown in (10), is directly obtained from (7). For a 
large K, the distribution of the estimate n̂m asymptotically converges to a Gaussian distribu-
tion N

(

nm, υ
2
m

)

 , where υ2
m is equal to the Cramer-Rao lower bound of n̂m [3].

To derive the variance υ2
m , we omit the fact that nm is an integer and, then, consider 

nm as a real number. The variance υ2
m is obtained from

The first derivative ∂
∂nm

log Pr(zm|nm) and the second derivative ∂2

∂n2m
log Pr(zm|nm) are 

shown as follows:

(28)υ2
m = 1

−E

{

∂2

∂n2m
log Pr(zm|nm)

} .
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Because of E{zS,m} = KpS,m and E{zC,m} = KpC,m , we have

By assuming that nm is large and nm ≫ K  , the term E
{

∂2

∂n2m
log Pr(zm|nm)

}

 can be 

approximated as

Since pC,m is less than or equal to one, the term (pC,m − 1) is a negative value. By sub-
stituting (32) into (28), we obtain (11).

Appendix B: Proof of Corollary 1
Note that we assume nm is real-valued. Consider the derivatives ∂

∂nm
log Pr(zm|nm) and 

∂2

∂n2m
log Pr(zm|nm) shown in (29) and (30), respectively. For a large nm , these deriva-

tives can be approximated as

(29)

∂

∂nm
log Pr(zm|nm) = z0,m log

(

1− ρm

K

)

+ zS,m

[

log
(

1− ρm

K

)

+ 1

nm

]

+ zC,m

[

(pC,m − 1

pC,m

)

log
(

1− ρm

K

)

− pS,m

nmpC,m

]

,

(30)

∂2

∂n2m
log Pr(zm|nm) =

zC,m(pC,m − 1)

p2C,m

[

log
(

1− ρm

K

)

]2

− zC,mpS,m

nmpC,m

[

1+
(2− pC,m

pC,m

)

]

log
(

1− ρm

K

)

− 1

n2m

[

zS,m +
zC,mp

2
S,m

p2C,m

]

.

(31)

E

{

∂2

∂n2m
log Pr(zm|nm)

}

= K
(pC,m − 1

pC,m

)

[

log
(

1− ρm

K

)

]2

− KpS,m

nm

[

1+
(2− pC,m

pC,m

)

]

log
(

1− ρm

K

)

− KpS,m

n2m

(

1+ pS,m

pC,m

)

.

(32)E

{

∂2

∂n2m
log Pr(zm|nm)

}

≈ K
(pC,m − 1

pC,m

)

[

log
(

1− ρm

K

)

]2

.

(33)
∂

∂nm
log Pr(zm|nm) ≈

[

z0,m + zS,m +
(

pC,m − 1

pC,m

)

zC,m

]

× log
(

1− ρm

K

)

,

(34)
∂2

∂n2m
log Pr(zm|nm) ≈ zC,m

(

pC,m − 1

p2C,m

)[

log
(

1− ρm

K

)

]2

.
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Since 
(

pC,m−1

p2C,m

)

≤ 0 , we have ∂
2

∂n2m
log Pr(zm|nm) ≤ 0 , which means the term log Pr(zm|nm) 

is a concave function of nm . Therefore, the ML estimate n̂m is the value nm satisfying 
∂

∂nm
log Pr(zm|nm) = 0 , which is equivalent to

Recall the z0,m + zS,m = K − zC,m . Therefore, we have (12).

Appendix C: Proof of Proposition 3
The test statistic � can be rewritten as � =

∑M
m=1�m , where

From Proposition 1, where n̂m
a∼ N

(

nm, υ
2
m

)

 , the conditional PDF of �m given nm 
(i.e., Pr(�m|nm) ) is asymptotically equal to N

(

ηm, ϑ
2
m

)

 , where

Given n = (n1, n2, . . . , nM) , the test statistics �1 , �2 , . . . , �M are independent. The 
conditional PDF of � given n can be expressed as Pr(�|n) =

∏M
m=1 Pr(�m|nm) . We 

have Pr(�|Hi) = En

{

∏M
m=1 Pr(�m|nm)

∣

∣

∣
Hi

}

.

Since we would like to find Pr(�|Hi) in a closed form, an approximation will be con-
ducted. By using the Demoivre-Laplace theorem, the conditional PDF Pr(n|Hi) is 

approximated as P̃r(n|Hi) which is expressed as 
∏M

m=1
1

√

2πς2
m|i

e
− (nm−n̄m|i)2

2ς2m|i  , where 

n̄m|i = Nqm|i and ς2
m|i = Nqm|i(1− qm|i) . As a result, we can approximate Pr(�|Hi) as 

P̃r(�|Hi) =
∏M

m=1 P̃r(�m|Hi) , where

Similar to the proof shown in Appendix A of [43], by applying Gauss-Hermite quadra-
ture integration, we can show that

where J is the number of sample points, rj is the jth root of Hermite polynomial, and Cj is 
the associated weight of the jth root. By using J = 1 , where r1 = 0 and C1 =

√
π  , we 

(35)z0,m + zS,m +
(

pC,m − 1

pC,m

)

zC,m = 0.

(36)�m = n̂m

[

log
( qm|1
qM+1|1

)

− log
( qm|0
qM+1|0

)

]

.

(37)ηm = nm

[

log
( qm|1
qM+1|1

)

− log
( qm|0
qM+1|0

)

]

,

(38)ϑ2
m = υ2

m

[

log
( qm|1
qM+1|1

)

− log
( qm|0
qM+1|0

)

]2

.

(39)P̃r(�m|Hi) =
∫ ∞

−∞
Pr(�m|nm) P̃r(nm|Hi) dnm.

(40)P̃r(�m|Hi) ≈
1√
π

J
∑

j=1

Cj Pr
(

�m

∣

∣nm
)

∣

∣

∣

nm=n̄m|i+
√
2rjςm|i

,
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have P̃r(�m|Hi) ≈ Pr(�m|nm)
∣

∣

nm=n̄m|i
 . As a result, we obtain an approximation of the 

conditional PDF of � given Hi as shown in Proposition 3.

Appendix D: Proof of Proposition 4
The necessary condition for the optimal transmission probabilities ρ⋆ in (19) is that 
the function ∂

∂ρm

(

P0PF + P1PM
)

 is equal to zero at ρm = ρ⋆
m for all m. The derivative 

∂
∂ρm

(

P0PF + P1PM
)

 is equal to

where ϕ(x) = 1√
2π

e−
x2

2  and

By substituting (42) into (41) and after some mathematical arrangement, we can show 
that

By setting (43) equal to zero, the term inside the curly brackets must be equal to zero 
and, after some mathematical arrangement, we have the following equality:

We define the term on the left-hand side of (44) as gm(ρm) . Since the term on the right-
hand side of (44) is a constant (given ρ⋆

1, ρ
⋆
2, . . . , ρ

⋆
M ), we obtain (21). In addition, with 

properly choosing γ , where µ0 ≤ γ ≤ µ1 , we will have γ − µ0 ≥ 0 and γ − µ1 ≤ 0 . As a 
result, (22) is less than or equal to zero. In addition, we will have gm(ρ⋆

m) ≤ 0 for all m.

(41)

(

1

σ 2
0

)

P0ϕ

(

γ − µ0

σ0

)

(γ − µ0)
∂σ0

∂ρm
−

(

1

σ 2
1

)

P1ϕ

(

γ − µ1

σ1

)

(γ − µ1)
∂σ1

∂ρm
,

(42)

∂σi

∂ρm
=

[

log
(

qm|1
qM+1|1

)

− log
(

qm|0
qM+1|0

)]2

2K (K − ρm)

[

log
(

1− ρm
K

)]3
× 1

σi(1− p̄C,m|i)2

×
{

2p̄C,m|i(1− p̄C,m|i)− (1− n̄m|i)p̄S,m|i
[

log
(

1− ρm

K

)

]

}

.

(43)

∂

∂ρm

(

P0PF + P1PM
)

=

[

log
(

1−qm|0
qm|0

)

− log
(

1−qm|1
qm|1

)

]2

2K (K − ρm)

[

log
(

1− ρm
K

)

]3

{[

P0ϕ
(

γ−µ0
σ0

)

(γ − µ0)

σ 3
0 (1− p̄C,m|0)2

]

×
[

2p̄C,m|0(1− p̄C,m|0)− (1− n̄m|0)p̄S,m|0
[

log
(

1− ρm

K

)

]

]

−
[

P1ϕ
(

γ−µ1
σ1

)

(γ − µ1)

σ 3
1 (1− p̄C,m|1)2

][

2p̄C,m|1(1− p̄C,m|1)

− (1− n̄m|1)p̄S,m|1
[

log
(

1− ρm

K

)

]

]}

.

(44)

(1−p̄C,m|0)2

2p̄C,m|0(1−p̄C,m|0)−(1−n̄m|0)p̄S,m|0
[

log
(

1− ρm
K

)]

(1−p̄C,m|1)2

2p̄C,m|1(1−p̄C,m|1)−(1−n̄m|1)p̄S,m|1
[

log
(

1− ρm
K

)]

=
(σ1

σ0

)3
[

P0ϕ
(

γ−µ0
σ0

)

(γ − µ0)

P1ϕ
(

γ−µ1
σ1

)

(γ − µ1)

]

.
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Appendix E: Proof of Proposition 5
First, we will prove (26). Clearly, when µ0 ≤ γ ≤ µ1 , from (17) and (18), the transmission 
probabilities maximizing PD (or minimizing PF , respectively) are the transmission probabili-
ties minimizing σ 2

1  (or minimizing σ 2
0  , respectively). Let ρ⋆

1
 and ρ⋆

0
 be the transmission prob-

abilities maximizing PD and minimizing PF , respectively, where ρ⋆

i
= (ρ⋆

1|i, ρ
⋆
2|i, . . . , ρ

⋆
M|i) 

and ρ⋆
m|i is the transmission probability at the mth frame. Therefore, finding the transmis-

sion probabilities ρ⋆

i
 can be written as the following optimization problem:

Considering the variance σ 2
i  defined in (16) shows that the variance σ 2

i  is a summation of 
M terms, where each term is individually a function of ρm . Therefore, the optimization 
problem above is separable (to M individual optimization problems). As a result, we can 
find the transmission probability ρ⋆

m|i from the following optimization problem:

Note that the objective function in (46) is inversely proportional to the variance υ2
m in 

(11). Therefore, the optimization problem (46) indicates that the transmission probabil-
ity ρ⋆

m|i is the transmission probability minimizing the population estimate’s variance υ2
m.

The necessary condition for the optimal transmission probabilities ρ⋆
m|i in (46) is that 

the function ∂
∂ρm

( 1−p̄C,m|i
p̄C,m|i

)[

log(1− ρm
K )

]2 is equal to zero at ρm = ρ⋆
m for all m. The 

derivative ∂
∂ρm

( 1−p̄C,m|i
p̄C,m|i

)[

log(1− ρm
K )

]2 is equal to

Equivalently, ρ⋆
m|i is equal to ρm that will make the term in the curly brackets equal to 

zero. Therefore, we have the necessary condition for ρ⋆
m|i as shown in (26).

Now, we can show that ρ⋆
m is between ρ⋆

m|0 and ρ⋆
m|1 as follows. Consider the function 

gm(ρm) in (20). The function gm(ρm) will approach to −∞ at the ρm making the term 
2p̄C,m|0(1− p̄C,m|0)− (1− n̄m|0)p̄S,m|0

[

log
(

1− ρm
K

)]

 equal to zero. We further notice 
that this ρm is the transmission probability ρ⋆

m|0 minimizing the probability of false alarm 
from (26). On the other hand, the function gm(ρm) will be zero at the ρm making the 
term 2p̄C,m|1(1− p̄C,m|1)− (1− n̄m|1)p̄S,m|1

[

log
(

1− ρm
K

)]

 equal to zero. This ρm is the 
transmission probability ρ⋆

m|1 maximizing the probability of detection. From the neces-
sary condition (iii) in Proposition 4 that gm(ρ⋆

m) ≤ 0 , then, ρ⋆
m is between ρ⋆

m|0 and ρ⋆
m|1.

Abbreviations
FC: Fusion center; FDMA: Frequency division multiple access; IID: Independent and identically distributed; MAC: Medium 
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(45)ρ
⋆

i
= arg min

ρ∈[0, 1]M
σ 2
i .

(46)ρ⋆
m|i = arg max

ρm∈[0, 1]

(

1− p̄C,m|i
p̄C,m|i

)[

log
(

1− ρm

K

)

]2

.

(47)
{ (1− n̄m|i)p̄S,m|i

[

log
(

1− ρm
K

)

]

p̄C,m|i
− 2(1− p̄C,m|i)

}[

log
(

1− ρm
K

)

p̄C,m|i(K − ρm)

]

.
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