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Abstract

The prerequisite for the effective operation of vehicle collision warning system is that the necessary operation is not
implemented. Therefore, the behavior prediction that the driver should perform when the preceding vehicle
braking is the key to improve the effectiveness of the warning system. This study was conducted to acquire
characteristics in the car-following behavior when confronted by the braking of the preceding vehicle, including
the reaction time and operation behavior, and establish a behavior prediction model. A driving experiment on the
expressway was conducted using devices, such as millimeter-wave radars and controller area network (CAN) bus
data, to acquire 845 segments of car following when the brake lamps of the car ahead are on. Data analysis
demonstrates that the mean of time distance of car following, mean of car-following distance, and time-to-collision
(TTC) mean are closely related with whether or not the driver slowed the car down. The operation states of the
driver were divided into keeping the unchanged state of the degree of accelerator pedal opening, loosening of
accelerator pedal without braking, braking, and other special situations with the input variables of car-following
distance, speed of driver’s car, relative speed, time distance, and TTC using the support vector machine (SVM)
method to build a prediction model for the operation behavior of the driver. The verification result showed that
the model predicts driving behavior with an accuracy rate of 80%. It reflects the actual decision-making process of
the driver, especially the normal operation of the driver, to loosen the accelerator pedal without braking. This
model can help to optimize the algorithm of the rear-end accident warning system and improve intelligent system
acceptance.

Keywords: Machine learning, Car following, Sensor data, Prediction model, Time-to-collisionAbbreviations, CAN
Controller area network, GMM Gaussian mixed model, GPS Global position system, IPC Industrial personal computer,
ROC Receiver operating characteristic curve, SVM Support vector machine, THW Time headway, TTC Time-to-
collision

1 Introduction
Rear-end accidents are the most common type of traffic ac-
cident. Statistical data for related accidents illustrate that
the rear-end accident is the most frequent accident type
among all accidents on the expressway, having a serious im-
pact on traffic and usually ending in severe consequences
[1]. An analysis of the process of rear-end accidents is di-
vided into two situations. The first situation is when car-
following distance is so close that when the car ahead
brakes, a rear-end accident may occur at a long braking dis-
tance even if the driver brakes in time. In the second situ-
ation, the car-following distance of the driver is relatively

safe, but when the car ahead brakes, the driver is in a state
of distraction or fatigue and that individual does not notice
the braking of the car ahead. This situation is similar to the
one where braking does not occur at all.
The occurrence rates of these two kinds of rear-end acci-

dents are comparatively higher. Thus, some vehicles have
begun promoting the use of a rear-end collision alarm sys-
tem. Rear-end collision alarm systems can monitor the
moving state of the car ahead using radars or visual sensors
and provide a warning when there is danger. Due to differ-
ent driving styles of drivers during car following, too fre-
quent alarms will cause a feeling of antipathy of some
drivers [2]. Thus, these systems usually set the alarm time
when the car is already in a comparatively dangerous state
to reduce the distraction of the driver. However, the time of
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warning has a great influence on the effectiveness of the
warning system. A later warning time may increase the rate
of accidents [3].
Numerous studies have been conducted from different

perspectives in the security of car following. Kometani [4]
proposed a car-following model based on the safety distance;
it means the minimum distance to avoid collision when the
preceding vehicle starts emergency braking. Safety distance
is the basis of the general motor model which consists of
relative speed and distance [5]. Based on the general motor
model, Treitere et al. [6] divided the car-following into two
phases: acceleration and deceleration. Furthermore, Aron
[7] divided the car-following into three stages: acceleration,
deceleration, and keeping. Helly [8] suggested a linear model
that consists of the acceleration, relative speed, and distance.
Based on the research on the desired spacing distance, Pete
[9] proposed a desired spacing model. Some studies focused
on the car-following model with respect to the speed and
car-following distance. Jiang et al. conducted a motorcade
following the experiment and investigated the relationship
between car speed and car-following distance in different
traffic environments [10]. Tang et al. suggested that forward
and backward safe distance should be taken into consider-
ation while following a car; the result showed that the
models based on the two kinds of safe distances were better
than the other models [11]. Gipps proposed a car-following
model of the driver through a simulation and performed a
correlation analysis with actual traffic flow parameters, offer-
ing a theoretical foundation for follow-up studies on car fol-
lowing [12]. Zhou et al. provided a more stable car-
following model by considering the moving features of the
car ahead [13]. Tang et al. found that the headway is an im-
portant parameter that affects the risk assessment of the
driver [14–16]. Furthermore, based on the time headway
(THW) and driving speed, Simons-Morton et al. provided a
method that can identify the age and gender of the driver
[17]. Trnros et al. and Varotto et al. investigated investigated
the impact of an adaptive cruise control (ACC) system on
the TTC and driving speed [18, 19].
However, these studies have provided many car-following

models from the perspective of safe car-following distance
and the state of the leading vehicle movement. The influ-
ence of the reaction from the driver on car following was
underestimated. Chung established a deceleration model
with respect to the influence of acceleration on the following
vehicle and suggested that the response time of the driver to
the brake of the leading car was an important factor affect-
ing potential accidents. Many studies have pointed out that
the reaction time of the drivers varies greatly and drivers of
different ages have significantly different reaction times
when driving [20]. Further, the reaction time of the driver
increases under fatigue driving [21, 22]. In distracted driving,
the reaction time of the driver and the following distance
obviously fluctuated [23–25]. Owing to the uncertainty of

the relative speed and reaction time of the driver during car
following, Sheu provided a car-following model based on
quantum mechanics, and the model was verified by con-
ducting an experiment on a driving simulator [26]. Li et al.
confirmed the uncertainty of the response time of the driver
while following a car and built a stable car-following model
that could effectively alleviate traffic congestion [27]. Yang
observed real traffic flow in a set road section and acquired
the car-following data of drivers. The analysis of the delayed
time and anticipated distance revised the car-following
model and improved its effectiveness [28].
Although the reaction time of the driver was considered

in these models, the reaction time of the same driver is not
exactly the same in different situations [29, 30]. Thus, some
scholars suggested that a driving model should consider the
operation of the driver. Wakita et al. focused on the influ-
ence of the accelerator pedal during car following, and a
driver identification method was established by using
Gaussian mixed model (GMM) in which the identification
rate reached 73% [31]. Based on the vehicle speed and ac-
celeration, Kumagai established a driving model to predict
whether the driver could stop in front of the red lamps with
Dynamic Bayesian Networks [32]. In addition, fuzzy neural
networks and fuzzy inference methods have been widely
used in driver behavior analyses [33, 34]. Among them, the
support vector machine (SVM) has a good application ef-
fect. SVM has been used in many fields, such as pattern
recognition, regression, and equalization [35–37]. Based on
SVM, Qian et al. provided a driver identification method
with data of steering, brake, and acceleration pedals [38].
Some studies carried on the field test and proposed a driv-
ing model to identify the driving intention of the driver by
using the SVM [39, 40].
Many models of car-following behavior discussed and an-

alyzed the influential factors of models in car-following be-
havior. Most present models focused on the characteristic
parameter of normal car-following process. The most dan-
gerous moment in rear-end accident process begins when
the stop lamps of the car ahead are on. The behavior of the
driver at this moment directly influences the seriousness of
the accident and whether rear-end accident will occur.
Therefore, if the operation of the driver and moving state of
the car ahead can be monitored in real time, while the brak-
ing of the car ahead and driver do not take any operation,
warning time can be adjusted in advance to guarantee effect-
iveness. An early warning algorithm should take the actual
operations of the driver while driving into consideration.
Early warning will only be triggered when the driver needs
to take operation but they fail to do so. It is necessary to ad-
just the timing of the early warning with respect to the driv-
ing behavior during car following, maintaining car-following
safety [41].
Most researches of car-following emphasized on the re-

lationship of host car speed, relative speed, and distance;
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however, the impact of driver’s reaction on brake lamps
on car following is still unclear. Drivers consider they are
in a safe driving situation when the preceding vehicle is
normal driving, but their risk awareness will increase rap-
idly once the brake lamps of the car ahead turn on. At this
time, the driving behavior is different from that in the
traditional follow-up model.
Therefore, this study mainly focuses on investigating

the response of the driver when the car ahead starts to
brake, including the reaction time and operation behav-
ior during the car-following process. To acquire the car-
following characteristics of the driver, we conducted a
road test with an equipment vehicle. Several segments of
brake of the car ahead were selected. We collected the
kinematics parameters of the host car and the preceding
vehicle during car-following processes, and four different
operation behaviors were classified according to the data
analysis. Finally, the behavior prediction model of the
driver when the brake lamps of the car ahead were on
was established based on the SVM method. This behav-
ior prediction model can predict the actions that the
driver should take when confronted by the braking be-
havior of the preceding vehicle based on the current
state of the host vehicle and the preceding vehicle’s kin-
etic information. By comparing predictive behavior with
actual behavior and when the difference was obviously
appeared, which indicated that the driver’s operation at
this time possessed certain risks, it was necessary to give
an early warning of his current driving behavior. In this
way, the collision warning system could transmit a warn-
ing based on the specific driving behavior and reduce
the interference of frequent warnings to drivers. Hence,
the proposed model can help to optimize the algorithm
of the rear-end accident warning system and improve
the intelligent system acceptance.

2 Methods
This study organized several participants for a real road
driving test by building a real car driving platform with
related sensors. This approach was adopted to acquire
the car-following data of the driver and determine state
data when the brake lamps of the car ahead were on.
After the test, related data was combined with video
monitoring system data when the brake lamps of the car
ahead were on screen. This approach provided precise
data support for follow-up analysis and modeling. Based
on the analysis of parameter characteristics, a prediction
model of driver’s car-following behavior was established
by using the SVM method.

2.1 Test instruments
The test vehicle is a Volkswagen multi-purpose vehicle.
Millimeter-wave radar, global positioning system, multi-
channel video monitoring system, and bus acquisition

card for controller area network were installed on the
multi-purpose vehicle platform to acquire and record
driving data. The installation of these devices did not
affect the normal operation of the driver. Millimeter-
wave radar was used to collect the relative distance and
velocity between the host vehicle and the preceding ve-
hicle. Video monitoring system was employed to record
the braking behavior of the preceding vehicle. GPS de-
vice provided the geographical positions and velocity of
the host vehicle. CAN bus served as the data transmis-
sion channel, and IPC stored all the collected data
(Table 1). Figure 1 shows the composition of the testing
system.

2.2 Test road
Rear-end accidents are typical on expressways. Thus,
this study utilizes the expressway as test road. A closed
two-way, six-lane freeway was selected for the driving
experiments. The traffic flow on the route chosen should
be heavy enough for subjecting the driver to the car-
following state for most of the time to acquire sufficient
car-following data. Therefore, an expressway was chosen
for the real car test with a speed limit of 110 km/h and a
distance of 40.5 km. Traffic flow was heavy during the
test. Two lanes were used in one direction. The driver
was in the state of car following for most of the time to
generate a significant amount of car-following data.

2.3 Participant driver
Twenty participant drivers were recruited (17 males, 3
females), and none of them were professional drivers.
The age of participants ranged from 27 to 50 years with
a mean age of 40.6 years. The driving years of the partic-
ipants ranged from 2 to 30 years with a mean driving
year of 14.6. The participants were physically healthy,
and none had been involved in a severe traffic accident
in the past 5 years. All participants could drive the trial
car independently and safely with visual acuity (includ-
ing corrected visual acuity) above 1.0 in both eyes. They
were in good physical condition and full of energy dur-
ing the test.

2.4 Test process
Before the test, the participants were informed they
needed to drive the test vehicle as usual during the en-
tire test, and they should drive the car from the starting
point to the specified toll station, then drive to the exit
from the toll station of the expressway and back to the
starting point. During the driving test, the drivers did
not receive any requirements or tasks, allowing them to
drive in their own driving style. The driver did not wear
any device during the test to assure the authenticity of
data acquisition.
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2.5 SVM model
SVM is a popular classification technology proposed by the
AT&T Bell Laboratory Research Group led by Vapnik in
1995. SVM is a supervised learning model based on learn-
ing algorithms, which is similar to neural network, but un-
like neural networks, SVM uses mathematical methods and
optimization techniques. It can be used in many fields, such
as data processing, pattern recognition, and the analysis of
classification and regression. Given a set of training samples
and marking them into different categories, an SVM train-
ing model will assign new instances to one class or another,
making it a non-probabilistic binary linear classification.
Several parameters would influence the driver’s oper-

ation process when the brake lamps of the car ahead are
on. A significant difference was observed in the mean

value of some parameters in the states of slowing and
not slowing down, but the difference of the mean value
cannot be directly applied to the classification of the op-
eration modes of the river. This finding is attributable to
the fact that none of the parameters can directly decide
whether the driver slowed down or not. However, a cor-
relation exists between certain parameters, such as TTC,
car-following time distance, and car-following distance,
and whether the driver slowed down or not.
Analyzing the information perception process of the

driver when the brake lamps of the car ahead are on
shows that the driver should acquire the information of
the moving state of his or her car and the car ahead. The
driver should also obtain data from the surrounding traffic
environment in a very short time and decide whether or

Table 1 Data acquisition sensor

Instrument name Function Technical index

Millimeter-wave radar (ESR) Relative distance from the car
ahead, relative angle, relative speed

Precision of distance measurement is
0.25 m and angle precision is 0.5°

Video monitoring system Action monitoring of driver’s foot,
operation behavior, and forward
and backward scenes

Frequency is 25 Hz with synchronous
storage

GPS system (VBOX) Acquisition of the concrete location
of the test car and real-time speed
of the car

Positioning precision is 0.5 m

CAN acquisition card Acquisition of the CAN data of the car Car speed is 0.01 km/h; steering wheel
angle is 1.0°, and the opening degree of
accelerator pedal is 0.1%. Braking signal
and turn lamp signal are acquired.

Fig. 1 Data acquisition system. The data acquisition system includes the test vehicle, millimeter wave radar, global positioning system, multi-
channel video monitoring system, bus acquisition card, and high-performance IPC
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not to carry out the action. Simple mathematical equa-
tions cannot easily describe this process. A series of
mode-recognition theories can be applied to solve these
problems, such as neural network, fuzzy reasoning, convo-
lutional neural network [42], and SVM. Considering the
diversity of the parameter acquisition and the size of the
sample, this study adopts the SVM theory to build the
prediction model of the driver’s operation. The best ad-
vantage of SVM is to introduce a multidimensional input
parameter to a higher dimensional space and seek hyper-
plane to segment data input. The better the effect of data
segmentation is, the more precise model recognition
becomes.
The parameters that influence the operation model of

the driver were used as input for the model. The oper-
ation behavior types of the driver were used as output.
Tables 2 and 3 show the input and output, respectively.
The five kinds of input parameters are car-following time

distance, car-following distance, speed of the car driven,
relative speed, and TTC. State of output can be classified
into four categories: keeping the accelerator pedal opening
degree unchanged, loosening the accelerator pedal without
braking, loosening the accelerator pedal and braking, and
other special situations, which are represented as 0, 1, 2,
and, 3, respectively. The actual data collected by the
millimeter-wave radar was frequently mixed with random
noise because of the random disturbances that occurred
during the measurement of the motion parameters of the
leading vehicles. Therefore, the required data must be iso-
lated from the original data. In this study, a discrete Kalman
filter was used to filter the discrete data collected by the
sensors.
The SVM tool cabinet was used in the MATLAB en-

vironment to train the data acquired in this study. About
60% of the data were randomly chosen from the 845 sets
of data. The skilled samples were chosen as inputs in the
tool cabinet for model training. The remaining 40% of
the data were taken as the test samples to verify the ef-
fectiveness of the model.

2.6 Data acquisition process
The state of car following when the brake lamps of the
car ahead are on can be acquired after the test by replay-
ing the video monitoring system. Data at 10 s before and
after the moment can be acquired, including the relative

distance between the car driven and the car ahead, rela-
tive angle and speed, acquired car speed of CAN bus,
opening degree of acceleration pedal, angle value of
steering wheel, braking signal, and turn signal. Figure 2
shows a typical scene of brake lamps switched on.
The test processes of 20 participants were screened at

845 times of car following when the brake lamps were
on. Data was correspondingly acquired. The operation
behavior of the driver when the brake lamps of the car
ahead were on was divided into four types. Table 4
shows the corresponding statistic frequencies.
Table 4 shows four kinds of situation when the brake

lamps of the car ahead were on. The situation wherein
the degree of opening of accelerator pedal remained un-
changed was 53.4%, maintained the highest proportion.
An analysis of the corresponding state data of the car
ahead indicated that the driver did not realize the need
to reduce the speed when the car ahead brake slightly
when the brake lamps of the car ahead were on. Thus,
the driver maintained the opening degree of accelerator
pedal and adopted further operation according to the
risk degree of car following. Driving experience showed
that the driver did not need to reduce the speed when
the car ahead was braked slightly when the distance was
relatively safe. This finding indicates that the data

Table 2 Model input

Input parameter Unit

Car-following time distance s

Car-following distance m

Speed of the car behind m/s

Relative speed m/s

TTC s

Table 3 Model output

Output state Representation type

Keeping the accelerator pedal
opening degree unchanged

0

Loosening the accelerator
pedal but without braking

1

Loosening the accelerator
pedal and braking

2

Other special situations 3

Fig. 2 Still image of the test car. A typical scene of brake lamps
switched on of the preceding vehicle
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acquired in this study are reasonable in terms of com-
mon sense.
When the risk degree of car following continues to in-

crease, the driver would choose to loosen the accelerator
pedal without braking. This state accounts for 26.8% of
the total state types. After loosening the accelerator pedal,
the car would slow down and the driver would seriously
consider the risk degree of car following. If the risk degree
continued to increase, the driver would choose to brake;
otherwise, he or she could choose to loosen the acceler-
ator pedal to ensure safety. When the risk degree of car
following increased, the driver would directly choose to
brake to avoid rear-end accident, accounting for 17.0%.
The proportion of other special situations is 2.8%, which
mainly includes the state of the driver’s foot on the brak-
ing pedal (Fig. 3).

3 Results analysis
To investigate the driving behavior characteristics in car
following when the brake lamps of the car ahead were
on, this study used TTC, car-following time distance,
speed of the car, and relative speed to analyze the oper-
ation of the driver when the brake lamps of the car
ahead were on. This study examined the correlation be-
tween these parameters and the operation of the driver
to support follow-up analysis and modeling. Finally, the

prediction accuracy of the behavior prediction model
based on SVM was verified.

3.1 TTC
A TTC value at an instant t is defined as the time that
keeps until a collision occurs between two vehicles if the
collision course and speed difference are maintained.
The larger the TTC value is, the longer it is from the
time of collision and the safer the driving is.
TTC value is the ratio of the distance between two

cars and relative speed. Based on a laboratory test, Hirst
and Graham found that when the TTC is set to 3 s, the
false alarm rate of the early warning system is low, and
the driving safety can be effectively ensured [41]. When
TTC < 0 s, the speed of the car ahead is larger than the
car behind it. Thus, collision will not occur, signifying
that driving is safe. Related studies show that when 0 s <
TTC < 3 s, the distance between the two cars is too close
and the car driving behind is faster than the car ahead.
Collisions are likely to happen, which is a dangerous
state. TTC > 3 s is a safe state. In this situation, the lar-
ger the value is, the higher the level of safety.
The TTC can be calculated with:

TTC ¼ D
V host−V ahead

where Vhost denotes the speed of the host vehicle,
Vahead represents the speed of the vehicle ahead, and D
is the distance between the host vehicle and vehicle
ahead.
In this paper, we recorded the TTC at the moment the

brake lamps of vehicle ahead were on. The operation be-
haviors of the driver were divided into two types,
namely, slowing down (including loosening of acceler-
ator pedal and braking) and without slowing down. This
study analyzed the relationship between the TTC param-
eter and whether the driver slowed down or not. After
filtering data below 0, 845 sets of data without those in
special situations were classified for the TTC mean value
and assessed whether or not they were in accelerating
state. Figure 4 displays the results.
Figure 4 shows the large difference in TTC mean value

between that in the accelerating state and non-
accelerating state. The TTC mean value of adopting
braking is 3.3 s, whereas that without slowing down is
20.3 s. This difference is easily understood in terms of
driving experience. However, an analysis of the TTC
data shows that although both mean values differ, a large
overlapping section continues to exist in the distribution
range. For example, given that the TTC is 4.0 s, the cor-
responding result of the data slows down, even though
the results of other data do not. This result shows that
the TTC parameter is unable to fully reflect whether the

Table 4 Types of operation behavior of driver

State types Operation of driver Proportion (%)

State 0 Maintains the unchanged degree
of opening of accelerator pedal

53.4

State 1 Loosens the accelerator pedal
without braking

26.8

State 2 Loosens the accelerator pedal
and braking

17.0

State 3 Other special situations 2.8

Fig. 3 Still image of the driver’s foot. Driver’s foot operation
synchronized with typical scenes
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driver slows the car down or not. The precise threshold
value cannot be acquired to distinguish the behavior of
the driver. In terms of the actual perception of the
driver, the driver besides TTC acquires other parameters
and decides whether or not to slow down the car.

3.2 Time distance of car following
Car-following time distance refers to the division of dis-
tance between two cars by the speed of the car driven.
The larger the car-following time distance is, the smaller
the risk becomes for rear-end accidents. The mean value
of time distance of car following in the slowing and non-
slowing down states can be similarly acquired from the
TTC parameter analysis method. Figure 5 displays the
results.
In Fig. 5, a significant difference is found between car-

following time distance in the two states. The mean
value in the state of slowing down is 2.7 s, whereas that
in the state of non-slowing down is 9.2 s. Similar to TTC
distribution characteristics, a significant difference exists
between the mean values of the parameter in the two
states, but a certain threshold value cannot be clearly de-
cided to distinguish the two kinds of data. Thus, an
overlapping section exists between the two.

3.3 Car-following distance
Car-following distance directly influences driving safety.
According to the regulations of “Road Traffic Safety
Law,” when the speed of a motor vehicle is higher than
100 km/h, the driver should keep a distance of above
100 m from the motor vehicle ahead. When the car
speed is below 100 km/h, the distance from the car

ahead in the same lane can be appropriately shortened
with the minimum distance of no less than 50m. The
theory of car following suggests a quantitative relation-
ship when the distance between two cars is less than
125 m [20]. The greater the car-following distance is, the
higher the level of driving safety becomes. By contrast,
the smaller the car-following distance is, the higher the
likelihood of a rear-end accident occurring.
Data for car-following distance were acquired when the

brake lamps of the car ahead were on. The mean values of
car-following distance in slowing and non-slowing down
states were calculated. Figure 6 displays the results.
Figure 6 shows that the mean value of car-following

distance in the slowing down state is 32.9 m, whereas
that in the state of non-slowing down is 51.3 m. Com-
pared with TTC and car-following distance, the distribu-
tion difference of car-following distance is smaller
because car speed is not considered, proving to be an
important factor influencing the car-following operation
of the driver. Many overlapping data in the data distri-
bution section exists in the two states. A certain thresh-
old value of car-following distance cannot be established
to distinguish whether the driver slows down or not.

3.4 Verification of the prediction model
The aim of training the SVM model is to acquire optimal
parameters c and g of the kernel function, which directly
decide on the classification of the input data by the kernel
function. Although these two parameters are very import-
ant, there is not much guidance on how to determine them.
The two parameters were constantly decided by the SVM
in higher dimensional space through exploration until the

Fig. 4 Mean TTC in accelerating or non-accelerating state. The relationship between the TTC parameter and whether the driver slowed down or
not was analyzed, and the TTC averages in different states are depicted. The TTC mean value of adopting braking is 3.3 s, whereas that without
slowing down is 20.3 s
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input parameters attained optimal classification effect. After
acquiring the optimal value of the two parameters, 40% of
the remaining data were imported into the model to verify
the precision of the operation mode prediction of the driver
by the SVM model.
In Fig. 7, the line resembling a contour line is the

high-dimensional segmentation curve of data acquired
by the SVM model, which can divide the input data into
different spaces. This plane figure can be converted into
an output state data classification sketch map, which is
easier to understand.

The overall prediction of precision values for the oper-
ation of the driver is distributed at approximately 80%,
with lamp difference in the prediction precision of dif-
ferent operation states. Some of the prediction results
were converted into a 2D plane sketch map.
In Fig. 9, the desired output is the corresponding oper-

ation state of the driver within the acquired samples,
whereas the predicted output is the actual output result
of the SVM model. The vertical axis represents the four
different types of driving behaviors when confronted by
the braking behavior of the preceding vehicle. By

Fig. 5 Mean of car-following time distance in slowing or non-slowing down state. The mean value of car-following time distance in the state of
slowing down is 2.7 s, whereas that in the state of non-slowing down is 9.2 s

Fig. 6 Mean of car-following distance in slowing down state or not. The mean value of car-following distance in the slowing down state is 32.9
m, whereas that in the state of non-slowing down is 51.3 m
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combining Figs. 8 and 9, the SVM model precisely clas-
sified most of the data, but differences still exist in the
predicted and actual result for some of the data. The
ROC curve was used to analyze the overall prediction
accuracy of the SVM model and evaluate the prediction
efficiency of the SVM model [43].

Figure 10 shows the prediction result of the driver’s
operation in the ROC curve under different false-
positive rates. Great changes are observed in the predic-
tion accuracy of the model. By taking the false-positive
rate of 5% as reference, the corresponding prediction ac-
curacy of the model is determined at 80.8%.

Fig. 7 Classification result of the SVM model. The line resembling a contour line is the high-dimensional segmentation curve of data acquired by
the SVM model, which can divide the input data into different spaces

Fig. 8 Prediction result of the driver’s operation state. The overall prediction accuracy values for the operation of the driver under
different parameters
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Fig. 9 Prediction result of the driver’s operation state. The desired output is the corresponding operation state of the driver within the acquired
samples, whereas the predicted output is the actual output result of the SVM model

Fig. 10 ROC curve for evaluating the prediction model accuracy. The ROC curve was used to analyze the overall prediction accuracy of the SVM
model and evaluate the prediction efficiency of the SVM model. By taking the false-positive rate of 5% as reference, the corresponding prediction
accuracy of the model is determined at 80.8%
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4 Discussion
Past studies on car-following model used different methods
to model, analyze, and predict the operation behavior of the
driver during car following [10, 11, 36]. These studies fig-
ured out the relationship of movement states between host
car and car ahead; however, the impact of psychological
characteristics was underestimated. Due to sensation seeking
[44], some drivers prefer a risky follow-up. In this case, it is
a dangerous follow-up based on TTC and THW method.
However, the driver usually thinks the preceding vehicle will
not brake urgently and considers their driving state is safe.
Once the brake lamps of car ahead turn on, driver’s alert-
ness will rise significantly, which is significantly different
from the traditional car model. When the brake lamps turn
on, the driver will make a different response based on the
relationship of movement state between the host car and
the car ahead. This process is different from the traditional
follow-up method. Therefore, the model in this paper fo-
cuses on the decision-making process of driving behavior
when the front brake lamps are turned on. There is an ex-
ample of a typical application scenario: The driver ignores
the light lamps of car ahead turned on while distracted driv-
ing, advanced driver assistance systems (ADAS) detect the
information and predict the driver should brake, but the
driver does not take any operation. In this case, ADAS can
judge the driving state is dangerous and directly control the
host car. This will reduce false alarms while ensuring safety.
The chosen parameters included the moving state of

the car driven, the car ahead, and the surrounding traffic
environment. For instance, the distance between cars,
speed of the car driven, relative car speed, TTC, and
THW were used as input variables to predict the safety
of the car-following process with a prediction accuracy
of 90.2% [10]. Compared with the results of other similar
methods, 90.2% is not a very high value. However, the
driver’s behavior in car following is a perception
decision-making process with quick and multi-source in-
formation input, which is random for drivers and driver
groups. This phenomenon is especially true after the
study period is shortened.
Jiang et al. divided the driver behavior into two types,

whereas the present study divides the results into four
types [10]. The recognition accuracy of the behavior pre-
diction model with two kinds of classification is better
than that of prediction model with four kinds of classifi-
cation. However, the present study mainly analyzes the
actual operation behavior when the brake lamps of the
car ahead were on, such as when the driver loosens the
accelerator pedal without braking. In this case, the driver
adopts the slowing down method but with poor effect.
In terms of the psychological perception process and
safety control of the driver, the psychological safety of
the driver quickly increases after loosening the acceler-
ator pedal. Although the speed of the vehicle slowly

decreases, braking is needed to enable the driver to
apply methods immediately and ensure safe car follow-
ing. Therefore, though this study has divided the oper-
ation modes into four types with an overall recognition
rate of only 80.8%, the explaining effect of the model to
the behavior of the driver resembles actual situations. By
considering the rear-end collision alarm system, oper-
ation mode types should be reduced into two to increase
the recognition accuracy rate of the model.

5 Conclusion
An actual road test was conducted to acquire the mov-
ing state data of a car driven when the brake lamps of
the car ahead were on during car following using mov-
ing the state data of the car ahead, traffic environment
data, and the operation data of the driver. The distribu-
tion characteristics of car-following time distance, car-
following distance, and TTC parameter were analyzed
based on whether or not the driver slowed down. Signifi-
cant differences were observed in the three parameters
of slowing down and non-slowing down modes. How-
ever, high overlap ratio exists in the distribution range,
resulting in the difficulty of distinguishing and predicting
the operation modes of the driver.
According to the car-following time distance, car-

following distance, speed of the car ahead, relative speed,
and TTC, a driving behavior prediction model was pro-
vided with the SVM. When the brake lamps of the car
ahead were switched on, the reaction behavior of the
driver was divided into four types: keeping the acceler-
ator pedal opening degree unchanged, loosening the ac-
celerator pedal but without braking, braking, and other
special situations. The SVM method was implemented
to build a prediction model of the operation behavior of
the driver. The input variables of car-following time dis-
tance, car-following distance, speed of the driver’s car,
relative speed, and TTC were utilized. Although the ul-
timate prediction accuracy rate is only 80.8%, this model
resembles real-life situations and reflects the decision-
making process of the driver.
This model can help the rear-end collision warning

system to predict the behavior of the driver, select the
proper warning time according to different behaviors of
the driver, and improve the effectiveness of the early
warning system while reducing the false alarm rate.

Authors’ contributions
HW and CW conceptualized the idea and designed the experiments. MlG
and SbW participated in the data processing. HW and MlG contributed in
model training. HW contributed in writing and draft preparation, and CW
supervised the research. All authors read and approved the final manuscript.

Funding
The study was supported by National Natural Science Foundation of China
(51908054).

Wang et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:10 Page 11 of 12



Availability of data and materials
Not applicable.

Competing interest
The authors declare that they have no competing interests.

Received: 4 October 2019 Accepted: 31 December 2019

References
1. Z. Zheng, M. Sarvi, Modeling, calibrating, and validating car following and

lane changing behavior. Transportation Research Part C: Emerging
Technologies 71, 182–183 (2016)

2. R. Hoogendoorn et al., Mental workload, longitudinal driving behavior, and
adequacy of car-following models for incidents in other driving lane. Transportation
Research Record 2188(1), 64–73 (2010) https://doi.org/10.3141/2188-08

3. A. Tang, A. Yip, Collision avoidance timing analysis of DSRC-based vehicles.
Accident Analysis & Prevention 42(1), 182–195 (2010) https://doi.org/10.
1016/j.aap.2009.07.019

4. Kometani, E. “Dynamic behavior of traffic with a nonlinear spacing-speed
relationship.” Theory of Traffic Flow (Proc. of Sym. on TTF (GM)) (1959): 105-119.

5. R.E. Chandler, R. Herman, E.W. Montroll, Traffic dynamics: studies in car following.
Operations research 6(2), 165–184 (1958) https://doi.org/10.1287/opre.6.2.165

6. J. Treiterer, J. Myers, The hysteresis phenomenon in traffic flow.
Transportation and traffic theory 6, 13–38 (1974)

7. Aron, Maurice. “Car following in an urban network: simulation and experiment.
” Proceedings of Seminar D, 16^< th> PTRC Meeting, 1988. 1988.

8. W. Helly, Simulation of bottlenecks in single-lane traffic flow (1959)
9. Hidas, Peter. “A car-following model for urban traffic simulation.” Traffic

engineering & control 39.5 (1998).
10. R. Jiang, M.B. Hu, H.M. Zhang, et al., On some experimental features of car-

following behavior and how to model them. Transportation Research Part B:
Methodological 80, 338–354 (2015) https://doi.org/10.1016/j.trb.2015.08.003

11. Tang T Q, Zhang J, Chen L. "Analysis of vehicle’s safety envelope under car-
following model." Physica A: Statistical Mechanics and its Applications,
2017,474, 127-133. https://doi.org/10.1016/j.physa.2017.01.076

12. P.G. Gipps, A behavioural car-following model for computer simulation.
Transportation Research Part B: Methodological 15(2), 105–111 (1981)
https://doi.org/10.1016/0191-2615(81)90037-0

13. Zhou T, Sun D, Kang Y, et al. "A new car-following model with
consideration of the prevision driving behavior." Communications in
Nonlinear Science and Numerical Simulation ,2014,19(10): 3820-3826.
https://doi.org/10.1016/j.cnsns.2014.03.012

14. Y. Yang, K. Wada, T. Oguchi, et al., Variability of observed drivers’ car-
following behavior on expressway basic segment. Transportation Research
Procedia 25, 1503–1532 (2017) https://doi.org/10.1016/j.trpro.2017.05.179

15. A. Tordeux, S. Lassarre, M. Roussignol, An adaptive time gap car-following
model. Transportation Research Part B Methodological 44(8–9), 1115–1131
(2010) https://doi.org/10.1016/j.trb.2009.12.018

16. T.Q. Tang, W.F. Shi, H.Y. Shang, An extended car-following model with
consideration of the reliability of inter-vehicle communication. Measurement
58(11), 286–293 (2014) https://doi.org/10.1016/j.measurement.2014.08.051

17. B. Simons-Morton, N. Lerner, J. Singer, The observed effects of teenage
passengers on the risky driving behavior of teenage drivers. Accident
Analysis & Prevention 37(6), 973–982 (2005) https://doi.org/10.1016/j.aap.
2005.04.014

18. Trnros, J., et al. “Effects of ACC on driver behaviour, workload and
acceptance in relation to minimum time headway.” 9th World Congress on
Intelligent Transport SystemsITS America, ITS Japan, ERTICO (Intelligent
Transport Systems and Services-Europe). 2002.

19. Varotto, Silvia F., et al. “Empirical longitudinal driving behavior in authority
transitions between adaptive cruise control and manual driving.”
Transportation Research Record: Journal of the Transportation Research
Board 2489 (2015): 105-114. https://doi.org/10.3141/2489-12

20. DeLucia P R, Mather R D. “Motion extrapolation of car-following scenes in
younger and older drivers.” Human factors ,2008,48(4): 666-674. https://doi.
org/10.1518/001872006779166352

21. Egelund N. “Spectral analysis of heart rate variability as an indicator of driver
fatigue.” Ergonomics,1982, 25.7: 663-672.

22. Lamble D, Kauranen T, Laakso M, et al. “Cognitive load and detection
thresholds in car following situations: safety implications for using mobile

(cellular) telephones while driving.” Accident Analysis & Prevention,1999,
31(6): 617-623. https://doi.org/10.1016/S0001-4575(99)00018-4

23. D. Stavrinos, J.L. Jones, A.A. Garner, et al., Impact of distracted driving on
safety and traffic flow. Accident Analysis & Prevention 61, 63–70 (2013)
https://doi.org/10.1016/j.aap.2013.02.003

24. Z. Gao, D.Y. Wang, S.H. Wan, et al., Cognitive-inspired class-statistic matching with
triple-constrain for camera free 3D object retrieval. Future Generation Computer
Systems 94, 641–653 (2019) https://doi.org/10.1016/j.future.2018.12.039

25. Strayer D L, Drew F A. "Profiles in driver distraction: effects of cell phone
conversations on younger and older drivers." Human factors ,2004,46(4):
640-649. https://doi.org/10.1518/hfes.46.4.640.56806

26. J.B. Sheu, H.J. Wu, Driver perception uncertainty in perceived relative speed
and reaction time in car following–a quantum optical flow perspective.
Transportation Research Part B: Methodological 80, 257–274 (2015) https://
doi.org/10.1016/j.trb.2015.07.017

27. Li S, Yang L, Gao Z,et al. “Stabilization strategies of a general nonlinear car-
following model with varying reaction-time delay of the drivers.” ISA
transactions, 2014, 53(6), 1739-1745. https://doi.org/10.1016/j.isatra.2014.08.017

28. Gao Z, Xuan HZ, Zhang H,et al. "Adaptive fusion and category-level
dictionary learning model for multi-view human action recognition." IEEE
Internet of Things Journal, 2019. https://doi.org/https://doi.org/10.1109/JIOT.
2019.2911669

29. H. Alm, L. Nilsson, The effects of a mobile telephone task on driver
behaviour in a car following situation. Accident Analysis & Prevention 27(5),
707–715 (1995) https://doi.org/10.1016/0001-4575(95)00026-V

30. S. Wan, Y. Zhao, T. Wang, et al., Multi-dimensional data indexing and range query
processing via Voronoi diagram for internet of things. Future Generation
Computer Systems 91, 382–391 (2019) https://doi.org/10.1016/j.future.2018.08.007

31. T. Wakita et al., Driver identification using driving behavior signals. IEICE
TRANSACTIONS on Information and Systems 89(3), 1188–1194 (2006)

32. Zhang R, Xie P, Wang C, et al. “Classifying transportation mode and speed
from trajectory data via deep multi-scale learning.” Computer Networks 162
(2019). https://doi.org/10.1016/j.comnet.2019.106861

33. P. Bian, W. Li, Y. Jin, et al., Ensemble feature learning for material recognition
with convolutional neural networks. EURASIP Journal on Image and Video
Processing 2018, 64 (2018)

34. N. Davoodi, A.R. Soheili, S.M. Hashemi, A macro-model for traffic flow with
consideration of driver’s reaction time and distance. Nonlinear Dynamics
83(3), 1621–1628 (2016)

35. S. Wan, Z. Gu, Q. Ni, Cognitive computing and wireless communications on
the edge for healthcare service robots. Computer Communications (2019)
https://doi.org/10.1016/j.comcom.2019.10.012

36. X. Xu, Y. Xue, L. Qi, et al., An edge computing-enabled computation
offloading method with privacy preservation for internet of connected
vehicles. Future Generation Computer Systems 96, 89–100 (2019)

37. H. Qian, Y. Ou, X. Wu, et al., Support vector machine for behavior-based
driver identification system. Journal of Robotics 2010 (2010)

38. Y. Zhao, H. Li, S. Wan, et al., Knowledge-aided convolutional neural network for
small organ segmentation. IEEE journal of biomedical and health informatics
23(4), 1363–1373 (2019) https://doi.org/10.1109/JBHI.2019.2891526

39. S. Ding, S. Qu, Y. Xi, et al., Stimulus-driven and concept-driven analysis for
image caption generation. Neurocomputing (2019)

40. Zhang J, Suzuki K, Fujiita M. "Car-following behavior with instantaneous
driver–vehicle reaction delay: a neural-network-based methodology."
Transportation Research Part C Emerging Technologies, 2013, 36(11):339-
351. https://doi.org/10.1016/j.trc.2013.09.010

41. Hirst, Stephen, and Robert Graham. "The format and presentation of collision
warnings. Ergonomics and safety of intelligent driver interfaces." (1997): 203-219.

42. S.H. Wan, S. Goudos, Faster R-CNN for multi-class fruit detection using a
robotic vision system. Computer Networks 107036 (2019) https://doi.org/10.
1016/j.comnet.2019.107036

43. D.J. Sebald, J.A. Bucklew, Support vector machine techniques for nonlinear
equalization. IEEE Transactions on Signal Processing 48(11), 3217–3226
(2000) https://doi.org/10.1109/78.875477

44. Xu X, Li Y and Jin Y. "Hierarchical discriminant feature learning for cross-
modal face recognition." Multimedia Tools and Applications. https://doi.org/
10.1007/s11042-019-7683-4

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Wang et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:10 Page 12 of 12

https://doi.org/10.3141/2188-08
https://doi.org/10.1016/j.aap.2009.07.019
https://doi.org/10.1016/j.aap.2009.07.019
https://doi.org/10.1287/opre.6.2.165
https://doi.org/10.1016/j.trb.2015.08.003
https://doi.org/10.1016/j.physa.2017.01.076
https://doi.org/10.1016/0191-2615(81)90037-0
https://doi.org/10.1016/j.cnsns.2014.03.012
https://doi.org/10.1016/j.trpro.2017.05.179
https://doi.org/10.1016/j.trb.2009.12.018
https://doi.org/10.1016/j.measurement.2014.08.051
https://doi.org/10.1016/j.aap.2005.04.014
https://doi.org/10.1016/j.aap.2005.04.014
https://doi.org/10.3141/2489-12
https://doi.org/10.1518/001872006779166352
https://doi.org/10.1518/001872006779166352
https://doi.org/10.1016/S0001-4575(99)00018-4
https://doi.org/10.1016/j.aap.2013.02.003
https://doi.org/10.1016/j.future.2018.12.039
https://doi.org/10.1518/hfes.46.4.640.56806
https://doi.org/10.1016/j.trb.2015.07.017
https://doi.org/10.1016/j.trb.2015.07.017
https://doi.org/10.1016/j.isatra.2014.08.017
https://doi.org/10.1109/JIOT.2019.2911669
https://doi.org/10.1109/JIOT.2019.2911669
https://doi.org/10.1016/0001-4575(95)00026-V
https://doi.org/10.1016/j.future.2018.08.007
https://doi.org/10.1016/j.comnet.2019.106861
https://doi.org/10.1016/j.comcom.2019.10.012
https://doi.org/10.1109/JBHI.2019.2891526
https://doi.org/10.1016/j.trc.2013.09.010
https://doi.org/10.1016/j.comnet.2019.107036
https://doi.org/10.1016/j.comnet.2019.107036
https://doi.org/10.1109/78.875477
https://doi.org/10.1007/s11042-019-7683-4
https://doi.org/10.1007/s11042-019-7683-4

	Abstract
	Introduction
	Methods
	Test instruments
	Test road
	Participant driver
	Test process
	SVM model
	Data acquisition process

	Results analysis
	TTC
	Time distance of car following
	Car-following distance
	Verification of the prediction model

	Discussion
	Conclusion
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interest
	References
	Publisher’s Note

