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Abstract

In this paper, we present and evaluate a novel multilevel hybrid-chaotic oscillator. The proposed generalized
multilevel-hybrid chaotic oscillator (GM-HCO) was created by combining a multilevel discrete function generated
from user data with a continuous function having a damping factor greater than ln(2) to achieve variable rates and
adaptive carrier frequencies. Improved spectral efficiency and lower complexity of the transceiver compared with
differentially coherent systems were achieved by multilevel signals at the transmitter and a matched filter at the
receiver. An exact analytical solution for the generalized fixed basis function and the impulse response of the matched
filter were also derived. The bit error rate (BER) expression of the GM-HCO was derived for two levels. It was found that
the noise performance of the proposed system was better than a hybrid chaotic system based on forward time and
differential chaos shift keying (DCSK). A comprehensive set of simulations were carried out to evaluate the
performance of the proposed system with chaotic communication systems in the presence of additive white
Gaussian noise (AWGN). The performance of the proposed system was comparable with that of conventional
communication systems. The results demonstrate that the proposed system can offer better noise performance than
existing chaotic communication systems, and it also offers variable transmitter frequencies and improved spectral
efficiency. Noise-like behavior of the chaotic signals provides an additional layer of security at the physical layer
compared with conventional (sinusoidal) communication systems.

Keywords: Chaotic signal, Discrete function, Hybrid chaotic system,M-ary modulation, Multilevel system, Matched
filter, Generalized multilevel hybrid chaotic oscillator, Reverse time, Forward time

1 Introduction
Existing frequency up/down conversions and power
amplification stages in conventional wireless communi-
cation systems increase the costs of the design, demand
more space and weight, and consume more energy. More-
over, non-linear power amplification stages distort the
base-band signal and degrade the quality of the signal.
These are important challenges for wearable and inter-
net of things (IoT) devices and sensor networks. It has
been shown that these drawbacks of conventional systems
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can be overcome by using chaotic signals that can be cre-
ated by unsophisticated circuits without frequency con-
versions and power amplification stages [1, 2]. Chaotic
signals with low-complexity transceivers and low -power
consumption provide an attractive solution to the short-
range low-power communication challenge. Although
chaotic signals possess many features of stochastic pro-
cesses, they are always generated by simple deterministic
dynamical systems. Significant features, such as aperiodic
long-term behavior, deterministic nature, and sensitivity
to initial conditions make chaotic signals a perfect can-
didate to realize wireless communication systems with
simple transceiver implementations.
In the past, it was believed that chaotic behavior could

be observed only in complex systems, such as neurology
[3, 4], mechanics [5, 6], fluid dynamics [7], and oceanog-
raphy [8]. In 1963, however, Eduard Lorenz [9] overturned
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existing dogma in this field, by simulating weather pat-
terns using three simple equations. It was a breakthrough
and the beginning of a new notion and development
of deep insights into expressing highly complex chaotic
behavior using simple equations. Since then, the repre-
sentation of complex systems including living [10, 11] and
non-living systems [12, 13] has become achievable.
Initial research involving chaotic communication has

focused on mapping information into a chaotic signal
and recovering it successfully at the receiver. In the
1990s, Pecora and Caroll [14] observed that chaotic sig-
nals could be synchronized successfully. Later, Cuomo
and Oppenheim [15] designed the first practical com-
munication scheme based on chaotic signals. After the
seminal work by Pecora and Carroll, who provided the
opportunity to use chaotic signals in communication sys-
tems, researchers around the world were quick to propose
various chaotic communication systems. Chaos shift key-
ing (CSK) [16], differential chaos shift keying (DCSK)
[17], chaotic on-off-keying (COOK) [18], and frequency
modulation-differential chaos shift keying (FM-DCSK)
[18] in single input single output (SISO) and multiple
input and multiple output (MIMO) channels are some
of the popular chaotic communication systems that have
been proposed to date.
Unfortunately, these aforementioned chaotic commu-

nication systems are impractical for real applications for
two main reasons. First, there are no practical chaos
synchronization methods that can achieve perfect syn-
chronization for coherent receivers, such as CSK and
COOK, as it is hard to produce two physically identi-
cal chaotic circuits for drive and response synchroniza-
tion techniques [19]. Second, it is difficult in practice
to implement delay line circuits with ultra-wide band
(UWB) in some chaotic communication systems, such as
DCSK and FM-DCSK [20]. Furthermore, these systems
have low-power efficiency and low throughput in general.
Several studies aiming at solving these issues to increase
the throughput and the power efficiency can be found
in the literature [21–23]. However, these solutions have
sophisticated designs and synchronization issues in inter-
nal circuits. Their noise performance is also inferior to
conventional systems, such as binary phase shift keying
(BPSK). Numerical approximations used for chaotic maps
or attractors also contribute to performance degradation
compared with the conventional systems which are based
on analytical solutions.
The pioneering work of Corron et al. led to the realiza-

tion of chaotic oscillators (dynamic systems) with exactly
solvable differential equations by combining discrete sys-
tems with continuous systems [24, 25]. These differential
equations are 2nd order. They are called hybrid chaotic
systems which can topologically represent an attractor,
such as the Lorenz attractor [9] or the Rossler attractor

[26]. For instance, Corron, et al. [27] synthesized a chaotic
waveform to mimic two different chaotic attractors that
depend on the state of the discrete system. Hybrid chaotic
systems can be written as a linear convolution of binary
symbols and a fixed basis function and produce an exactly
solvable system as elucidated by Corron in 2010 [28].
These signals can be coherently detected at the receiver
using a filter matched to the basis function [28, 29]. As a
result, hybrid chaotic systems have attracted a great deal
of attention in the wireless communication system field
due to a simple transceiver implementation [30–33] and
better noise performance [28]. For example, Corron and
Blakely [34] used the hybrid chaotic system to derive an
equation of a matched filter to realize a better noise per-
formance than previous chaotic communication systems
and a performance closer to conventional BPSK commu-
nications. Recently, Milosavljevic et al. [35] presented a
hybrid chaotic systemwithmultilevel discrete states intro-
ducing a first -order equation for the first time in [36].
However, their system is based on forward time, and they
have not evaluated its performance under AWGN and
Rayleigh channels.
Limitations of hybrid chaotic systems in [28, 34] force

them to operate at low-throughput levels and operating
frequencies that are lower than the acoustic frequency
boundary [35, 37–39] because they are based on forward
time and symbolic dynamics. Although hybrid chaotic
systems based on reverse time have solved the problem
of low-operating frequencies, presented a simpler circuit,
and provided low-cost and low-power consumption com-
pared with hybrid chaotic systems based on forward time
[24, 40–42], they have not been evaluated with multilevel
discrete states under AWGN. Therefore, our contribu-
tions can be summarized as:

• Designing a chaotic communications system using a
multilevel (M-ary) approach to increase the
throughput with the ability to operate at high carrier
frequencies, low-cost, low-power consumption, and a
simple circuit.

• Presenting a generalized multilevel-hybrid chaotic
oscillator (GM-CHO) based on reverse time with a
generalized fixed basis function which will be used at
the receiver side to improve and detect chaotic
signals, and evaluating its performance with an
AWGN channel.

• Deriving the bit error rate expression of the
GM-HCO based on a generalized fixed basis function
for two levels, to emphasize that the theoretical and
simulated results match under AWGN channel
conditions.

The rest of the paper is organized as follows. In
Section 2, we propose the generalized multilevel-hybrid
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chaotic oscillator and present its corresponding chaotic
map and the matched filter receiver. The bit-error rate
of GM-HCO is derived in Section 3. Section 4 contains
the results, and the discussion is presented in Section 5.
Section 6 concludes the paper.

2 Proposed generalizedmultilevel-hybrid chaotic
oscillator

In this section, we discuss the adoption of a hybrid chaotic
system based on reverse time because it does not depend
on the symbolic dynamic concept, and it can be used to
achieve M-ary modulation at varying frequencies and at
low -design cost compared with a hybrid chaotic system
based on forward time. It is comprised of a continu-
ous function, u(t) ∈ R, and a discrete function, s(t).
Traditionally, multilevel phase and frequency modulation
cannot be achieved with chaotic communications due to
the inherent non-periodic nature of the chaotic signal.
However, a multilevel amplitude modulated chaotic com-
munication system can be implemented with the help of
the proposed hybrid chaotic signal oscillator. For M-ary
amplitude modulation, M = 2b where M is the num-
ber of amplitude states in the constellation and b is the
number of data bits required to specify a given amplitude
state. Although the idea of this new approach is similar
to antipodal BPSK in terms of polarity, the Euclidean dis-
tance between the two message points in this approach
is different depending on the value of the discrete states.
The differential equation of the proposed hybrid chaotic
oscillator is given by:

u′′(t)+2βu′(t)+(
ω2 + β2)u(t) = (

ω2 + β2) s(t) , (1)

where β and ω are fixed parameters. This is a 2nd-order
linear non-homogeneous differential equation taken from
[24, 41], and it is considered to be a non-autonomous
dynamic system. However, since the discrete function has
a random behavior which depends on the data informa-
tion, it will make the differential equation behave chaoti-
cally in reverse time. In particular, s(t) will be:

s(t) = mi , (i − 1)Ts ≤ t < iTs , (2)

for i ∈ N>0 and mi ∈ {±Mj ∈ R | j = 1, 2, . . . ,N}, where
N is potentially infinite and ±Mj are potential ampli-
tudes of the signal chosen in such a fashion to ensure
that there is no interference in energy between different
amplitudes. The period Ts of the symbol is chosen so
that the transition between different amplitudes will be
achieved when the derivative of the continuous function
reaches zero. That is, u′(iTs) = 0. Consequently, Ts =
2π/ω. Therefore, Eq. 2 is inherently different from the
2nd-order linear differential equations based on forward
time in [28, 34] where they assumed that s(t) = sgn(u(t))
to generate a random binary sequence. These equations

depend on the symbolic dynamic concept where a dis-
crete signal depends on the sign of a continuous signal.
The symbolic dynamic concept cannot provide us with
the ability to change the operating frequency, and it
can only be used for coding data information, such as
a pseudo-noise (PN) sequence generator that is used in
code division multiple access (CDMA). However, the pro-
posed Eq. 2 presents a novel multilevel discrete function
which depends on the data information and works at mul-
tiple levels. The damping factor of the proposed oscillator
is given by β = fd ln(2), where fd = 1

Ts
is the damp-

ing frequency. The angular frequency ω of the proposed
hybrid chaotic oscillator is ω = 2π fd; thus, as a conse-
quence, β ≥ ln(2). The solution for Eq. 1 on the time
interval [ (i − 1)Ts, iTs), uig(t), can be obtained by find-
ing the homogeneous solution, uih(t), to the associated
homogeneous problem:

u′′(t) + 2βu′(t) + (
ω2 + β2)u(t) = 0 (3)

and a particular solution, uip(t), where uig(t) = uih(t) +
uip(t). The homogeneous solution uih on [ (i − 1)Ts, iTs) is
given by:

uih(t) = Ci
1e

−βt cos (ωt) + Ci
2e

−βt sin (ωt) (4)

where Ci
1 andC

i
2 are arbitrary constants of integration.

The next step is to find the particular solution. Since
the discrete function s(t) is, by construction, constant on
[ (i − 1)Ts, iTs), a particular solution on [ (i − 1)Ts, iTs)
is also constant. A particular solution uip(t) of Eq. 1 on
[ (i − 1)Ts, iTs) will be:

uip(t) = mi . (5)

By combining Eqs. 4 and 5, the general solution, uig(t),
on [ (i − 1)Ts, iTs) will be:

uig(t) = Ci
1e

−βt cos (ωt) + Ci
2e

−βt sin (ωt) + mi . (6)

To determine the general solution ug(t) of Eq. 1, we
have to ensure that the solutions uig(t), as well as their
derivatives (uig)′(t), match at the boundaries of each time
interval. That is, uig((i − 1)Ts) = ui−1

g ((i − 1)Ts) and
(uig)′((i − 1)Ts) = (ui−1

g )′((i − 1)Ts), for i = 2, 3, . . . ,N .
This recursively defines Ci

1 and Ci
2 for i = 2, 3, . . . ,N .

After some algebra, we find Ci
1 = C1

1 + ∑i−1
j=1(mj −

mj+1)ejβ Ts and Ci
2 = C1

2 + β
ω

∑i−1
j=1(mj − mj+1)ejβ Ts for

i = 2, 3, . . . ,N . This determines the general solution ug(t)
of the hybrid chaotic oscillator given in Eq. 1. It can be
used with Eq. 2 to generateM-ary modulation.
At t = 0, C1 andC2 can be found by using two initial

conditions u′
g(0) = 0 and ug(0) = u0. Then, the solution

to Eq. 1 can be derived as:

(ug)′(t) = − C1βe−βt cos (ωt) − C1ωe−βt sin (ωt)
− C2βe−βt sin (ωt) + C2ωe−βt cos (ωt) + 0 ,
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at t = 0, this simplifies to:

0 = −βC1 + ωC2 ⇒ C2 = βC1
ω

.

By substituting:

∴ ug(t) = C1e−βt[cos (ωt) + β

ω
sin (ωt) ] +m1 , (7)

on the first time interval, at t = 0, Eq. 7 will be:

ug(0) = u0 = C1e0[ cos(0) + β

ω
sin(0)] +m1

u0 = C1 + s(0) ⇒ C1 = −s(0) + u0 .

Since s(0) = m1, we have C1 = −m1 +u0, and ug(t) will
be:

ug(t) = (u0 − m1)e−βt[ cos (ωt) + β

ω
sin (ωt)] +m1

for 0 ≤ t < Ts.

This is the solution for period 0 ≤ t < Ts. The solution
for period Ts ≤ t < 2Ts is:

ug(t) =[eβTs(m1 − m2) + (u0 − m1)] e−βt ×
[ cos (ωt) + β

ω
sin (ωt) ]+m2 .

For period 2Ts ≤ t < 3Ts, the solution is:

ug(t) =[e2βTs(m2 − m3) + eβTs(m1 − m2) + (u0 − m1)]×
e−βt[ cos (ωt) + β

ω
sin (ωt)]+m3 ,

and for period 3Ts ≤ t < 4Ts, the solution is:

ug(t) =[e3βTs(m3 − m4) + e2βTs(m2 − m3)

+eβTs(m1 − m2) + (u0 − m1)]×
e−βt[ cos (ωt) + β

ω
sin (ωt) ]+m4 .

In general, for (i − 1)Ts ≤ t < iTs, the solution can be
expressed as:

ug(t) =
⎡

⎣
i∑

j=2
e(j−1)βTs(mj−1 − mj) + (u0 − m1)

⎤

⎦ ×

e−βt[ cos (ωt) + β

ω
sin (ωt) ]+mi . (8)

This provides the exact solution of the proposed gener-
alizedmultilevel-hybrid chaotic oscillator under the initial
conditions u(0) = u0 and u′(0) = 0, for all possible dis-
crete states and β ≥ ln(2). The basis function can be
extracted from this equation, and it can be considered as
the generalized fixed basis function of the matched filter.
The generalized fixed basis function, ub(t;u0), is:

ub(t;u0)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 , for t < 0 ,
(
u0
m1

−1
)
e−βt

(
cos(ωt) + β

ω
sin(ωt)

)
+1, for 0 ≤ t < Ts ,

(
1+

(
u0
m1

− 1
)
e−βTs

)
×

eβ(Ts−t)
(
cos(ωt) + β

w
sin(ωt)

)
, for t > Ts .

(9)

Particularly, for u0 = 0 and m1 = 1, Fig. 1 shows a
simulation of Eq. 9 and shows the generalized fixed basis
function of GM-HCO for four periods of Ts.
Thus, the chaotic signal generated at the transmitter can

now be obtained by convolving the generalized fixed basis
function with the discrete states:

u(t) = m1ub (t;u0)+
∞∑

j=2
mjub

(
t − Ts(j − 1); 0

)
, (10)

where mj is the amplitude of the discrete state that
weights the generalized fixed basis function at the jth
time interval. Figure 2 shows the matching between the
generalized fixed basis function in Eq. 10 and the dif-
ferential equation in Eq. 1 with discrete signals s(t) =
[−3, +1, −1, +3, +3, −3, −3, −3, +1, +1], Ts = 1

Fig. 1 Basis function, ub(t; 0), of GM-HCO
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Fig. 2 Simulation of basis function and differential equation of GM-HCO

second and β = ln 2. Equation 10 emphasizes that the
behavior of chaotic signals in the reverse time can be
expressed in terms of an exact analytic solution.

2.1 Chaotic map of GM-HCO
In this section, we derive a chaotic map of GM-HCO to
emulate this behavior. Generally, a chaotic map can be
represented by:

X (t + 1) = F{X(t)}
where F is a function that creates the mapping, and X(t)
is any time domain function. This map, which has a
one-dimensional shape, can describe the system at some
fixed time interval without a need to describe the sys-
tem completely by using a differential equation. Therefore,
at this point, the differential equation can be examined
analytically. Therefore, let us recall Eq. 1 again and assume
that the initial conditions are u(0) = u0 ,u′(0) = 0,
and s(0) = s0 = m1 .
A solution of this hybrid chaotic oscillator can be found

in terms of u0 and s0. For the first time interval [0,Ts],
with ug(0) = u0 and (ug)′(0) = 0, we have:

ug(t) = (u0 − m1)e−βt[ cos (ωt) + β

ω
sin (ωt) ] +m1 ,

as derived in the previous section, and since ω = 2π/Ts,
at t = Ts this simplifies to:

ug(Ts) = (u0 − m1)e−βTs + m1 =: u1 .

For the second time interval [Ts, 2Ts], we have:

ug(t) =[eβTs(m1 − m2) + (u0 − m1)] e−βt ×
[ cos (ωt) + β

ω
sin (ωt)]+m2 .

By simplifying and substituting, we obtain:

ug(t) = (u1 − m2)eβ(Ts−t)[ cos (ωt) + β

ω
sin (ωt) ]+m2 ,

and, at t = 2Ts:

ug(2Ts) = (u1 − m2)e−βTs + m2 =: u2 .

In general,

ug(iTs) = (ui−1 − mi)e−βTs + mi =: ui ,

for i = 1, 2, . . . , and the general recurrence relation of the
proposed map is:

un+1 = (un − mn+1)e−βTs + mn+1 . (11)

Since Eq. 11 possesses a time reversible property, it can
retain a positive Lyapunov exponent. Corron et al. in [24]
stated that a reverse time chaos map can use the current
state of the chaotic map to represent all of its past states.
Therefore, Eq. 11 can be restated to find the positive
Lyapunov exponent as follows:

un = eβTs (un+1 − mn+1) + mn+1 . (12)

We can easily find that Eq. 12 is an iterated map. There-
fore, by defining a mapping F as:

F (un) = eβTs (un+1 − mn+1) + mn+1 ,

with derivative:

F ′(un) = eβTs . (13)

Equation 13 is the slope of the map, and it is a con-
stant for all un. The Lyapunov exponent, λ, of a one-
dimensional discrete map is defined as [43]:

λ = lim
n→∞

1
n

n−1∑

i=0
ln |F ′(ui)| = lim

n→∞
1
n

n−1∑

i=0
ln(eβTs) = βTs .

Since β = fd ln(2) = ln(2)
Ts

,

∴ λ = ln(2). (14)

Here, λ is positive since β is greater than zero. There-
fore, since the iteratedmap is chaotic, the continuous time
system is chaotic in backward time.
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2.2 Matched filter receiver
Since we have the generalized fixed basis function, the
matched filter can easily be found. Traditionally, the
impulse response of the matched filter, h(t), will be the
inverse time of the generalized fixed basis function (Eq. 9)
for period Ts. Figure 3 shows the impulse response of the
filter, h(t), matched to the generalized fixed basis function
with a damping factor β = ln 2 and damping frequency of
1 Hz within Ts = 1. The received signal will be:

υ(t) = u(t) + η(t)

where υ(t) is the input of the filter, and it is corrupted by
noise, η(t). The output of the matched filter will be:

ξ(t) =
∫ Ts

−∞
h (t − τ) υ(τ)dτ . (15)

Since υ(t) is u(t) + η(t),

ξ(t) =
∫ Ts

−∞
h (t − τ)u(τ )dτ +

∫ Ts

−∞
h (t − τ) η(τ )dτ .

This equation is a general convolution that can be used
to recover the transmitted data at the receiver.
Some existing implementations of hybrid-chaotic sys-

tems utilizing symbol dynamics can be found in the lit-
erature [44]. In contrast, hybrid chaotic systems based
on reverse time provide another insight when applying
hybrid chaotic systems for high frequencies and a mul-
tilevel approach. Applications of the damping frequency
in communication systems have come from the physi-
cal phenomena of the pendulum motion [45]. The data
rate will determine the damping frequency, the damping
factor, and the angular frequency. Figure 4 shows a pro-
posed prototype of a novel communication system based
on GM-HCO. As can be seen in this figure, the pro-
posed system does not contain any up/down converters.
Also, the noise-like behavior of the chaotic signals pro-
vides an additional layer of security at the physical layer.
Therefore, security requirements at the upper layer could

be relaxed, which further reduces the complexity and
power consumption of the transceiver. Therefore, the pro-
posed hybrid chaotic wireless communication system is a
potential candidate for wearable devices, sensor networks,
or IoT systems.

3 Bit error rate performance of GM-HCO
Let us suppose that we have two signals, s1(t) and s2(t),
to be transmitted, and it is assumed that the received
signals r(t) are buried in AWGN, n(t). The AWGN is
a wide-sense stationary random process which has zero
mean μ = 0 and variance σ 2, and it has a double-sided
power spectral density

No
2

W/Hz. Assuming equiprob-
able symbols, the bit error rate expression is given by:

BER = 1
2
Q

(
so1 − VT

σo

)
+ 1

2
Q

(
VT − so2

σo

)
. (16)

where VT is a comparator threshold voltage and so1 or
so2 are output signals at sampling time, To. Since we
have a fixed basis function of GM-HCO, we can design
a linear time-invariant filter with an optimal comparator
threshold voltageVopt , sominimizing the probability of bit
error will provide the following equation for the optimal
comparator threshold voltage Vopt :

Vopt = so1 + so2
2

(17)

where Vopt is greater than so2 and less than so1. There-
fore, substituting the optimal value of threshold voltage of
Eq. 17 into Eq. 16 yields:

BER = Q
(
so1 − so2

2σo

)
. (18)

Fig. 3 Impulse response of the matched filter matched to the basis function given in Eq. 9
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Fig. 4 Block diagram of the proposed hybrid chaotic wireless communication system based on GM-HCO

In the case of a matched filter, after optimizing Eq. 18,
the BER of a matched filter is given by:

BERMF = Q

⎛

⎝

√
d2

2No

⎞

⎠ (19)

where d is the distance between two matched filter out-
puts, and it can be written as:

d2 .= so1|t=Ts − so2|t=Ts

where hopt(t) is a impulse response of the matched filter
at sampling time Ts, which can be written as:

hopt(t) = s∗1(Ts − t) − s∗2(Ts − t)

and d2 will become:

d2 =
∫ Ts

0
|s1(t) − s2(t)|2dt.

From Eq. 8, and for the sake of simplicity, assuming the
two probable binary ± 1 for 0 ≤ t < Ts:

ug+1(t) = −e−βt[ cos(ωt) + β

ω
sin(ωt)]+1;

ug−1(t) = e−βt[ cos(ωt) + β

ω
sin(ωt)]−1.

d2 will become:

d2 =
∫ Ts

0
|ug+1(t) − ug−1(t)|2.

Since the energy of each bit within Ts is constant,
ug+1(t) = −ug−1(t) = ug(t), and then d2 can be written as:

d2 = 4
∫ Ts

0
|ug(t)2| (20)

By substituting Eq. 20 into Eq. 19, the BERMF of GM-
HCO is found to be:

BERGM−HCO = Q

⎛

⎝

√
2

∫ Ts
0 |ug(t)2|
No

⎞

⎠ (21)

As can be seen in Eq. 21, the BERMF of GM-HCO
depends on the bit energy within one duration, Ts. In the
special case, where we generate a binary sequence of ± 1,
which alternates between − 1 and + 1, we will obtain the
exact result for BER of antipodal systems, such as BPSK,
as shown in Fig. 5. In another special case, where we have
two signals of 0 and 1, the BER of GM-HCO will be:

Fig. 5 The noise performance of GM-HCO
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BERGM−HCO = Q

⎛

⎝

√∫ Ts
0 |ug(t)2|

No

⎞

⎠ (22)

Equation 22 of GM-HCO is similar to unipolar or
orthogonal signaling, as shown in Fig. 5. However, because
the sequence of data is random, this will lead to degrada-
tion in noise performance by about 1 dB as shown in Fig. 6.
This figure also provides upper and lower boundaries for
GM-HCO. This means if GM-HCO is driven by alterna-
tive sequence data of two symbols, this provides the best
case noise performance which is matched to BPSK, while
in the worst case, if it is driven by successive sequence data
of one symbol. In the normal case, the BER of GM-HCO
will be more complicated to estimate because of the prob-
lem of determining the bit energy. To clarify the problem
of bit energy, the signal space representation can provide
a deep insight into GM-HCO’s behavior. Therefore, Fig. 7
presents the signal space of GM-HCO, thus as can be seen
in this figure, we have one basis function, φ, to represent
the chaotic signal of GM-HCO. The shape of the signal
space exhibits spiral behavior. This is due to the fact that
the equation of GM-HCO contains an exponential term
(damping factor) that causes the energy of the signal to
decrease gradually if GM-HCO is driven by successive bits
of a similar kind. The phase of GM-HCO’s expression,
θ , can be 180 or zero because it depends on the sign of
the level of the signal while the value of energy will vary
and lead to degradation in noise performance. However,
the best noise performance occurs when we have two lev-
els mi of ± 1 alternating, similar to antipodal signaling of
conventional communication systems.

4 Results
In this section, we present an evaluation of the perfor-
mance of the proposed hybrid chaotic wireless commu-
nication system in AWGN. For the sake of simplicity, the

number of levels, M, is set to 4, and discrete signals of
± 3 and ± 1 are chosen to study the dynamics of the
new chaotic attractor using the one-dimensional chaotic
map. Four important regions are chosen to illustrate the
performance. A bit sequence is first mapped to symbols
by a mapper based on the value of M as illustrated in
Fig. 4. Figure 8 shows the discrete state defined in Eq. 2
and the continuous behavior defined from the discrete
state as described in Eq. 1. The black asterisks in the
figure represent new values of the chaotic map defined
for β = 103 ln(2) as defined by Eq. 11. Plotting these
recurring asterisk points in Fig. 8 will draw the chaotic
map of the proposed hybrid chaotic system as shown in
Fig. 9. This figure shows the behavior of four levels in one-
dimensional space with β = 103 ln(2). The data rate for
the damping frequency of 103 Hz and four discrete levels
is (2×103) bps. As a result, spectral efficiency is improved
to 2 bits/s/Hz. Different values of damping factor also pro-
vide supporting evidence that the damping factor does
not affect the shape or the behavior of the chaotic map,
as shown in Fig. 10, which presents the chaotic map for
β = ln(2),β = 103 ln(2), andβ = 106 ln(2).
Although a hybrid chaotic system based on reverse

time has previously been able to achieve high frequencies
[40, 44], a multilevel approach has not previously been
applied. Thus, this new approach can provide an oppor-
tunity to employ chaotic signals in modern wireless com-
munication systems with different frequencies and high
transmission rates. The modification of discrete state in
a hybrid chaotic system operates as an oscillator to pro-
vide a generalized fixed basis function and to implement
a multilevel modulation technique. By recalling Eq. 1 and
its derivative Eq. 2, 3D and 2D phase space projections for
these levels can be drawn as in Figs. 11 and 12.
In these figures, the four levels, ± 1 and ± 3 are very

clear. Since the data rate is 2 kbps, the damping frequency
will be 1 kHz, and the damping factor will be β = 103 ln(2).

Fig. 6 The noise performance boundary of GM-HCO with data sequence of ± 1
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Fig. 7 Signal space representation of GM-HCO

A matched filter derived from the generalized fixed
basis function of GM-HCO can extract the noisy signals
received as in conventional communication systems. The
threshold equation for each level will also be found by
extracting the optimal values of the discrete states.
Thus, it is fairly straightforward that the symbols

(± 3 and ± 1) can be extracted so that the two bits
(symbols) can be recovered at the receiver side. The sig-
nificant findings were carried out using the MATLAB

software, and in these experiments, the timing problem
was assumed to be solved. The shape of the transmit-
ted signal can be seen in Fig. 8. Here, the chaotic signal
carries two bits per 1 millisecond which represent one
of four symbols (± 3 and ± 1). Figure 13 presents the
performance of the GM-HCO based on the generalized
fixed basis function (Eq. 9) for two levels under AWGN
channel conditions. As can be seen in this figure, there
is a significant improvement in noise performance using

Fig. 8 Numerical simulation of proposed hybrid chaotic signal with β = 103 ln(2)
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Fig. 9 A chaotic map of the proposed system with β = 103 ln(2)

Fig. 10 A chaotic map of the proposed system with variable damping frequencies

Fig. 11 3D phase-space projection
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Fig. 12 2D phase-space projection

the generalized fixed basis function compared with a
hybrid chaotic system based on forward time and DCSK.
Therefore, it is proven that the GM-HCO for two lev-
els outperforms that of a hybrid chaotic system based
on forward time at approximately 1.2 dB of Eb/No at
10−3 of BER, 3.2 dB of BFSK, and 5.7 dB of DCSK
spreading by 10 chips, as well as providing performance
approximating that of BPSK. Figure 14 shows the noise
performance for four levels, using the proposed system
based on GM-HCO compared with chaotic communi-
cation systems and a conventional system. It indicates
that the proposed system provides improved performance
in comparison to existing chaotic communication sys-
tems, including MCS-DCSK [46], M-ary FM-DCSK [47],
M-ary OM-DCSK [21], QCSK [48] and MC-DCSK [49].
For consistency of comparison, all systems were cho-
sen with four levels. Although increasing the number of

levels leads to degradation of GM-HCO, the proposed
system is more secure than periodic communication sys-
tems, such as M-ary PAM [50] due to its chaotic nature.
In addition, because the proposed system is based on a
coherent receiver, it is superior to chaotic systems based
on a differentially coherent receiver in terms of bandwidth
efficiency, power consumption, noise performance, data
rate and simplicity. Finally, Fig. 15 shows that the noise
performance is also not affected by variable damping
frequencies (1Hz, 1kHz, and 1MHz).

5 Discussion
Since the GM-HCO is based on reverse time, a damping
factor offers an opportunity to achieve variable through-
put, higher operating frequency, low-power consumption,
and low-cost to design compared with hybrid chaotic
systems based on forward time. The cost and power

Fig. 13 BER performance of the proposed system based on GM-HCO for two levels over AWGN channel
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Fig. 14 BER performance of the proposed system based on GM-HCO over AWGN channel with four levels

consumption of systems based on GM-HCO are low
because, as designed in [24], the hybrid chaotic system
based on reverse time can be implemented using passive
elements, such as resistors, capacitors, and inductors. By
contrast, hybrid chaotic systems based on forward time
need active elements, such as operational amplifiers [28].
Conventional chaotic systems also need active circuit ele-
ments [15]. Its dynamic map was created to examine the
chaotic behavior of the differential equation of the oscilla-
tor in a multilevel approach. The novel generalized fixed
basis function of the oscillator was then derived. Fur-
thermore, the BER expression for two levels was derived
to emphasize that the simulation matched theoretical
outcomes. Simulation results indicated that the perfor-
mance of the proposed GM-HCO based on a general-
ized fixed basis function provides improved performance
compared with hybrid chaotic systems based on forward
time, DCSK and some chaotic communication systems
based on the M-ary concept and a differentially coher-
ent receiver. It also provides comparable performance
to conventional communication systems under AWGN

channel conditions. Moreover, the results indicate that
the proposed system provides lower power consumption,
better bandwidth efficiency and data rate, and greater
design simplicity. Although its noise performance will be
degraded if the number of levels is increased, its transmit-
ted signal is chaotic compared with periodic communica-
tion systems under AWGN.

6 Conclusion
This paper evaluated the noise performance, complexity,
and power efficiency of an implementation of a chaotic
communication system based on GM-HCO in a multi-
level approach under AWGN channel conditions. The
proposed hybrid chaotic oscillator offers a general-
ized framework to implement chaotic communication
systems. The proposed system has flexible parameters
such that it can be adopted for any communica-
tion scenario. Simulation and theoretical evaluations
indicate that the systems based on the proposed
oscillator outperform existing chaotic communication
systems in terms of implementation complexity and

Fig. 15 BER performance of the proposed hybrid chaotic system over AWGN channel with variable frequencies
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bit-error-rate performance. Therefore, the proposed oscil-
lator is a potential candidate for power efficient commu-
nications systems, such as wearable devices and IoT.
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