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1  Introduction
With the rapid development of smart mobile user equipments (UEs), many applications 
with advanced features have emerged, such as augmented reality, facial recognition, and 
online games. The UEs who have computation-intensive applications to compute may 
demand powerful computing capacity and huge amounts of energy [1]. The demands 
lead to contradictions in UEs which are resource-scarce. The conflict between demands 
and equipments has become the bottleneck to improve the experience satisfaction of 
users. Mobile cloud computing (MCC) [2–4] has been proposed as a promising way to 
address challenges by offloading computing tasks to the cloud which has abundant com-
puting resources and energy. However, for delay sensitive applications, the delay of cloud 
computing is noneligible because of the long distance between the terminal device and 
the cloud [5]. Meanwhile, the burden on fronthaul is huge, which may lead to heavy jam 
in data transmission and computing.

In order to solve above problems, the vision of mobile edge computing (MEC) [2] or 
Fog Computing [6] is proposed as a supplement to MCC [7], which enables applications 
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to run directly at the edge of the network. It extends the traditional cloud computing 
paradigm to the network edge [5] by putting a substantial amount of storage, communi-
cation, control, configuration, measurement, and management at the edge servers [8, 9]. 
With the help of MEC, low latency, location awareness, and high quality of service (QoS) 
for streaming media and real-time applications at resource-scarce UEs can be realized. 
To incorporate MEC in edge devices, some of the traditional access points (APs) are 
evolved to the edge computing-based access points by equipping with a certain caching, 
computing capabilities [10], which are more to be called as fog computing-based access 
points (F-APs).

Some outstanding works have been dedicated to computation offloading. [11] intro-
duced many equivalence definitions of mobile edge computing, mobile edge comput-
ing platforms and architecture design. [12] and [13] discussed security threats of mobile 
edge computing, such as hacking. [14] illustrated the application of mobile edge com-
puting in combination with the Internet of Things. In [15], the UEs, APs, and the cloud 
made up a three layer structure. They process a task collaboratively by offloading in the 
mixed MEC/MCC system. [16] and [17] thoroughly described the envisioned network 
architecture, proposed resource management scheme and analyzed its performance for 
edge/mobile edge computing.

There are also many previous works improve the system performance through the 
optimization of offloading decisions and resource allocation, such as the allocation of 
transmit power, bandwidth, and computation resource. Improvement of the system per-
formance contains reduction in delay or energy consumption [18–20], minimization of 
the system cost [21, 22], improvement of QoS [23], maximization of the revenue of the 
server [24], adaptation user access mode selection mechanism [25]. However, most of 
those previous works put their emphasis on offloading decision making, resource alloca-
tion, or access mode selection, without a joint consideration of them.

Different from the above approaches, in this paper, we study the joint optimization of 
offloading decision making and access mode selection for a mixed MEC/MCC system to 
minimize the expect charge. It is embodied in optimization of computing ratios at each 
layers and the distribution density of APs. It is meaningful to study the distribution den-
sity of APs in MEC due to the edge severs have mobility and controllability. To the best 
of our knowledge, the joint design of offloading decision making and access mode selec-
tion in a mixed MEC/MCC system has not been addressed in previous works. The main 
contributions of this work are summarized as follows.

•	 We analyze the selection probability and corresponding ergodic rate of each mode.
•	 We formulate an optimization problem to minimize the expect charge of computing 

a task in the mixed MCC/MEC system. Due to the multi-access mode, the expect 
charge is in the form of the product of connecting probability of each mode and its 
corresponding charge.

•	 We devise a low complexity algorithm called Iteration of Convex Optimization and 
Nonlinear Programming (ICONP) to solve the formulated NP-hard optimization 
problem. It first fixes the specific variable and transform the original problem into 
a convex problem by geometric mean inequality method. Solve the convex problem 
by CVX tool and get the optimal values of other variables. Then fix those variables 
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which are got from last step and solve the problem with the specific variable by con-
strained nonlinear programming. Do iteration until meet convergence.

•	 We prove the convergence of the proposed algorithm. Simulation results show the 
effectiveness of the proposed scheme with different system parameters.

The rest of this paper is organized as follows. The system model is described in Section 2. 
The mode selection and its corresponding ergodic rates are represented in Section  3. 
Section 4 formulates original problem. Section 5 represents the design of optimization 
algorithm. Simulation results are discussed in Section 6. Finally, we conclude this study 
in Section 7. “Appendix” can be seen in Sect. 8.

2 � System model
We consider a three-layer mixed mobile edge/cloud uplink system, which is consisted of 
a user equipment (UE), a large number of APs, and a remote cloud as illustrated in Fig. 1. 
In this paper, the UE and APs are assumed to be equipped with a single antenna. APs 
which is capable of computing are called as F-APs as well. F-APs are deployed according 
to a two-dimensional PPP(Poisson Point Procession) �f  with density of �1 in a disc plane, 
whose center is the UE. Thus, the deployment of all the APs is an expanded homogene-
ous PPP �d with density of �2 = �1/k , where k ∈ (0, 1] denotes the probability of an AP 
supporting computation.

Without loss of generality, only one intensive computing task Ŵu = {N ,ω} needs to be 
completed for the UE, where N is the size of computing task, ω denotes the number of 
CPU cycles required for computing one bit. In this paper, we assume that computing 
task is divisible, which means that the computing task can be divided into two or more 
parts.

Three computing modes are considered in this paper including F-AP execution mode, AP 
relay mode, and local execution mode, denoted as mode i, i ∈ � = {1, 2, 3} , respectively. 

Fig. 1  System model
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Mode 1 means that the UE computes the task collaboratively with the F-AP and the cloud, 
while mode 2 means that the UE computes the task collaboratively with the cloud, and 
mode 3 is that the UE executes the task locally by adapting its computation capacity. In 
mode i, i ∈ � , the UE first processes αi of the task, where αi ∈ [0, 1], i ∈ � , and α3 = 1 . 
Let α = [α1,α2, 1] . Then, the UE transmits the rest (1− αi)N  bits to the selected AP. After 
that, the selected AP processes ̺ = max{β(2− i), 0} of the received data and then trans-
mits (1− αi)(1− β(2− i))N  to the cloud, where β ∈ [0, 1] . Finally, the cloud computes the 
received data.

When compute some data, the energy consumption Ec and time consumption Tc are 
given as [26, 27]

where κ denotes the effective capacitance coefficient. f is the computation capacity of the 
central processing unit(CPU). D1 is the size of computing data(in bits).

When transmit some data, the energy consumption Et and time consumption Tt are 
given as

where p and r denote the transmit power and rate, respectively. D2 is the size of trans-
mitting data(in bits).

The size of computation outcome is much smaller than that of the computing task. Thus, 
the charge due to downlink transmission of the result is negligible compared to the uplink 
[28, 29]. Combined with Eq. (1)–(4), the charge is the sum of the product of consumed 
energy and its corresponding price and the product of computing delay and its correspond-
ing price at each layer. The charge in mode i, i ∈ � , can be computed as

where floc is the local computation capacity (in CPU cycles/s) of the UE. fAP1 is the com-
putation capacity of the selected F-AP. fAPi, i ∈ ϒ = {2, 3} , is a meaningless constant 
which is not equal to 0 for the rigor of the formula. fC is the cloud’s computation capac-
ity. Ri is the ergodic rate from the UE to the selected AP, while ri is the transmission 

(1)Ec = κ · f 2 · D1

(2)Tc =
D1ω

f

(3)Et = p ·
D2

r

(4)Tt =
D2

r

(5)

Zi =Vloc

(

κ · f 2loc · αiNω + p1
(1− αi)N

Ri

)

+ Gloc
αiNω

floc
+

VAPi

(

β(2− i)(1− αi)Nωκ · f 2APi + p2
(1+ β(i − 2))(1− αi)N

ri

)

+

GAP
β(2− i)(1− αi)Nω

fAPi
+ VCi[1+ β(i − 2)](1− αi)Nωκ · f 2C+

GC
[1+ β(i − 2)](1− αi)Nω

fC
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rate from the selected AP to the cloud in mode i, i ∈ � = {1, 2} , which will be discussed 
in the following section in details. Vloc,VAPi and VCi are prices per Joule (in yuan/J) at 
the UE, the selected AP and the cloud, respectively. The price raises in proportion to 
the corresponding amount of data needed to be computed or offloaded. For simplic-
ity, we define Vloc = υ1 , VAPi = υ2 · β

2−i(1− αi)N  , VCi = υ3 · (1− αi)(1+ β(i − 2))N  . 
G℧,℧ ∈ {loc,AP,C} are prices per second (in yuan/s) for computing delay at the served 
UE, the selected AP and the cloud, respectively. All notations in this paper and their 
definitions are collected in Table 1.

3 � Mode selection and ergodic rate
The UE first tries to select an F-AP which is nearest to it and the received signal-to-noise 
ratio (SNR) is larger than a pre-set SNR threshold T1 . If the UE cannot find an F-AP 
which meets the requirements, the UE will select an AP which is nearest to it meanwhile 
the SNR between them is larger than a pre-set SNR threshold T2 as a relay. If neither 
of them can be achieved, the UE will compute data by itself. The probability of finding 
an AP which is nearest to the UE meanwhile the SNR between them is larger than Ti is 
expressed as F(�i), i ∈ � [25].

where B1 , σ 2 and p1 are the transmission bandwidth, the mean noise power per Hz, and 
the transmission power of the UE. The prove of F(�i) can be seen in “Appendix 1”.

The probability of selecting mode i, i ∈ � , is denoted as Mi , and expressed as

 Next, we focus on the derivation of ergodic rate in mode i, i ∈ � . Since the APs are 
deployed according to PPP, the ergodic rate (in bps) is defined as [25]

where E(·) is the expectation with respect to the channel fading distribution as well as 
the locations of the random receiver nodes. SNR and T are the real-time SNR and the 
pre-set threshold of SNR in the wireless connection between the UE and the selected AP, 
respectively.

The ergodic rate from the UE to the selected AP in mode i, i ∈ � , can be derived as 
[25]

(6)F(�i) =
1

1+ TiB1σ 2/(p1�iπ)
, i ∈ �

(7)M1 =F(�1) =
1

1+ T1B1σ 2/(p1�1π)

(8)
M2 =[1− F(�1)]F(�2)

=

[

1−
1

1+ T1B1σ 2/(p1�1π)

]

·
1

1+ T2B1σ 2/(p1�2π)

(9)
M3 =

∏2

i=1
[1− F(�i)]

=

[

1−
1

1+ T1B1σ 2/(p1�1π)

]

·

[

1−
1

1+ T2B1σ 2/(p1�2π)

]

(10)R = E[B1log2(1+ SNR)|SNR ≥ T ]
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where ρ(�i) =
∫∞

log2(1+Ti)
p1�iπ

p1�iπ+2θB1σ 2 dθ . More details about Ri can be seen in 

“Appendix 2”.
The transmission rate from the selected AP to the cloud is [25]

where B2 , p2 and ‖Di‖ are the transmit bandwidth, transmit power of the selected AP, 
and the expect distance between the selected AP and the cloud in mode i, i ∈ � . ζc is 
the path loss exponent between the AP and the cloud. Please see the details of ri in 
“Appendix 3”.

4 � Problem formulation
Since three execution modes are all likely to occur, the overall charge in our paper is 
defined as expected charge. Expected charge is the sum of product of select probability 
and corresponding charge of each mode, i.e.,

In this paper, the objective is to minimize the charge of offloading computing, which is 
formulated as follows:

The constraint C1 means the size of offloading data which is offloaded from the UE to the 
selected F-AP should be no larger than n1 , C2 guarantees that the data size is no larger 
than n2 when it offloaded from the selected AP to the cloud, where n1 is the maximum 
receive capacity to the UE offered by the selected AP, n2 is the maximum receive capacity 
of the cloud which is offered to the selected AP. Constraints C3 and C4 ensure that the 
computing ratio should no more than 1 and no smaller than 0. Constraint C5 ensures 
multi-mode corporation, where F(�1) is the probability of choosing mode 1, Fmin and 
Fmax are the lower and upper bound of probability, respectively. Due to the relationship 
between �1 and �2 , constraint C5 contains the constraint of F(�2) . It is hard to solve this 
complex and non-convex problem due to the existence of product relationship between 
variables in the objective function and the constraint C2 . Thus, we need to reduce the 
complexity and get the suboptimal values of variables by transforming the problem into 
a convex form.

(11)Ri = B1

[

ρ(�i)+ log2(1+ Ti)
p1�iπ

p1�iπ + TiB1σ 2

]

(12)ri = B2log2

(

1+
p2�Di�

−2ζc

B2σ 2

)

, i ∈ �

(13)P =

3
∑

i=1

Mi · Zi

(14)

P1 : min
α,β ,�1,�2

P

s.t C1 : (1− αi)N ≤ n1 , i ∈ �

C2 : [1− β(2− i)](1− αi)N ≤ n2, i ∈ �

C3 : 0 ≤ β ≤ 1

C4 : 0 ≤ αi ≤ 1, i ∈ �

C5 : Fmin ≤ F(�1) ≤ Fmax
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5 � Design of optimization algorithm
Note that �1 is related to transmission rate and the probability of each mode’s selection. 
The coupling among �1 , β , and α makes transforming the objective function into a con-
vex form difficultly. To overcome these difficulties, we propose to address problem P1 in 
an alternative manner. Specifically, we firstly solve problem P1 with respect to α and β for 
fixed �1 . Then, we solve problem P1 with respect to �1 for fixed α and β . Do iteration until 
convergence.

When the value of �1 is given, the value of Mi, i ∈ � , and transmission rate Ri , ri , i ∈ � , 
are all known. By taking various expressions which had been illustrated above into the 
problem, the objective function and constraints of problem P2 are shown as bellow.

where the constraints C6 and C7 come from C1 when i=1 and 2, respectively. The con-
straints C8 and C9 come from C2 when i=1 and 2. The constraints C10 and C11 come 
from C4 when i=1 and 2.

In problem P2 , the objective function and the constraint C8 exist product relationships 
between variables α1 and β . It is obviously that the objective function and constraint C8 
are not convex. The remaining constraints are linear. Before solving this problem, it is nec-
essary to transform them into convex forms. In the arithmetic geometric mean inequality 
theorem, for real numbersa, b, there exists a2 + b2 ≥ 2ab . So a

2+b2

2  is the upper bound of 
the value of ab. Based on arithmetic geometric mean inequality theorem, problem P2 is 
relaxed to problem P3 whose objective and constraints are transformed according to vari-
ables α and β.

(15)

P2 : min
α1,α2,β

M1

{

υ1

[

κ · f 2loc · α1Nω + p1
(1− α1)N

R1

]

+ Gloc
α1Nω

floc

+ υ2β
2(1− α1)

2N 2κ · f 2APω + υ2βN
2p2

(1− β)(1− α1)
2

r1

+ GAP
β(1− α1)Nω

fAP1
+ υ3 · (1− β)2(1− α1)

2N 2κ · f 2Cω

+ GC
(1− β)(1− α1)Nω

fC

}

+M2

{

υ1

[

κ · f 2loc · α2Nω + p1
(1− α2)N

R2

]

+ Gloc
α2Nω

floc
+ υ2(1− α2)N · p2

(1− α2)N

r2
+ υ3 · (1− α2)

2N 2κ · f 2Cω

+ GC
(1− α2)Nω

fC

}

+M3

(

υ1κ · f 2locNω + Gloc
Nω

floc

)

s.t C3

C6 : (1− α1)N ≤ n1

C7 : (1− α2)N ≤ n1

C8 : (1− β)(1− α1)N ≤ n2

C9 : (1− α2)N ≤ n2

C10 : 0 ≤ α1 ≤ 1

C11 : 0 ≤ α2 ≤ 1
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The second derivative of the objective and constraints of problem P3 with respect to the vari-
able α and β are greater than or equal to 0. Thus, the problem P3 is a convex problem, which 
can be solved by CVX tool easily and efficiently. When the values of α and β are given, the 
optimal solution of �1 can be obtained via solving the following problem P4 . The expression 
of the objective is same as the objective in problem P3 . However, the unknown variable is �1 
in problem P4 . Thus, the constraint is related to variable �1 in problem P4 as constraint C5.

where

(16)

P3 : min
α1,α2,β

M1

{

υ1(κ · f 2loc · α1Nω +
p1(1− α1)N

R1
)+ Gloc

α1Nω

floc

+ υ2
β4 + (1− α1)

4

2
N 2κ · f 2APω + υ2N

2p2
β2 + (1− β)4

4r1

+ υ2N
2p2

β2 + (1− α1)
8

4r1
+ GAPNω

β2 + (1− α1)
2

2fAP1

+υ3 ·
(1− β)4 + (1− α1)

4

2
N 2κ · f 2Cω + GCNω

(1− β)2 + (1− α1)
2

2fC

}

+M2

{

υ1

[

κ · f 2loc · α2Nω + p1
(1− α2)N

R2

]

+ υ2(1− α2)N · p2
(1− α2)N

r2

+Gloc
α2Nω

floc
+ υ3 · (1− α2)

2N 2κ · f 2Cω + GC
(1− α2)Nω

fC

}

+M3{υ1κ · f 2L Nω + Gloc
Nω

floc
}

s.t C3, C6-7, C9-11

C12 :
(1− β)2 + (1− α1)

2

2
N ≤ n2

(17)
P4 : min

�1

P(�1)

s.t C5

(18)

P(�1) =
1

1+ T1B1σ 2/p1�1π

{

υ1(κ · f 2loc · α1Nω +
p1(1− α1)N

R1
)+ Gloc

α1Nω

floc

+ υ2
β4 + (1− α1)

4

2
N 2κ · f 2APω + υ2N

2p2
β2 + (1− β)4

4r1

+ υ2N
2p2

β2 + (1− α1)
8

4r1
+ GAPNω

β2 + (1− α1)
2

2fAP1

+υ3 ·
(1− β)4 + (1− α1)

4

2
N 2κ · f 2Cω + GCNω

(1− β)2 + (1− α1)
2

2fC

}

+

(

1−
1

1+ T1B1σ 2/p1�1π

)

1

1+ T2B1σ 2/p1�2π

{

υ1[κ · f 2loc · α2Nω

+ p1
(1− α2)N

R2
] + Gloc

α2Nω

floc
+ υ2(1− α2)N · p2

(1− α2)N

r2

+υ3 · (1− α2)
2N 2κ · f 2Cω + GC

(1− α2)Nω

fC

}

+

(

υ1κf
2
loc · Nω + GC

Nω

fC

)

·

2
∏

i=1

(

1−
1

1+ TiB1σ 2/p1�iπ

)
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P4 is a nonlinear constrained optimization problem which only contains variable �1 . We 
can get the range of �1 from the constraint C5 and record as �min ≤ �1 ≤ �max . There 
only exists one inequality constraint in P4 , thus we can get the optimal value of �1 by 
interior point penalty function method [30]. The main idea of penalty function method 
is to transform nonlinear constrained optimization problem into nonlinear uncon-
strained optimization problem. Firstly, define barrier function

where r is a very small positive number. In this way, when �1 is close to �min or �max , 
G(�1, r) is tending to infinity. Otherwise,G(�1, r) ≈ P(�1) . Thus, we can solve P5 to get 
the optimal value of �1 equivalently.

P5 is a nonlinear unconstrained optimization problem and can be solved by one dimen-
sional linear search method. The derivative of the objective can be solved by Newton’s 
method [31]. The derivative of G(�1, r) with respect to �1 is denoted as g(�1, r) . For one 
dimensional search function g(�1, r) , suppose that a close point to the extreme minimum 
point has been given as δ0 . Near the point δ0 , we use a quadratic function �(δ, r) to approxi-
mate the original function g(δ, r) . The original function is obtained by Taylor expansion as

where g ′(δ0, r) = dg(δ,r)
dδ

|δ=δ0 , g ′′(δ0, r) =
d2g(δ,r)

d(δ)2
|δ=δ0 . Then the extreme minimum point 

of the quadratic function �(�1, r) is used as the new close point to the extreme minimum 
point of G(δ, r) , and record as δ1 . According to the necessary conditions of extreme 
value, δ1 = δ0 −

g ′(δ0,r)

g ′′(δ0,r)
 can be drawn from d�(δ,r)

dδ
= 0 . Further we can get the update 

formula as δm+1 = δm −
g ′(δm,r)
g ′′(δm,r) . The algorithm is shown in Algorithm 1.

According to the definition of G(�1, r) , the smaller the r is, the closer the solution of P5 to 
the solution of P4 . Thus, we adopt Series Unconstrained Minimization Method (SUMT) to 
make the solution of P5 more closer to the solution of P4 [30]. Set an infinite penalty factor 
series { rk } which is strictly monotonic decreasing and tending to zero. Then solve G(�1, rk) 
according to each rk until meet the iterative termination requirement. The complete algo-
rithm of solving P4 is shown in Algorithm 2.

(19)G(�1, r) = P(�1)+ r

(

1

�i − �max
+

1

�i − �min

)

(20)P5 : min
�1

G(�1, r)

(21)g(δ, r) ≈ �(δ, r) = g(δ0, r)+ g ′(δ0, r)(δ − δ0)+
1

2
g ′′(δ0, r)(δ − δ0)2
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Finally, take the �1 which is obtained by Algorithm  2 back to the problem P3 . �1 is a 
known value in P3 and then derive optimized value of α and β by CVX tool. After that, we 
solve problem P4 with fixed α and β . In conclusion, the algorithm for solving P is firstly 
solving problem P3 with respect to α and β for fixed �1 . Then, we solve problem P4 with 
respect to �1 for fixed α and β . When we solve problem P3 with respect to α and β for fixed 
�1 , the value of P with optimized α and β is smaller than before. Similarly, when we solve 
problem P4 with respect to �1 for fixed α and β , the value of P with optimized �1 is smaller 
than before. Thus, the algorithm of solving P2 is convergent, and it is shown in Algorithm 3.

6 � Simulation results and analysis
In this section, the impact of N, n1 , and n2 on latency, computing ratios, expect charge 
are evaluated by using MATLAB with CVX tool. The simulation parameters are listed as 
follows in Table 2.

Figure 2a, b show the delay and charge of the offloading system with an increasing data 
size N when n1 = 1200, n2 = 800 . The delay and the charge of the system increase with 
the increasing of the data size. Compared with local computing, the proposed offload-
ing strategy can improve the QoS by saving about 4 seconds and 1.5 yuan when fac-
ing the same data size of the computing task under simulation parameters we set. This 
is because the objective function is a balance of energy consumption and delay at each 
layer. Thus, it will not only charge less, but also spend less time than local computing.

Next the computing ratios of each layers in mode 1, mode 2, and allocation of F-APs’ 
distribution density versus the value of data size are shown in Fig. 3a, b, and Fig. 4, where 
n1 = 1200, n2 = 800 . In Fig. 3a, with the increasing of data size, the UE firstly computes 
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none, and then the computing ratio of the UE keeps increasing. The computing ratio 
of the F-AP is firstly unchanged, then increasing, and finally decreasing. The comput-
ing ratio of the cloud is firstly unchanged, then decreasing, and finally decreasing. Stay-
ing unchanged when the data size is smaller than 1000 bits is because that, the optimal 
data size which computed at each layer to minimize the charge is smaller than its receive 
capacity. When the data size becomes larger than 1000 bits and smaller than 1200 bits, 
the data which is optimized to offload to the cloud is larger than its receive capacity. 
Thus, the computing ratio of the cloud decreases. Meanwhile, the data which is opti-
mized to offload to the F-AP is smaller than its receive capacity. That is why the com-
puting ratio of the F-AP increases with the increase of data size of the task. When data 
size is larger than the F-AP’s receive capacity, the UE needs to compute the part which 
is larger than n1 . Thus, when the data size of the task is larger than n1 , the larger the data 

Fig. 2  Charge and delay with different value of data size. a Charge with different value of data size; b Delay 
with different value of data size

Table 1  Notation

Notation Definition Notation Definition

N data size of the task floc, fAPi , fC Computation capacity of the UE,AP and 
cloud

ω CPU cycles for 1 bit Ri Ergodic rate between the UE and AP in 
mode i, i ∈ �

κ Effective capacitance coefficient n1, n2 Upper bounds of capacity of channel

B1, B2 Transmit bandwidth of UE and AP ri Ergodic rate between the AP and cloud 
in mode i, i ∈ �

p1, p2 Transmit power of the UE and AP v1, v2, v3 Unit price of UE, AP and cloud

σ 2 Noise density �i Distribution density of F-AP(i=1) and 
AP(i=2)

Mi Coverage probability of mode i, i ∈ � Fmin, Fmax Upper and lower bounds of coverage 
probability

α,β Optimized variables Ti Pre-set threshold of SNR value in mode 
i, i ∈ �

� Set of {1,2} � Set of {1,2,3}

Zi Charge of mode i, i ∈ � k Probability of an AP supporting com-
putation

G℧ ,℧ ∈ {loc,AP,C} Prices per second for computing 
delay at UE, AP and the cloud

P Expect charge of the system
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size is, the more ratio of the task the UE needs to compute. Meanwhile, both computing 
ratio of the F-AP and cloud decrease. In Fig. 3b, the cloud computes all the task while 
the UE computes none when the data size is smaller than n2 . When the data size is larger 
than n2 , the computing ratio of the UE keeps increasing while cloud’s keeps decreasing. 
This is because when the optimized data size which is allocated to the cloud is smaller 
than its receive capacity, the computing ratios of the cloud and the UE stay unchanged. 
When the optimized offloaded data size is larger than n2 , the amount of offloaded data is 
fixed at n2 and the computing ratio of the cloud is decreasing while the computing ratio 
of the UE is increasing. The change of data size do not affect the optimal value of �1 as 
shown in Fig.4. This is due to the increase of data size has no relationship with the allo-
cation of distribution density of F-APs.

Figure  5a, b shows the expect charge and distribution density of F-APs versus the 
values of n1 and n2 , where N = 2000 . In Fig. 5a, the expect charge decreases with the 
increase of n1 and n2 . This is because the computing power of upper layers is larger than 
the UE, it could save charge by offloading. The optimized computing ratios at each layer 
are limited by the receive capacity of upper layers. Larger n1 and n2 mean the UE is per-
mitted to offload more data to upper layers when do optimized allocation of the task. 
When receive capacity are larger than the optimized computing data size which allo-
cated to corresponding layer, the computing ratios and charge stay unchanged with the 
increasing of n1 and n2 . In Fig. 5b, the distribution density of F-AP is hardly influenced 
by n1 and n2 unless n1 and n2 are small. This is because when the receive capacity of the 
F-AP is too small to receive offloaded data, the whole task is computed locally. In that 
case, the value of distribution density of the F-APs do not need optimization. When the 
receive capacities become larger, the UE can offload data to upper layers. The distribu-
tion density of the F-APs has to be optimized to minimize the charge of the offloading 
system. From the simulation we found that, there is no direct connection between the 
distribution density of F-AP and receive capacity when the UE can do offloading.

Figure 6a–c shows the computing ratios at each layer in mode 1 versus the values of n1 
and n2 , where N = 2000 . In Fig.6a, the UE’s computing ratio decreases with the increase 
of n1 and n2 . This is because the UE will offload part of task to upper layers to save charge 
after optimization. The offloading size of data is limited by receive capacities. When the 
optimized allocated data size at upper layers is larger than their receive capacity, the UE 

Table 2  Parameters’ setting in simulation

Parameter value Parameter value

κ 1e-28 fAP1 3000 cycles/s

ω 10 cycles/s fC 4000 cycles/s

B2 100MHz B1 10MHz

v1 0.3 yuan/J v2 0.5 yuan/J

p1 0.5W v3 0.7 yuan/J

p2 1.5W PFmin 0.5

floc 1500 cycles/s PFmax 0.8

k 0.8 Gloc 0.3 yuan/s

GAP 0.2 yuan/s GC 0.1 yuan/s

σ 2 -174dBm/Hz
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Fig. 3  Computing ratios with different data size. a Computing ratios with different data size in mode 1; b 
Computing ratios with different data size in mode 2

Fig. 4  Distribution density with different value of data size

Fig. 5  Expect charge and distribution density with different value of receive capacity. a Expect charge with 
different value of n1, n2 ; b�1 with different value of n1, n2
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will offload as much as possible in the limit of receive capacity. In Fig. 6b, the F-AP’s 
computing ratio will first increase then decrease to a stable value when n2 keeps increas-
ing. The increase is due to the UE is permitted to offload more data to the cloud through 

Fig. 6  Computing ratios with different value of receive capacity in mode 1. a UE computing ratio with 
different value of n1, n2 in mode 1; b F-AP computing ratio with different value of n1, n2 in mode 1; c Cloud 
computing ratio with different value of n1, n2 in mode 1
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the F-AP with the increasing of n2 . It leads to more data can be computed at the F-AP. 
However, when the receive capacity of the cloud keeps increasing, more data will be 
offloaded to the cloud to save charge and the computing ratio of the F-AP decreases. The 
F-AP’s computing ratio will increase to a stable value when n1 keeps increasing. This is 
because when the optimized offloaded data size is larger than the receive capacity of the 
F-AP, in order to save charge, the UE will offload as much as possible under the limit of 
the receive capacity of the F-AP. That is why it increases with the increasing of n1 . When 
the receive capacity of upper layer is increasing to larger than the optimized allocated 
data size at corresponding layer, the computing ratios at each layer will stay unchanged 
with the increasing of receive capacities. In Fig. 6c, the computing ratio of the cloud is 
complemented with the sum of the UE’s and the F-AP’s.

Figure 7a, b shows the computing ratios at each layer in mode 2 versus the values of n1 
and n2 , where N = 2000 . In Fig. 7a, the computing ratio of the UE decreases when the 
receive capacities becomes larger. The computing ratio of the cloud is complemented 
with UE’s with the increase of n1 and n2 as shown in Fig.  7b. The reason is similar to 
mode 1. This is because when the optimized offloaded data size is larger than the receive 
capacity of the cloud, in order to save charge, the UE will offload as much as possible 
under the limit of the receive capacity. When the receive capacity of upper layer further 
increases to the value which is larger than the optimized allocated data size at the cloud, 
the computing ratios will stay unchanged with the increasing of receive capacities. Com-
pared with mode 1, the computing burden on the cloud is larger when there is no edge 
severs.

7 � Conclusion
In this paper, a mixed MEC/MCC system based on offloading computing was investigated, 
which joint optimized the computing ratios at each layer and distribution density of F-APs 
to minimize the expect charge. To address the non-convex problem, we had proposed 
ICONP algorithm to solve it. The suboptimal computing ratios of the computing task at 
each layers were obtained by fixing the value of the density of F-APs and using geomet-
ric mean inequality to transform the problem into a convex form. The density of APs was 
obtained via nonlinear unconstrained programming. The computing ratios and the density 
of F-APs were solved iteratively. Our simulation results verified that the proposed system 

Fig. 7  Computing ratios with different value of receive capacity in mode 2. a UE computing ratio with 
different value of n1, n2 in mode 2; b Cloud computing ratio with different value of n1, n2 in mode 2
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can achieve better performance than computing the whole task locally in respects of the 
charge and the delay. Actually, the research in our paper does not consider the interference 
between multi-cell and multi-user which indeed exists in real life. Meanwhile, the cost of 
calculation of optimization problem is not taken into account. Thus, there are several future 
directions of interest to pursue based on our work. It is interesting to study the multi-user 
and multi-M-AP coordinated communication under mobile edge computing to overcome 
the limitation of our work in this paper. In this case, inter-user interference and multi-
user game on resources will be taken into consideration. It is also meaningful to consider 
the cost when deal with the optimization problem. Meanwhile, machine learning is a hot 
research topic at present. The way to combine machine learning with mobile edge comput-
ing effectively is also worth studying in the future.
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Appendix 1
The probability of choosing mode i, i ∈ � , can be derived by

where B1 and p1 are transmission bandwidth and power of the UE. σ 2 is the mean noise 
power per Hz. |h1|2 ∼ exp(1) characterize the exponentially distributed fading power 
over the flat Rayleigh fading channel between the UE and the selected AP. �Li�−ζf  
denotes the path loss of mode i and ζf  is the path loss exponent, where Li is the distance 
between the UE and the selected AP. f (li) = 2�iπ lie

−�iπ li
2
 is the probability density 

function(PDF) of the distance between UE and the nearest AP [25]. A closed form 

F(�i) = Pr

(

p1|h1�Li�
−ζf |2

B1σ 2
≥ Ti

)

=

∫ ∞

0
Pr

(

|h1|
2
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Tili
2ζf

p1
B1σ

2

)

f (li)dli

=

∫ ∞

0
E

[

exp

(

−
Tili

2ζf

p1
B1σ
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)]

f (li)dli

=

∫ ∞

0
exp

(

−
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)

f (li)dli
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expression can be expressed as F(�i) = 1
1+TiB1σ 2/(p1�iπ)

 when ζf = 1 . In this paper, we 

analyze the problem base on ζf = 1.

Appendix B

For a positive continuous random variable A, 
E[A|A ≥ W ] = W Pr(A ≥ W )+

∫∞

W Pr(A ≥ a)da [25]. Thus, the transmission rate 
between the UE and the selected AP in mode i, i ∈ � is derived as bellow.

where ρ(�i) =
∫∞

log2(1+Ti)
p1�iπ

p1�iπ+2θB1σ 2 dθ.

Appendix C

The expect distance between the selected AP and the cloud can be expressed as 
Xi =

∫∞

0 lif (li)dli, i ∈ �. Suppose the distance between the UE and the cloud is Huc 
and the schematic plan of three points is in Fig. 8:

where point R is the location of the selected AP, Xi, i ∈ � ,is the expect distance 
between the selected AP and the UE. The expect distance between the AP and the 
cloud is calculated as the average distance between the point R and the point (Huc, 0).

Thus the transmission rate from AP to the cloud is

Ri = E[B1log2(1+ SNR)|SNR ≥ Ti] = E[B1log2(1+ SNR)|1+ SNR ≥ 1+ Ti]

= B1

∫ ∞

log2(1+Ti)

F(�i|Ti = 2θ )dθ + B1log2(1+ Ti)F(�i)

= B1

[

ρ(�i)+ log2(1+ Ti)
p1�iπ

p1�iπ + TiB1σ 2

]

Di = E[HucR] =
1

2π

∫ 2π

0

√

(Xi cos θ −Huc)
2 + Xisin

2θdθ

=
1

2π

∫ 2π

0

√

Huc
2 + Xi

2 − 2XiHuc cos θdθ

ri = E

[

B2log2

(

1+
p2|h2�Di�

−ζc |2

B2σ 2

)]

= B2log2

(

1+
p2E[|h2|

2]�Di�
−2ζc

B2σ 2

)

Fig. 8  Plan sketch of distances among each point
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where |h2|2 ∼ exp(1) characterize the exponentially distributed fading power over the 
flat Rayleigh fading channel between the AP and the cloud, E[|h2|2] = 1 . �Di�

−ζc denotes 
the path loss, B2σ2

2 represents the noise power received by the Cloud. Thus, 
ri = B2log2(1+

p2�Di�
−2ζc

B2σ 2 ), i ∈ �.
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