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Abstract

The study and the detection of possible network attacks are essential for wireless networks, in particular for mobile
cognitive radio networks due to its characteristics such as the dynamic spectrum allocation and constant frequency
hopping. The primary user emulation attack is one of the most significant attacks in cognitive radio, because it
hazards the complete cognitive cycle. The techniques used for the detection of primary user emulation found in
the literature are based on a fixed attacker location. However, in a mobile environment, the attacker usually has
dynamic locations and this compromises the current applied security techniques and generates inefficient attack
detection. Therefore, our work proposes a novel technique using cross-layer design for the detection of primary
user emulation with mobility. This attack detection technique was tested with experiments using software-defined
radio equipment and mobile phones at indoor scenarios with dynamic locations and with a mobile phone base
station built up also with software-defined radio. The obtained results show that the combination of the three
utilized techniques, energy detection, motion estimation, and application information analysis, are able to optimize
the detection with around 100% of effectiveness for the primary user emulation attack with dynamic location. The
proposed technique shows that the energy detection time is around 100 ms and for the processing time of the
information analysis in the mobile phone is about 30 s. This result shows a practical and effective approach to
detect primary emulation attacks. The proposed technique, to the best of the authors’ knowledge, has not been
presented before in the literature with experiments neither with mobility conditions of the attacker as presented in
our proposed work.
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1 Introduction
The cognitive radio networks (CRN) use software-
defined radio (SDR) as a tool to find free spaces in the
frequency spectrum assigned to a licensed primary user
(PU) and also to transmit as an unlicensed secondary
user (SU) [1]. Research found in the literature have
shown that primary frequencies are not efficiently used
especially in mobile networks [2–4], showing the rele-
vance of CRN implementation to optimize spectrum
utilization thinking on Internet of Things (IoT) applica-
tions. The CRN transmission equipment must have the
ability to sense the frequency spectrum in real time to

detect the presence of primary users using specific fre-
quencies and move to another one, in order to avoid
interference with the licensed primary user [5].
The CRN security has been studied and there are new

specific attacks to the network, but still there are open
issues to be solved in this field [6]. The exclusive attack
called primary user emulation (PUE) is one of the most
relevant attacks to analyze because it can completely dis-
able the network; it is produced when an attacker
mimics the PU signal. As the CR senses the spectrum all
the time, the PUE signal is fraudulently detected as a
primary user, and the secondary user must release the
channel [7].
Several authors have studied how to detect PUE attack

in CRN, but just a few have made it specifically in a mo-
bile cognitive radio network (MCRN) [8, 9]. In general,
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the detection to hop to another frequency as soon as
possible to avoid interference is made by methods such
as energy detection [10], localization [11], and among
others as shown in Section 3; however, with dynamic lo-
cation scenario, these traditional methods will increase
the false alarm results.
Research found in the literature, for example, in

[8, 12, 13], shows the use of the cross-layer design
for detection optimization of the PUE attack, but
this is not validated with a practical implementation,
especially in a MCRN.
The present work is organized as follows: Section 2

presents the methods used for experiments. The related
work is presented in Section 3. In Section 4, the pro-
posed detection system is described. In Section 5, results
and discussions are shown. The contributions are pre-
sented in Section 6 and the conclusions in Section 7.

2 Methods
2.1 Primary user emulation attack
The PUEA in this work is generated by a software-defined
radio (SDR): universal software radio peripheral (USRP-
N210), and there are two proposed scenarios. The first
scenario is quite basic, there is no need to measure the
spectrum, because it always transmits the signals without
any purpose, its location is static and its power is fixed.
The other scenario is the smart attack; it transmits when
there is no PU present. Its location is dynamic and its
power can be fixed or variable. We used a fixed power in
the experiments because the connection present fails
when the power is variable and the location is dynamic.
The experiments focus on selfish attack, because the mali-
cious can be seen as a jammer [14, 15]. A USRP is used
for the PUE network due to the sensing and transmission
capabilities. In the experiment, a primary base station
(PBS) emulation is used for the connection of two PUEs.
The purpose of the experiment is to create and detect this

centralized PUE at indoor environment with walls and
furniture among other obstacles.

2.2 Mobile cognitive radio network
The purpose of the MCRN is to provide services in an
independent network without a license, and these ser-
vices can be phone calls, SMS, or data. The cognitive
base station (CBS) senses the environment in a specific
frequency range using the spectrum analyzer RTL2832U;
if a PU in a primary base station (PBS) is not using its
assigned frequency, the CBS use it to communicate with
a SU. Even though it is a centralized model with the
CBS, the system could be modified as distributed and
cooperative environment to improve performance [12].
As mentioned before, the MCRN is implemented in a

USRP-N210, with a full operative GSM PBS, the soft-
ware used is OpenBTS [16, 17]. The CBS allows mobile
phone calls and to interchange SMS between two
phones. The architecture of the OpenBTS can be seen in
Fig. 1 and comprises an “asterisk” server to control the
voice, a “SMS queue” to control the short message ser-
vices (SMS), and a “SIPauthserve” to control the users to
be connected to the network. The PUE and CBS use
GNU radio to change the OpenBTS parameters and to
implement the cognitive protocol.
Another USRP-N210 with OpenBTS is used as a PBS-

GSM to probe all operational parameters copying the public
parameters from standard mobile operator in Colombia.
The test bed used consists in the implementation of the
PBS, PUE, and CBS with PU and SU as can be seen in Fig. 2.
Additionally, a cognitive radio network protocol was

designed and implemented to switch the CR device fre-
quency depending on the PU or PUEA detection based
on [18], and this will be explained in Section 4.

3 Related work
In this section, PUEA, cross-layer design, and IoT
security-related works are defined.

Fig. 1 Open BTS architecture [16]
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3.1 Primary user emulation attack
In the primary user emulation attack (PUEA), the radio
transmission system mimics the primary signal, causing
the attacker to be fraudulently identified as a primary
user, assigning itself the available frequency. Thus,
PUEA on the network causes bandwidth waste, quality
of service (QoS) degradation, denial of service (DoS),

interference to the primary network, and unreliable con-
nections [6, 19–24], among others, affecting all the cog-
nitive cycle [25], causing a negative impact on the
system performance.
Techniques such as energy detection [10], cyclosta-

tionary characteristic analysis [26], localization [11], on-
line learning [27], particle swarm optimization [5], and
authentication [28] try to provide the ability to distin-
guish between the primary user and the attacker [29].
However, these techniques were designed for a fixed lo-
cation attacker, and in most of these techniques with
changes on the attacker’s location, the system is con-
fused and the probability of the right detection will de-
crease significantly [29]. The other problem observed is
that a number of techniques propose to alter the PU op-
eration, but in principle, the MCRN should not interfere
with the PU behavior.
The PUEA classification is described in Table 1, con-

sidering the attack purpose, power level, position, and
general functionality [22, 29, 30].

3.2 Cross-layer design
Examples of solutions that have been proposed for the
detection of PUE in mobile cognitive radio networks
consist in the cross-layer design [12, 13], since it facili-
tates to obtain and share information between non-
underlying layers of the network architecture, to
optimize security and to mitigate the effects of attacks
on the network [12]. The proposed cross-layer design
uses information collected from radio, PHY, link, and
app layers through a security mechanism, and it is illus-
trated in Fig. 3.
The authors in [8, 24] pointed out that the cross-layer

design can be configured for the detection of PUE at-
tacks. The behavior of the detected PUE attacks is ob-
served in the physical layer, and the upper layers are
informed, such as the radio resource management
(RRM) mechanism in the MAC layer or the routing
mechanism in the network layer [8, 24]. Based on this, a

Table 1 PUE classification, adapted from [22, 29, 30]

Classification of the attacker Category Definition

Purpose Selfish The objective is to use the PU assigned frequency for transmission; it senses the medium to know
when there is no PU.

Malicious The objective is to interfere the PU frequency; it sends noise signals in a specific frequency.

Power level Fixed Constant predefined power level, regardless of the actual power, the power units and the
surrounding radio environment.

Variable It adjusts its power according to the estimated power of the PU.

Position Static The location does not change in time.

Dynamic The position changes constantly, making it difficult to search or crawl.

General functionality Basic It attacks with a fixed power level at static position at any moment, even in the presence of
a primary user.

Smart It attacks when there is no PU, position can be static or dynamic, and it can adapt the power level.

Fig. 2 Proposed test bed
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cross-layer design was implemented in the proposed
CBS, in order to use the energy detection of the physical
layer, the received signal strength indicator (RSSI), and
the authentication information of upper layers, as seen
in Fig. 3. This is in order to detect the PUEA in the
tested scenarios.

3.3 MCRN and Internet of Things (IoT) security
MCRN infrastructure supports mobile cloud computing
implementation and integration with IoT [31, 32]. It is
relevant to understand the security issues which refer to
policies, technologies, and controls to protect data, ap-
plications, and the associated infrastructure [33] includ-
ing the PUEA [34]. User that adopts this technology
should know that all the company’s sensitive information
would be released to a third-party cloud service provider
which is taken as a great risk [35]. On the other hand, as
it could be implemented on a MCRN, it is sensitive to
PUEA and in works as [36] systems were developed to
detect PUEA in IoT, and as a future work, they planned
the analysis of the users’ mobility which is incorporated
in our proposal.
For example, in security of IoT-based healthcare,

smart building, or big data, the system needs to have
scalability, reliability, adaptability, fault tolerance, and
interoperability [37–39], and in case that a PUEA is suc-
cessful, MCRN will not have anyone of these. A number
of authors propose the use of cryptographic techniques
[40], but as usual, the PU protocol cannot be changed by
SU, and we proposed not to alter the PU operation.

4 Proposed detection system
In this section, the three used detection systems are de-
fined, specifying the algorithms, flowcharts, and equa-
tions utilized. Therefore, the energy detection uses the
PHY layer information, and the motion detection uses
the RSSI and SNR given by APP and the MAC layer.

4.1 Cross-layer design
There are two main test scenarios, the basic and the
smart, and to find an optimal solution for both of them,
the detection uses an energy detector, motion detection
based on trilateration and information from the mobile
phone apps.

4.1.1 Energy detection
Most of the authors, such as [9, 41], assume that the PU
has high signal power (in the order of kW), considering,
for example, TV transmission towers and where the PU
or PUE have low power compared with the transmission
of the PBS. Hence, the energy detection model tries then
to find the optimal threshold to the CRN to distinguish
between PU, SU, and PUEA [9]. In mobile networks,
BTS is limited to power units in the order of watts (W),
and the PU is in order of milliwatts (mW) as well as the
PUE’s power, but it can be adapted to watts (W) with
the use of a power amplifier. In this environment, energy
detection cannot identify between PU and PUE but de-
tects a user in the same frequency if it is above the
threshold, as illustrated in Fig. 4.
The mathematical definition of PUE considers n(t) as

the noise signal, h(t) as the impulse response of the sys-
tem, s(t) as the received signal from a PU, s'(t) as the
mimic signal from the PUEA, and y(t) as the received
signal [42], as shown in Eq. 1.

yðtÞ ¼
nðtÞ SU

hðtÞ � sðtÞ þ nðtÞ PU

hðtÞ � s0ðtÞ þ nðtÞ PUE

8><
>:

ð1Þ
In common implementations of MCRN, the location

of the PBS and CBS is fixed and the PUEA can be close
to the PBS imitating the same power level, or, in fact,
depending on the position, the power of the PUEA sig-
nal could be higher than the PBS. If a binary hypothesis
test is used under the aforementioned conditions, a fixed
threshold cannot be identified because it depends on the
position of the PBS, PUEA, and CBS. In other words, the
CRN can detect a received signal level, but it cannot
identify if it is from the PBS or PUEA. In this research, a
signal energy detection is used to distinguish between
noise and the signal of the PBS or PUEA, allowing the
CRN algorithm to change its frequency in case that it is
necessary.

4.1.2 Motion detection
Traditional PUEA analysis does not take into account
when the PUEA position changes dynamically. From a
practical approach, the energy detectors fail when the
PUEA is moving. Based on [5, 11, 43], a least square sys-
tem using RSSI is used. The idea is to install three

Fig. 3 Proposed cross-layer design for security in cognitive radio
networks, adapted from [12]
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sensors to read the RSSI indicator of PUE and estimate
its position. Three phones utilized as sensors on the CBS
and PBS transmission range are used to read RSSI
values. These values have a little variation in time; if the
PUEA is fixed, Kalman’s filter approach can be used to
decrease the error, but with a dynamic location PUEA,
this cannot be achieved. The detection system reads the
RSSI values in real time and calculates the average with
minimum error.
The free space model is commonly used as propagation

model, the received signal for model is given by Eq. 2 [43]

Pr dð Þ ¼ Pt � Gt � Gr � λ2

4� π � dð Þ2 ð2Þ

where Pr represents the received power, Pt is the trans-
mission power of sender, Gt is the gain of the transmit-
ter, Gr the gain of receiver, and λ the wavelength. The
detection system is using the RSSI information given by
Eq. 3 [43]

RSSI ¼ −10� n� Log10 dð Þ þ A ð3Þ
where n is the propagation path loss exponent, d repre-
sents the distance from the sender, and A is the received
signal strength in decibels at 1 m of distance from the
sender [43].
The used experiment is shown in Fig. 5. The three

sensors (mobile phones S1, S2, and S3) were used to
read the RSSI from PUE; this information is averaged
and transmitted to the CBS.
Based on the RSSI information, the algorithm estab-

lishes the current position of the PUE using the least
square method. The actual position is calculated in real
time and it detects changes in the PUEA position. Thus,
the detection of the motion indicates that it is a PUEA
due to the PBS is fixed.

Fig. 5 Proposed motion detection system

Fig. 4 Energy detection threshold for PU or PUE
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The relative positions of the sensors, meaning mobile
phones, are known S1 (x1, y1), S2 (x2, y2)… Sn (xn, yn),
and a blind PUE node is in K (x, y); the distance
from S1 to S2 is 3 m, from S1 to S3 is 3.35 m, and
from S2 to S3 is 3.35 m, as shown in Fig. 5. Using
the least square algorithm, the position can be esti-
mated from the position of the sensors. The distance
equations are shown in Eq. 4 [34].

ðx1−xÞ2 þ ðy1−yÞ2 ¼ d1
2

ðx2−xÞ2 þ ðy2−yÞ2 ¼ d2
2

ðxm−xÞ2 þ ðym−yÞ2 ¼ dm
2

8><
>: ð4Þ

By subtracting the mth equation from the first m−1 in
Eq. 4, the linear Eq. 5 is obtained [44]

A� K ¼ b ð5Þ

where A is shown in Eq. 6 and b in Eq. 7.

A ¼
2� ðx1−xmÞ 2� ðy1−ymÞ
2� ðx2−xmÞ 2� ðy2−ymÞ
2� ðxm−1−xmÞ 2� ðym−1−ymÞ

8><
>: ð6Þ

b ¼
x1

2−xm
2 þ y1

2−ym
2 þ d1

2−dm
2

x2
2−xm

2 þ y2
2−ym

2 þ d2
2−dm

2

xm−1
2−xm

2 þ ym−1
2−ym

2 þ dm−1
2−dm

2

8><
>: ð7Þ

The PUE position is obtained by Eq. 8 [44].

K ¼ AT � A
� �−1 � AT � b ð8Þ

The PUE position (x, y) is extracted from K, an array
of two numbers [44]; these equations are implemented
in Python, and a multithread client-server application
was developed in Android Studio to send the informa-
tion to the CBS.

4.1.3 Application data
Application information is shared by using the sensor
network. The first data transmitted are the RSSI of each
phone. Information is transmitted by PBS, CBS, or PUE;
the data shared are mobile country code (MCC), mobile
network code (MNC), short name, location area code
(LAC), and cell identification (CID), among others, that
conform the global cell identification (GCID); these in-
formation is useful to recognize if it is a valid operator,
and these information may change in agreement with
each country regulations.
Even if the PUEA is smart, there are things that it can-

not do. For example, PUEA can mimic the MCC, MNC,
and LAC, but it has to assign a different CID, and the

Fig. 6 Proposed MCRN algorithm
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Fig. 8 Proposed PUE algorithm

Fig. 7 Proposed PBS algorithm
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short name cannot be the same of the real PBS, so it
cannot mimic all the information required. A GSM net-
work uses the same short name and different CID, and
the network is connected to a shared home location
register (HLR) that contains the PU information and
based on signaling mobile user can do the handoff be-
tween PBS. As the PUE does not have a connection to
the shared HLR, it does not know if a user is PU or SU,
then PUE has two ways to deal with this. The first op-
tion is to allow access to the network to everyone with-
out considering the type of phone, operator, or SIM
card. The other option is to allow access to selected
users. Then, the detection system attempts to connect to
the network and to send the information to the CBS,
such as the GCI, short name, and the authentication an-
swer. A site survey was made to know the operator’s
short name and global values to be able to compare
them with the PUEA information.

4.1.4 Primary user emulation defense
The combination of the three methods described before,
i.e., energy detection, localization detection, and the use
of the application data, allows to detect the PUEA with

accuracy. The next step in order to defend from PUEA
is to save the information as a fingerprint in a database
in the BS, as a blacklist. From a regulatory point of view,
the crucial information could be shared to the PU or to
the primary network to let them know the characteris-
tics of the attacker, and thereby, they can take the per-
tinent legal actions, depending on each country’s
regulations.
The SU connected to the MCRN must authenticate

and its IMSI is saved in a database, and thus, only au-
thenticated users can access the system. There are two
alternatives for authentication from the PUE’s point of
view, one alternative is to allow only to the users that
want to subscribe and the other way is to let everyone to
connect to the network freely, which is not the best
choice for the PUE in terms of security.

4.2 Detection system flowchart
Algorithms are described in this section, corresponding
to the MCRN, PBS, PUE, and detection system.

4.2.1 MCRN algorithm
The MCRN algorithm initializes the CBS and OpenBTS
and selects an absolute radio frequency channel number

Fig. 9 Proposed detection algorithm
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(ARFCN) in the selected range; this is the frequency
assigned to downlink (DL) and uplink (UL) for a PU to
communicate with the PBS. For this scenario, we use
GSM-850MHz, and after a site survey, we found that
ARFCN 166 and 172 and upper frequencies are not
used, the 166 frequency band was chosen which is 876.8
MHz in DL and 831.8 MHz in UL, and the 172 fre-
quency band which is 878MHz in DL and 833MHz
in UL, since they are not used. The presence of PU
or PUE are constantly verified by energy detection,
and in case of PU or PUE detection, the operation is
changed to another frequency, or it is stopped if there
is no available free frequencies, as illustrated in the
algorithm in Fig. 6.

4.2.2 PBS algorithm
The PBS mimics, a real, i.e., an operative PBS mobile op-
erator called XX, identified with MCC: 732, MNC: 10X,
LAC: 5XX, and CID: 21XXX. We called XX_ to the ex-
perimental network with our imitated PBS. The used
frequencies are the same as the assigned to XX (850

MHz), and they allow phone calls or SMS between two
phones. The PBS is used to control the calls and the
spectrum access for PU in laboratory conditions.
The PBS algorithm initializes the PBS, and if a PU is

authenticated and needs service, it assigns a channel and
transmits as it is shown in Fig. 7.

4.2.3 PUE algorithm
The PUE mimics the operative PBS of the XX operator,
and it is identified with MCC: 732, MNC: 10X, LAC:
5XX, and CID: 21XXX. The short name for the experi-
mental network is XX2. The used frequencies are the
same as the assigned to XX (850MHz), and they allow
phone calls or SMS between two phones. The PUE has a
dynamic location to represent the case scenario condi-
tions of a mobile attacker. Then, it transmits in the ab-
sence of the PU and the signal is stable to the PUEs
connected to it, i.e., the power is constant. In another
scenario, the power could be adaptive, but in practice,
this causes instability in the PUE connection. The PUE
only allows the connection of previously phones config-
ured for PUEA in its database. If other phone tries to
connect, the connection is rejected. The PUE moves ran-
domly in the coverage area. The use of the spectrum
analyzer is reserved for smart attacks, and thus, it was
not required in case of a basic attack.
The PUE algorithm initializes the PUE; if the PUE fre-

quency is free, PUE is authenticated and needs services,
and it assigns a channel and transmits; if a PU is de-
tected, it makes a frequency hop or ends the

Fig. 10 Probability of detection vs probability of false alarm results for AWGN channel

Table 2 Energy detector simulation parameters

Parameter Description

Simulation method Monte Carlo

Sample points N = 10,000

Signal to noise ratio − 8 dB, − 10 dB, − 12 dB, − 14 dB, − 16 dB

DL frequency 876.8 MHz

Noise signal AWGN

Transmitted signal x(t) = 2 × cos(2 × pi × 878.8MHz × t)
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transmission if there are no more free channels as is
shown in Fig. 8.

4.2.4 Detection algorithm
The first part of the detection algorithm is to use the en-
ergy detection to find if there is a PU or PUE transmit-
ting in the selected ARFCN. The advantage of this is
that in less than 100 ms, the detection system indicates
that CBS has to release the frequency, as shown in the
Section 5. At this point, when the energy detection is ac-
tivated, the system starts the server to communicate
with the client applications in the mobile phones used as
sensors. It identifies the networks transmitting, XX_ or
XX2, and try to authenticate. If it can make authentica-
tion (Auth), it sends the short name and GCID informa-
tion to the CBS, and it takes the three RSSI and applies
the least square algorithm to locate the position of the
PUE.
Therefore, the system can identify if the information is

out of the used standard for telecommunication opera-
tors. In parallel, the system reads the position in real
time, and if the movement is more than 30 cm in any
direction, it is identified as a PUE. In our system, if the
detection algorithm identifies PUEA by means of the en-
ergy detection and more than one of the other used
methods detect it, then the system shows a positive flag
of PUE in the MCRN software and saves the information
in a blacklist database to avoid future connection
attempts.
The detection algorithm is shown in Fig. 9.

5 Results and discussion
In this section, the results of the test scenarios are pre-
sented and analyzed.

5.1 Energy detection
In MCRN, the double threshold Eq. 1 is transformed to
Eq. 9.

yðtÞ ¼ nðtÞ SU

hðtÞ � sðtÞ þ nðtÞ PU=PUE

(

ð9Þ
This is because the energy detector cannot differenti-

ate between PU and PUE by itself.
A binary hypothesis test is used to find out the prob-

ability of detection (PD) and the probability of false
alarm (PFA); this is defined in Eq. 10.

Y ðnÞ ¼ wðnÞ H0

sðnÞ þ wðnÞ H1

(
ð10Þ

It is assumed an additive white Gaussian noise
(AWGN) channel, with a constant spectral density, noise
with zero mean, and variance one and is assumed to be

Table 3 Parameters for energy detection

Parameter Description

Number of samples 6000 at each point of the grid

Total samples N = 600,000

Signal to noise ratio − 9 dB

Threshold value − 60 dBm

DL frequency 876.8 MHz

Noise signal AWGN

Primary users 2 (PU1, PU2)

Service One phone call

Time of measurement 10min for each point of the grid

Confidence level 95%

Margin of error 4%

Fig. 11 Power level measured near to the MCRN
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white over the bandwidth of consideration; w (n) is
AWGN, n is sample index, and s (n) is the PU/PUE sig-
nal. Hypothesis H0 states that there is no PU/PUE de-
tected in the channel. H1 indicates that PU/PUE is
present. We use an energy detection based in [45, 46]; N
is the total number of samples of the energy, and Y(n)
are added during one Si detection interval, as shown in
Eq. 11.

Z Ynð Þ ¼ 1
N

XN
n¼1

Y nð Þj j2 ð11Þ

Comparing Z with a threshold λ, the CBS decides
about presence or absence of PU/PUE signals. The prob-
ability of detection and the probability of false alarm for
the energy detection are defined in Eq. 12.

Pd ¼ p Z≥λjH1ð Þ;
Pfa ¼ p Z≥λjH0ð Þ: ð12Þ

Z is a Gaussian random variable with zero mean and
variance σm

2, and γ is the signal to noise ratio (SNR).
The probability of false alarm (PFA) and the probabil-

ity of detection (PD) are defined in Eq. 13

Fig. 12 GNU-radio view of the experiment of downlink DL-876.8 MHz
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Pd ¼ Q
λ−N−N � γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� N þ 4� N � γ
p

� �

Pfa ¼ Q
λ−Nffiffiffiffiffiffiffiffiffiffiffiffiffi
2� N

p
� � ð13Þ

where Q(.) is the Gaussian complementary function [46].
Table 2 shows the simulation parameters for energy
detector.
Figure 10 shows the results of the receiver operating

characteristics (ROC) for different SNR values, which
are consequent with [46, 47]. These curves serve as a
parameter to study the performance of the sensing
scheme [46, 47].
In the detection model, the total coverage radio was

divided in a grid with 100 parts as shown in Fig. 14. We
measure the power signal in each point of the grid in
case of the presence and absence of the PU or PUE. Ac-
cording to [47], the IEEE 802.22 standard recommends
PFA < 0.1 for spectrum sensing. Analyzing the simulation
results for this PFA, we expect an 88% of detection. To
find an optimal threshold to the experiment, PU power
level was measured and 600,000 samples were taken in
the lowest part of the grid close to MCRN; the lowest
power measured was − 60 dBm as shown in Fig. 11, and it
is used as the threshold for the experiments. With these
samples, the confidence level is 95% and margin of error
is 4%. The margin of error is the range of values below
and above the sample statistic in a confidence interval.
To probe the energy detector, the power signal in the

frequency assigned is measured every 1 ms; to avoid
error, 100 values are averaged according to Eq. 11. In
100 ms, the system detects the presence of a PU/PUE
signal, comparing with empirical threshold from Eq. 12.

The parameters shown in Table 3 were considered for
the experiment.
As an example of received signal, Fig. 12 shows the

GSM downlink spectrum measured at 876.8 MHz, with
a 200-kHz bandwidth, using the GNU-radio platform
[48]. The algorithm calculates the average, and using a
specific threshold, a PU/PUE is detected and the CBS is
notified with a binary result, one for detection and zero
for no detection of PU signal.
Software was programmed to save the binary data re-

sults from energy detection. Results from experiment
show the detection of 93% of positive PU presence as
shown in Fig. 13.

5.2 Motion detection
The motion detection has two parts, the learning process
and the position estimation. In the learning process, the
mobile phones used as sensors are placed and the dis-
tances are calibrated with a PUE; the parameters for the

Fig. 13 Energy detection results

Table 4 Parameters for motion detection learning process

Parameter Description

Number of samples 10,000 at each point of the grid

Total samples N = 1,000,000

Averaged values 50

Location algorithm Least square

Sensor phone type Samsung J7 (S1), Alcatel 5026a, Kempler &
Strauss plus 5.5”

Service One phone call

Time of measurement 4 min for each point of the grid

Confidence level 95%

Margin of error 4%
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least square algorithm are updated. The second part con-
sists in reading the averaged RSSI values from the three
sensors and to estimate the position. In order to get rea-
sonable measures in real time, for the average, 50 values
are taken. Kalman’s filter cannot be implemented because
the PUE could be in movement. The parameters for mo-
tion detection learning process are shown in Table 4.

For this experiment, 10,000 samples were taken in
each one of the 100 steps of the grid, the position of
each component for the experiment is shown in Fig. 14.
The last step in the motion detection is to measure

the variation of position against the first one taken. If
this variation is more than 30 cm (one grid step), the
system detects a movement and identifies it as a PUEA.
If there is a negative position, it indicates out of the grid,
but it can read the movement too. Figure 15 shows one
example of the RSSI variation before the average with a
fluctuation of +/− 4 dBm.
Figure 16 shows the RSSI variation after average RSSI.
The average position error is less than 15 cm (5%) of

the total grid; this is the reason why the assigned pos-
ition variation is set to 30 cm move. The position error
measured to a distance from 0 to 3 m can be seen in
Fig. 17.
The generated movement is random to test the sys-

tem. Ten thousand RSSI signals were measured and the
movement condition is one grid (≥ 30 cm). Therefore, if
the movement is more or equal to 30 cm, it is detected
as PUE. The experiment starts with PUE in one position
of the grid, then it makes random movements, and the
algorithm compares with the initial position marking it
as PUE. The PUE is placed in 100 points at the grid for
the experiment, and the position is evaluated after 10 s
to detect possible movement. The experiment parame-
ters are shown in Table 5.
Results are saved as a binary flag (0, no movement, or

1, movement); the system detects that a suspicious PUE
is moving 97% of the times because of the RSSI variation
error as shown in Fig. 18.

Fig. 15 Static position variation in time

Fig. 14 Position grid
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5.3 Application data
Based on measures of the site survey and the experi-
ments’ configuration settings in the PU and the PUE,
data from operators in Colombia were identified with
the following information: MCC = 732, MCN = 101-
Claro, 102-movistar, 111-tigo, 142-une, and 154-virgin.
Then, the application sends information such as the
short name of the network, the MCC, and MNC to the
CBS. The CBS compares received data with the real op-
erator’s information and thus identify it as a possible PU
or PUE. In addition, the sensors S1, S2, and S3 are au-
thenticated at the network. If both the information and
the authentication are alright, the suspicious mobile fi-
nally is identified as PU. On the contrary, the mobile is
marked as PUE. The mobile phones used as sensors are
configured as 2G operation mode on its internal

configuration, and an example of this is shown in Fig.
19, and the mobile phone lists the available networks in
Fig. 20. This is an example of the mobile phone screen,
where the software made it automatically.
In case of the presence of any other short name in the

system, i.e., another operator, the sensors will try to con-
nect and extract its information in parallel with action
taken by the motion detection algorithm. In the experi-
ments, the default name of the PUEA is “01-001” or also
the “range network,” depending on the SDR, but if it is
imitating a true PU, the attacker appears similar, for ex-
ample, like Operator_. We start the test making a smart
PUE that mimics a PU, but as the system identifies a no
valid short name, or if the authentication fails, it is
marked as PUE, as seen in Fig. 21.
If PUE mimics the real short name of the operator, the

algorithm detects a duplicate name and tries to authenti-
cate both to identify the PU and the PUE correctly.
The parameters for the experiment are shown in Table 6.
The results are saved as a binary result (0, authentica-

tion OK, and 1, no authentication). They show that de-
tection of authentication is made at 100%, as shown in
Fig. 22.

5.4 Computational complexity
The computational complexity is calculated according to
[49] by counting only the number of real multiplications,
real additions, and comparisons. These operations are
calculated in the CBS. It is denoted as the number of
averaging values NAV, the number of fast Fourier trans-
form (FFT) points is NFFT, and the number of sub-
channel is NC. The number of real operations for energy
detection (Ce), motion detection (Cm), and application
data (Ca) are described below in Eq. 14.

Fig. 17 Position error

Fig. 16 Average RSSI with static position in time
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Ce ¼ 7NAVNFFT þ 5NFFT log2NFFT−
NFFT

NC
Cm ¼ 174NAV

Ca ¼ 9NAV

ð14Þ

For energy detection, the complexity indicator is
medium and for motion detection and application data
is low. Energy detector in frequency is at the same level
that superimposed training (ST) [50], covariance-based
detection, and wavelet-based detection [49]. The motion
detection and application data are classified at the same
level that energy detection in time, but most of the
methods are in medium complexity [49].

5.5 Analysis of the results
The empirical threshold for energy detection was
acquired by measures in the whole coverage area; this is
in order to obtain better detection results. The motion
detection system responds to a 30-cm movement; it
detects 97% of the PUE with dynamic location by

comparing the initial position with samples of the pos-
ition every second. The proposed application extracts
every 30 s crucial information based on authentication,
RSSI, and the list of available networks. This is in order
to test if there is presence of the PU or the PUE. And
thus, this method detects 100% of PUE attacks.
In case that the PUE mimics the short name of the

network, the system detects identity duplication. The PU
is not able to connect to the network because PUE does
not share the database with a real network, and thus, it
cannot make the handoff. PUE is not able to authenti-
cate the PU or SU because it does not have previous
knowledge of the IMSI or any information of the users.
In order to authenticate users, PUE must know the IMSI
previously.
After the detection system identifies a PUE attack, the

MCRN knows that it is not a PU and it can continue
transmitting data to SU. If PUE attack continues, it
could be considered as a jammer for PU and SU affect-
ing both the primary network and the secondary
network.
The computational complexity is low for motion

detection and application data. Energy detection com-
plexity is medium as most of the methods found in the
literature.

6 Contributions
The main contribution of this paper is that it imple-
ments the MCRN, the PBS, and the PUE attack and
establishes three methods to detect it through a novel
cross-layer design technique which includes analysis in
the physical, medium access control, and the application
data with users and PUE in motion.
This attack detection technique was tested in a test

bed using software-defined radio equipment and mobile
phones at indoor scenarios with static and dynamic

Fig. 18 Motion detection results

Table 5 Parameters for motion detection

Parameter Description

Number of samples 100 at each point of the grid

Total samples N = 10,000

Signal to noise ratio − 9 dB

Movement threshold 30 m

DL frequency 876.8 MHz

Noise signal AWGN

Secondary users 2 (PUE1, PUE2)

Service One phone call

Time of measurement 10 s for each measure

Confidence level 95%

Margin of error 4%
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locations to generate the MCRN. The attacks and a mo-
bile phone base station were also built up with software-
defined radio to emulate a PBS.
To the best of the authors’ knowledge, the cross-layer

design proposal for PUE has not been presented before
in literature with experiments neither, with mobility
conditions of the attacker as presented in this research
work.

7 Conclusions
We have studied the methods for detection of primary
user emulation and proposed a novel technique using
cross-layer design with a static or dynamic location of
the attacker. The experiments using mobile phones and
a software-defined radio test bed probed were useful in
showing a lot of possibilities to test the cognitive radio
technology, under a mobile attacker.
The results show that the cross-layer design combin-

ing the three proposed techniques, energy detection,
motion estimation, and application information analysis,
is able to optimize the detection of the primary user

Fig. 21 Available networks with PUE screen in mobile phone

Table 6 Parameters for authentication

Parameter Description

Number of samples 600

Signal to noise r − 9 dB

Movement Random

DL frequency 876.8 MHz

Noise signal AWGN

Secondary users 2 (PUE1, PUE2)

Service Authentication of sensors

Time of measure 30 s for each measure

Confidence level 95%

Margin of error 5%Fig. 20 Network short name view of the mobile screen

Fig. 19 2G configuration view of the mobile screen
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emulation attack with static or dynamic location with
100% accuracy on MCRN. The energy detection system
detects 93% of the signal from both primary users (PU)
and primary user emulator (PUE) with a sample every
100 ms even though the signal to noise ratio (SNR) is
about − 9 dB. This system detects the signals with accur-
acy, which helps to the mobile cognitive radio network
(MCRN) to prevent interference. Motion detection sys-
tem responds to a 30-cm change, and it detects 97% of
the PUE movement with dynamic location by comparing
the initial position with samples of the position taken
every second and reported every 10 s. The proposed in-
formation application extracts crucial information every
30 s based on authentication, RSSI, and the list of avail-
able networks. This detects the presence of PU or the
PUE. These results show a practical and effective ap-
proach to detect primary user emulation attacks.
As future research, we suggest to explore what to do

after PUEA detection. Systems can make an advertise-
ment to operators or regulators about PUE presence,
with specific characteristics in a specific area.
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