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Abstract

Wireless sensor networks (WSNs) have become one of the most vigorous techniques in the network domain.
However, the sensor nodes of WSNs tend to become the target of attackers due to the broadcast communication
mode and the unattended deployment nature. Although it can prevent the sensitive data from being compromised,
Slice-Mix-AggRegaTe (SMART) needs to exchange messages frequently in a network, which put tremendous
overhead on the sensor nodes with limited resources. Faced with these issues, this paper proposes an energy-efficient
privacy-preserving data aggregation protocol based on slicing (EPPA) where a novel slicing mode is adopted to
reduce the numbers of slices, which can significantly prevent the data from being compromised and decrease the
communication overhead. Meanwhile, an enhanced scheme based on EPPA, called multi-function privacy-preserving
data aggregation protocol (MPPA), is presented and it supports multiple functions in the process of data aggregation,
such as max/min, count, and mean. The theoretical analysis and the simulation evaluation show that the proposed
aggregation protocols demonstrate a better performance in the privacy preserving and the communication efficiency.
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1 Introduction

Nowadays, wireless sensor networks (WSNs), seen as a
popular technique, are applied into various applications,
such as environmental monitoring, smart home, Inter-
net of Things, and military battlefields [1, 2]. Many new
challenges have emerged with the development of artifi-
cial intelligence and big data [3—5]. WSNs are formed by
a large number of resource-constrained sensor nodes. It
is almost impractical and uneconomical for each node to
send its sensing data directly to base station (BS) [6-8],
because the energy of the node will be exhausted in the
process of data transmission and the battery capacity of
the sensor node cannot meet the requirement of network
application. The energy issue has become a major concern
in both industrial practice and academic world [9-11].
Data aggregation (DA) [12-15] technique which is one
of the essential techniques in assuring the effectiveness
of WSNs can effectively overcome the energy obstacle by
fusing data and decreasing redundancy in many critical
applications.
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Most of the nodes of a WSN are deployed in an unat-
tended physical environment and can perceive the data
from the surrounding environment, mix the data through
DA technology, and then transmit them to BS through
a secure channel. However, WSNs with DA may pro-
duce more secure vulnerabilities than the ones without
DA technique [16]. An aggregation node (AN) in a WSN
which stores a lot of perceptual data is vulnerable to
attack. If ANs are compromised successfully by an adver-
sary, the sensitive data of the whole network may be
revealed. Therefore, more challenges are emerging in pri-
vacy preserving and energy effectiveness of WSNs with
DA.

Although a few DA privacy-preserving protocols have
been proposed in recent years [17, 18], many challeng-
ing issues remain to be conquered in resource-constrained
WSNs. A cluster-based private data aggregation (CPDA)
scheme was proposed [19]. In CPDA, the sensor nodes
are randomly organized into clusters and all the nodes
calculate aggregation values according to the algebraic
properties of polynomials. This protocol ensures that pri-
vate data cannot be revealed by compromising a single
node. However, the complex computation of CPDA puts
a huge burden on node resource. For this reason, the
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Slice-Mix-AggRegaTe (SMART) protocol was proposed to
decrease computation overhead and promote the capac-
ity of privacy preserving [19]. In SMART, each node hides
the sensing data by cutting them into slices. After being
encrypted, each slice is sent to different intermediate
aggregation nodes or neighboring nodes. When an inter-
mediate node receives the slices sent by its neighbors, the
aggregation process is executed and further aggregation
may be performed in the next hop node until BS arrives.
SMART guarantees data privacy in the process of aggre-
gation and the computation complexity is decreased com-
pared with CPDA. However, it requires more communica-
tion consumption which shortens the lifetime of network
and degrades the effectiveness of sensor node. Faced with
this dilemma, Hua et al. proposed an energy-efficient
adaptive slice-based secure data aggregation (ASSDA)
scheme [20]. In ASSDA, the same data slice of a node can
be sent once only in the same time slot. All the data of leaf
node are sliced according to the transmitting distance and
the number of receivers. ASSDA improves the efficiency
of data slicing and reduces the energy consumption of
nodes.

This paper presents an energy-efficient privacy-
preserving data aggregation protocol based on slicing
(EPPA) which adopts data decomposition to reduce the
number of slices and significantly save communication
costs. It is worth noting that the decomposition can
protect the private data from being destroyed by col-
lusion attack. In EPPA, only the addition aggregation
function is considered and the non-addition aggrega-
tion functions are the challenging work in the current
research. As an improvement to EPPA, we propose an
enhanced EPPA protocol, called multi-function privacy
preserving data aggregation (MPPA), which focuses
on multiple aggregation functions and may improve
the universality of privacy-preserving technique in
WSNs.

This paper is organized as follows. Section 2 reviews
the related works. Section 3 discusses the system model.
Section 4 and Section 5 elaborate EPPA and MPPA
in details, respectively. Section 6 evaluates the perfor-
mance of our protocols. We conclude this paper in
Section 7.

2 Related work

DA has become one of the most effective methods to
decrease the system overhead by reducing the band-
width occupation and improving the energy efficiency
in WSNs [21]. However, the broadcast communication
mode and the insecure deployment pattern of WSNs make
DA a challenging work when various attacks emerge in
a network. These issues have attracted more attention
than ever before in both WSNs and other fields [22-25].
Many mechanisms have been verified to prevent DA from
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being compromised, and some privacy-preserving proto-
cols with DA have been proposed to guarantee the privacy
of sensing data. SMART is the pioneering method in
slicing-based data aggregation protocols.

As the name suggests, “Slice-Mix-AggRegaTe
(SMART)” is a three-step scheme for the privacy preserv-
ing of DA. It divides the sensing data into many slices
and sends each slice to different destination nodes in
order to hide the sensitive information in varied slices
which can provide a better privacy protection for WSNs.
Many researches have proved that SMART can protect
the data security at a little cost of communication band-
width occupation [19, 20]. The workflow of SMART is
described as follows.

e Step 1: Slicing. For each node i(i = 1, ..., N), its
private data d; can be cut into j pieces. Firstly, it
randomly selects a set of nodes J(|J| = j — 1) within h
hops. A dense WSN takes /2 = 1, namely, node i
selects one-hop node as its neighbors. Then, one of
the pieces is kept in node i itself. The remaining
(j — 1) pieces are encrypted and sent to the nodes in
set . In general, SMART is a fixed slicing scheme
which divides the private data into three slices. Take
Fig. 1 as an instance, node 5 divides its data into three
slices, ms1, mys, and mss. One slice (m155) is reserved
by node 5 itself and two slices (m151 and m45) are sent
to node 1 and node 4, respectively. We expand the
idea of SMART in Fig. 1 by claiming that some nodes
may cut their sensing data to more than (node 6 and
node 7) or less than (node 9) three pieces. We hope
to illustrate that three pieces are only one of the
choices for slicing mechanism.

e Step 2: Mixing. When a node receives an encrypted
slice from node j, it firstly decrypts the data using the
shared key with node i. Then, it sums up all the
received slices sent by other neighbors as shown in
Fig. 2.

e Step 3: Aggregation. Each AN aggregates the received
slices to a single data packet and transmits it to the
upstream nodes following the routing path in an
aggregation tree until BS arrives as shown in Fig. 3.

Although the SMART algorithm has a good perfor-
mance in the protection of data privacy, there are still
some limitations that affect its practicality. (1) The com-
munication overhead is high. The communication over-
head is directly related to the number of slices. In SMART,
all the nodes are cut into j slices. Therefore, the total num-
ber of slices of a WSN with N nodes is N'xj, where N repre-
sents the number of nodes. Transmitting too many slices
will consume huge amounts of energy and decrease the
system performance in terms of effectiveness and lifetime.
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Fig. 1 Data slicing

(2) The probability of collision may arise. More slices
may produce more packet transmissions which may result
in the higher collision probability. This is an inevitable
issue in SMART. Ultimately, this may affect many network
parameters, such as delay, transmission error, accuracy,
and efficiency [26—28].

According to the abovementioned limitations, SMART
algorithm needs to be improved and challenging issues
have been tackled by many contributions. He et al. pro-
posed a SMART-based addition aggregation which was a
fixed slicing scheme [19], and each node divided its raw
data to J slices (/ is a predefined number) and (J — 1) slices
are sent to its neighboring nodes and one slice is held
in itself. After all the nodes have received the data slices

from their neighboring nodes, these slices were mixed and
the new result is transferred to an upstream AN. In this
way, attackers only eavesdrop on several incomplete data
slices rather than the whole data packet. Although this
scheme preserves the private data effectively, it results in
a large number of message exchanging. In order to reduce
the amount of information transmission, Li et al. pro-
posed an energy-efficient and high-accuracy scheme for
secure data aggregation (EEHA) [29]. There are differ-
ent operations for two types of nodes that are leaf nodes
and aggregation nodes. The former executes slicing and
mixing operations to preserve the data privacy, while the
latter is not involved in slicing and is only responsible
for aggregating its private data with the slices received
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Fig. 2 Data mixing
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Fig. 3 Data aggregation

from leaf nodes into a new aggregated data. Compared
with SMART, EEHA can dramatically reduce the com-
munication overhead and increase the accuracy of DA at
a tiny price of privacy preserving. In addition, Liu et al.
proposed a high energy-efficient and privacy preserving
(HEEPP) [30]. It introduced random distribution into the
slicing and mixing techniques to determine the number
of data slices, which resulted in the lower energy con-
sumption and the higher security of DA. However, both
EEHA and HEEPP ignore the privacy preserving in case
of a collusion attack. If collusion occurs, malicious sen-
sor nodes can easily compromise the security of network
to an unaccepted level. Furthermore, all the data stored in
the primary node (aggregation node) may be disclosed to
adversaries, which may cause a huge damage to the entire

network.
Based on the abovementioned issues, we present an

EPPA protocol which uses the data decomposition tech-
nique to overcome the limitations of traditional slicing
mechanisms. It can not only conceal the raw data through
slicing, but also decrease the number of slices at the same
time. The EPPA scheme is also capable of dividing sen-
sitive data into two pieces by extended Euclidean, which
may hide the original data well and effectively defend
against collusion attacks. Besides, another enhanced pro-
tocol, MPPA, is proposed, which supports multiple aggre-
gation functions and expands the adaptability of our
scheme in a practical WSN-based system.

3 System models
In this section, we present the topology, the adversary
model, and the design requirements of network.

3.1 Network model
In this paper, we employ the tree topolgy to organize sen-
sor nodes for DA in WSNs, as shown in Fig. 4. Generally

speaking, there are three types of nodes in a DA protocol:
base station (BS), aggregation node (AN), and leaf node
(LN). BS is trusted and has powerful computation and
storage capacities. There is only one BS in a WSN. BS is
regarded as the control center of the network and the final
destination of aggregation result. As the root of the aggre-
gation tree, it is responsible for broadcasting the query
to other nodes and processing the aggregation results
received from ANs. ANs are in charge of forwarding the
query instructions sent by BS, collecting and aggregating
the data from their child nodes. LN is used for data acquir-
ing, data slicing, and data mixing. It cuts the raw data
into slices, sends the slices to the neighboring nodes, and
assembles the received slices to compute an intermedi-
ate mixing value. Assumed that the network size is N and
each node is assigned different roles, such as BS, AN, and
LN. N nodes are organized into an aggregation tree (the
formation process will be described in Section 5), and the
data are transferred from LN to BS along the tree.

3.2 Adversary model

Because the nodes of WSN are usually deployed in an
unattended environment, the attackers can easily launch
multiple attacks to destroy the privacy and integrity of
aggregation results. Data packet is transmitted through
the radio communication channel in a WSN. Therefore,
it is easy to obtain the private information through over-
hearing the transmission from its neighboring wireless
links. Each node can monitor the sending packet in the
radio coverage and the private data may be exposed to the
attackers due to the open transmission mode.

3.3 Design goal

The design goal of our scheme is to use an extended
Euclidean method to achieve lower communication over-
head and prolong the lifetime of network. Meanwhile, the
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proposed scheme is expected to guarantee the security of
private data and defend against both the collusion attack
and the eavesdropping attack. Therefore, an ideal data
aggregation scheme should meet the following conditions.

e Drivacy-preservation: In the design of a secure data
aggregation scheme, the preservation of private data
is always a key security issue. Wireless links are
vulnerable to the eavesdropping attack and the
sensitive information is usually revealed to undesired
neighboring nodes. The privacy leakage limits the
application of WSNs and prevents WSNs from being
applied into some critical industrial fields in which
data privacy is regarded as one of the most important
attributes. In order to broaden the application field of
WSN, it is necessary to ensure data privacy and
network efficiency in a proposed protocol.
Meanwhile, the data privacy aggregation scheme
should be able to run in a reasonable way even in case
of collusion attack.

e Efficiency: Sensor nodes in a network are usually
equipped with irreplaceable or non-repeatable
charging battery. Therefore, energy consumption is a
critical issue since the emerging of WSNs, and it is
also a core issue in the design of secure data
aggregation protocol. Information exchange among
nodes consumes most of the energy in a WSN.
Therefore, how to decrease the traffic without
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sacrificing the function of network becomes an
interesting challenge in the current study. Data
aggregation is an important energy-saving technique
which can reduce the data transfer as much as
possible through intra-network fusion. Therefore, the
effectiveness of network is promoted and the lifetime
of network is prolonged.

4 Energy-efficient privacy-preserving data
aggregation protocol based on smart

This section introduces an energy-efficient privacy-
preserving data aggregation (EPPA) protocol based on
slicing in details. EPPA consists of four steps: the aggre-
gation tree construction, the data slicing, the data mixing,
and the data aggregation. Depending on the data slicing
technique, EPPA can improve the performance of pri-
vacy preserving, decrease the energy consumption, and
prolong the network lifetime of WSN compared with
SMART.

4.1 Aggregation tree construction

A common technique for DA is to build an aggregation
tree which is formed by all the aggregation paths from sen-
sor nodes to BS. The aggregation tree construction pro-
cess is illustrated in Fig. 5. Firstly, the BS triggers a query
through broadcasting a “HELLO” message as shown in
Fig. 5a. When the message is received, a sensor node elects
itself as AN with a probability p., which is a preselected

Fig. 4 Aggregation tree
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parameter for all the nodes. If a node becomes AN, it will
forward the “HELLO” message to its neighboring nodes as
demonstrated in Fig. 5b. Otherwise, the node will wait for
a certain period of time to get other “HELLO” messages
from its neighboring nodes. If a node receives multiple
“HELLO” messages, it randomly selects an upstream node
as its parent by sending a “JOIN” message as shown in
Fig. 5¢c. This process is recursively executed until all the
nodes join in the tree.

4.2 Dataslicing

We use the extended Euclidean-based decomposition
approach [31, 32] to optimize the slicing technique in this

subsection. The original data of each node are decom-
posed into two parts, one is reserved by the node itself and
the other is sent to its neighboring node. We will demon-
strate the extended Euclidean theorem and the feasibility
proof as follows.

Theorem 1 (extended Euclidean): Two numbers a and
b are non-negative and non-zero integer. gcd(a, b) denotes
the greatest common divisor of a and b . Therefore, there
are X and Y which satisfy gcd(a, b) = aX + bY.

Proof The induction method is adopted to prove the
theorem. Three cases are considered.
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Fig. 6 Data slicing

(1) If b = 0, then gcd(a, b) = gcd(a,0) = a. Thus, X =1
and Y is an arbitrary value.

(2) If a = 0, then gcd(a, b) = gcd(0,b) = b. Then, X is
an arbitrary valueand Y = 1.

(3)Ifa # 0and b # 0. Assumed that bx X1 +a%b*x Y, =
gcd(b, a%b) has solutions X; and Y;. Leta = k*xb+c then

(i)
ged(b,a%b) = b« X1 +a%bxY1 =bxX; (1)
+ (a—kxb)x Y
=bxXi+axY—kxbxY;
=axY1+bx (X7 —k=xY).
(i)  ged(b,a%b) = gcd(a, b)
(i) axY1+bxX1 —kxY1) =gcd(a,b).

Therefore, X = Y;and Y = X7 — k% Y7. O

According to the extended Euclidean theorem, the
definition of slicing scheme is given as follows.

Definition 1 For the sensing data of node i, di(i =
1,2,..,N), letd; = a,d; + 1 = b, thus

aXi+bY;=gcd(a, b) — diXi+(di+1)Y; = ged(d;, di+1).

Therefore, raw data d; can be decomposed into two
slices, X; and Y;. Because ged(d;,d; + 1) = 1, BS
can recover the original data using Eq. (2) according to
the extended Euclidean algorithm after all the slices are
received.

_a-Y

di= o)
X +Y)

2)

Fig. 7 Data mixing
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Node i keeps slice X; and sends slice Y; to one of its
neighboring node in order to hide the raw data. Figure 6
demonstrates the process of slicing based on the extended
Euclidean decomposition.

As shown in Fig. 6, d; and d; are the sensing data of
node i and node j, respectively. According to the extended
Euclidean theorem, d; is divided into X; and Yj; d; is
divided into X and Y;. Node i and node j keep X; and X;
for themselves, respectively. Slice Y; is sent to node j, and
slice Y; is sent to node k.

4.3 Data mixing

In order to guarantee all the slices are received, the nodes
wait for a certain time slot. Then, each node sums up all
the received slices with their own data to get a new packet
using Eq. (3). Figure 7 shows the mixing process of sensor
nodes.

M; =" (jenjzn Y + Xi ®3)

ALGORITHM L. EPPA DETAILS

Input: the number of nodes, N; probability pc
Output: aggregation data Y  M;

1. Begin

2. BS broadcastsHELLOto construct an aggregation
tree

3 For(i =1;i <= N;i+ +)

4 If i becomes AN

5. forwards HELLO

6. Else send JOIN to AN

7 End If

8 End For

9. For(i=1;i<=N;i++)

10. letd;=a,d;i+1=05>b
11. According to d;X; + (d; + 1)Y; = ged(d;, d; + 1)
12. d; is sliced to X; and Y;

13. If j'=1i)

14. Y;issenttoj
15. X; is keptin i
16. End If

17.  End For

18. For(i=1;i <=N;i+ +)

19, M=} yjjenjryYj + Xi
20. End For

21. AN aggregates slices to Y M;
22. Return ) M;

23. End

As shown in Fig. 7, the mixed result obtained by node j
is Mj = X; + Y;.

4.4 Dataaggregation
After slices are summed up, the node encrypts the new
results and sends them to its parent. Each AN aggregates
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all the data received from its children nodes. Then, the
aggregation results are transmitted to BS along the path in
the aggregation tree as shown in Fig. 4.

The pseudo-code of EPPA is described in Algorithm
I. Lines 1-8 describe the construction of an aggregation
tree. The slicing mechanism is listed from Line 9 to Line
17. Firstly, the original data are sliced into two pieces
by the proposed scheme. Then, one slice is sent to the
neighboring node and the other is saved by the node itself.

5 Multi-function privacy-preserving data
aggregation protocol

In the previous discussion, EPPA focuses on the addition
aggregation function and neglects other aggregation func-
tions, which means that its applications are restricted to
the scenarios where sensing data can only be added or
summed. Therefore, the enhanced EPPA, multi-function
privacy-preserving data aggregation protocol (MPPA) will
be discussed in this section. MPPA supports multiple
aggregation functions and significantly improves the uni-
versality of slicing for WSNss.

Based on EPPA, MPPA adds some mark bits to the orig-
inal slices in order to distinguish the types of aggregation
functions, as shown in Fig. 8. Firstly, BS determines how
many functions should be provided before a network is
deployed. Secondly, it calculates the length of mark bits m
according to Eq. (4).

min{2? =flo>m= [logzﬂ (4)

where f represents the number of aggregation func-
tions. Thirdly, BS negotiates about the correspondences
between mark bits and functions with aggregation nodes.
In the data slicing process, nodes insert mark bits for each
slice according to the aggregation requirement of BS. We

Table 1 Correspondence table

Flags Functions
00 Addition

01 Mean

10 Count

11 Not used
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take three aggregation functions as an example (e.g., f = 3
in Eq. 4).

e According to Eq. (4), BS computes the number of
mark bits b = [log23—| = 2. In other words, we need
two bits to satisfy the requirements of three
aggregation functions of BS.

® BS establishes the correspondence between mark bits
and aggregation functions, as shown in Table 1.
Notice that the combination “11” is left for future use
if we hope MPPA to support more than three
aggregation functions.

¢ A node selects mark bits and tags them into a slice
based on the requirement of BS as formatted in Fig. 8.
For example, the mark bits should be “01” if BS hopes
to calculate the mean of sensing data in its query (as
shown in Fig. 8).

The pseudo-code of mark bit is described in Algo-
rithm II in which the process of adding a flag to a
data slice is displayed. The slicing, mixing, and aggre-
gation processes in MPPA are the same as those in
Algorithm I of EPPA. The difference is that the data
aggregation function is executed according to different
mark bits.

6 Simulation results and discussion

We evaluate EPPA and MPPA through the theoretical
analysis and the simulation experiment. We also com-
pare our schemes with two typical protocols (EEHA and
SMART) in terms of privacy preservation, communica-
tion overhead, and network lifetime. It should be pointed
out that the number of slices is three (/ = 3) in SMART
and EEHA.
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ALGORITHM II. MARK BIT OF MPPA

Input: the number of function, f
Output: SLICING WITH FLAG

1. Begin

2. BS computes flags bits m = (log?f —‘

3. sends the table r to each aggregation node
4. For(i =1;i <= N;i+ +)

5. selects flag according to the query of BS
6. adds the flag to slices, X; and Y;

7. Return X; and Y;

8. End For

9. End

6.1 Privacy-preserving analysis

This paper conducted an analysis of the exposure proba-
bility of privacy caused by collusion attacks. Assumed that
there are malicious ANs and LNs in a network. After slic-
ing is executed, Y; is sent to node j and d; can be recovered
if node j is a malicious one which colludes with its AN.
Then, the private data of node i may be revealed. There is
another situation where X; is kept by node i itself. d; can
also be recovered if node i is malicious and colludes with
its AN. Considering these two cases, the hidden proba-
bility can be illustrated using Eq. (5) which expresses the
ability of privacy preserving.

P =1-P,((CUNCE# D) U(CA) NCS)))

_ Al i i) — Aml ,
=1- P (C(Sjlj # i) A P(C(S»)  (5)

where C(x) represents the event that entity * is malicious.
|A;,| and |A| denote the number of malicious ANs and the
number of AN, respectively.

Then, the hidden probability P, of EPPA, P,, of MPPA,
P, of SMART, and P, of EEHA can be inferred as Egs. (6),
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(7), (8) and (9), respectively.

A LN*| -1 A LN*
Pp=1_|m|(| | >_|m|(| |) ©
AT\ LN jar \IZN]

A LN*| -1 A LN*
Pm:1_|m|(| | >_|m|<| |>_Pf(7)
41\ LN 41 \ILN]

A LN*| -1 A LN*
PS:1_2X|M|(| | >_|m|<| |) ®
4l \ LN PIRNTAY

A LN*| -1 A LN*
Pe=1_2X|m|<| | >_|m|(| |)_P&9)
AT\ LN AT \ILN]

In Eq. (7), Py represents the probability that an attacker
will obtain the private information based on mark bits. In
EEHA, when the data of ANs are not sliced, P, denotes
the probability that the attacker will destroy the privacy
through the compromised ANs. We compare the hidden
probabilities of SMART, EEHA, EPPA, and MPPA with
|LN*| malicious sensor nodes (leaf nodes) and |A,,| mali-
cious aggregation nodes. Obviously, as EPPA and MPPA
adopt a more complex slicing technique, their privacy per-
formances are superior to those of SMART and EEHA in
the cases of malicious LNs and malicious ANs as shown in
Figs. 9 and 10.

6.2 Communication overhead

The communication overhead mainly resides in trans-
mission of data slices. In SMART, each node needs to
exchange two messages in a sensing round. In EEHA, only
the leaf nodes divide their data into slices and two of
the slices are sent to their neighbors. Each AN needs to
transmit one message for data aggregation. Therefore, the
bandwidth consumption of SMART is higher than that
of EEHA. Similar to EEHA, only leaf nodes need to per-
form the operations of slicing and exchanging operations
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in EPPA and MPPA. However, the sensing data are divided
into two pieces and only one piece is sent to the neighbor.
Obviously, the energy consumption of EPPA and MPPA is
lower than that of EEHA and SMART. Hence, the com-
munication overhead of four schemes can be formalized

as Egs. (10), (11), (12), and (13).

CsmarT = N * K = 3N (10)
Cepya =80 N* K+ (1 -8« N=25N+N (11)
Ceppa =8xN*xK+(1—-8)*N=SN+N (12)

Cmppa =8 * N x K + (1 —8) * N +b =8N + N + k13)

where § and K represent the proportion of leaf nodes
and slices, respectively. The message complexity of four
schemes is shown in Fig. 11. The less the information is
exchanged, the lower the energy will be consumed.

6.3 Network lifetime

Figure 12 shows the percentage of residual energy in a
network as execution time escapes with which we can
evaluate the network lifetime of different protocols. It is
shown that SMART consumes energy much faster than
other schemes. This is because there are more message
exchanges in SMART in each round. Also, EPPA and
MPPA have a longer lifetime in contrast with SMART and
EEHA for their Euclidean-based slicing technique.

7 Conclusion

WSNs are composed of resource-constrained sensors
which are usually deployed in an unattended or wild area.
Therefore, energy and privacy issues are the main con-
cerns in WSNs. The proposed EPPA scheme adopts data
decomposition to replace the traditional slicing scheme
in order to reduce energy consumption and prevent the

private data from being compromised. In addition, an
enhanced EPPA protocol called MPPA is proposed for
the purpose of dealing with the problem that the typi-
cal slicing mechanism supports the addition aggregation
function only and fails to meet the requirements of WSNs
in many application scenarios. MPPA is characterized by
focusing on multiple functions and significantly improv-
ing the universality of DA in WSNs. Simulation results
show that our approaches can effectively decrease the
overhead of communication and guarantee the data pri-
vacy. However, EPPA and MPPA can only be applied to
integer aggregation which may produce a negative impact
on data accuracy. We will make more in-depth research
on decomposition so that it can be applied into more
scenarios in the future.
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