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1 � Introdation
Over the past decade, mobile communication technology has evolved from the third/
fourth generation to the fifth generation of mobile communication today. The rapid 
development of communication technology brings re-transmission speed and shorter 
delay. At the same time, integrated circuits continue to develop to smaller sizes and inte-
gration levels, while the computing power and storage capacity of chips are still rising. 
All kinds of intelligent hardware such as smart phones, tablet PCs, VR devices, wearable 
smart devices, etc. were born in the moment. And human society is also moving from 
the era of mobile Internet to the era of Internet of Everything. For the purpose of per-
ceiving and driving the world, the IoT has gradually developed into a multi-disciplinary 
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ecosystem, which is widely used in various scenarios requiring real-time data processing 
and feedback. Driven by the IoT, various smart edge devices have been rapidly popular-
ized, and various new mobile applications such as navigation, mobile payment, face rec-
ognition, VR/AR, etc. have followed one after another [1]. However, it is accompanied 
by exponential growth of data traffic and the generation of a large number of computa-
tionally intensive tasks, which poses huge challenges to network bandwidth and servers. 
The traditional computing paradigms adopted by traditional cloud computing are mostly 
centralized computing models. Linearly expanded cloud computing services cannot effi-
ciently handle the massive data and computing tasks generated by exponentially grow-
ing edge devices [2]. It faces problems such as real-time, accumulation, and bandwidth 
occupation. Therefore, in order to meet the needs of real-time operation, low latency 
requirements and high quality of service (QoS) scenarios, edge computing emerged as 
an application paradigm of the IoT.

As a new distributed computing paradigm, edge computing enables computing and 
data to be stored closer to edge devices, thereby changing the response time of comput-
ing tasks and greatly reducing the pressure on network bandwidth and cloud centers, 
reducing the productivity of edge devices and improving service quality for users. Due to 
its superior performance in delay sensitive applications, edge computing has become a 
crucial enabling technology in 5G.

Task offloading refers to the user equipment processing some computationally inten-
sive applications and uploading the data processing these applications to the edge server 
through wireless transmission under the condition of weighing continuous or other indi-
cators. Resource allocation refers to the edge server for these uploads the processing 
application allocates certain computing resources, in this way to obtain continuous or 
gradual replacement, providing a better user experience.

Usually, an initial part of computing offloading and resource allocation is also a key 
part of deciding whether to offload, that is, offloading decision. After determining 
whether to uninstall, the next question to consider is how much and what should be 
uninstalled. In general, the possible decisions to calculate the offload may have the fol-
lowing situations, as shown in Fig. 1:

1.	 Local Execution: That is, the entire calculation process is completed locally. This situ-
ation is generally aimed at tasks with low computing power requirements.

2.	 Full Offloading: The entire calculation is connected to the base station via wireless 
channels and then offloaded and migrated to the edge server for calculation and 
processing. This method is also called the complete uninstallation problem and the 
binary uninstallation problem. This problem assumes that the application of the edge 
service cannot be split, and can only choose to perform local computing or offload to 
the edge server to perform the calculation.

3.	 Partial Offloading: Under the premise that the calculation can be split, part of the 
calculation is processed locally, and the other part is offloaded to the edge server for 
processing.

In this paper, the task offloading mechanism under the multi-user single-cell sce-
nario is mainly studied. In the scenario of a single cell, multiple users are connected 
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to an edge server through a single LTE macro base station, and the edge server can 
schedule tasks to other edge computing servers connected thereto. Aiming at the 
competition and selfishness that may occur when multiple users uninstall their com-
puting tasks, a global load balancing penalty factor is introduced to minimize the 
response time of global user tasks and make the load on each edge server relatively 
balanced. In addition, in view of the characteristics of dimensional explosion, scal-
ability and poor dynamics faced by the centralized task scheduling as the number of 
users increases, an algorithm model for centralized training and distributed operation 
is proposed. By establishing each user as a Markov game model, a distributed task off-
loading algorithm DTOMALB based on multi-agent and load balancing is proposed. 
This DRL-based algorithm is able to improve the characteristics of dimensional explo-
sion, scalability and poor dynamics faced by the currently existing task scheduling.

The following is the structure of this paper. The second section is related work. The 
third section is the system model. This part mainly describes the single-cell multi-
user scenario, communication model, and calculation model, and transforms the task 
offloading problem into a target optimization problem. The fourth section mainly 
proposes new algorithms. A task offloading algorithm based on multi-agent is pro-
posed to optimize the user’s response delay and balance the load, and improve the 
server’s resource utilization. And through the centralized training and distributed 
operation mode, it solves the various problems that the centralized scheduling will 
produce and improves the robustness of the system. The fifth section is the experi-
ment and results and discussions, mainly include the experimental method to ver-
ify the feasibility and effectiveness of DTOMALB, and the analysis of the simulation 
results. It also includes some discussions after the analysis of the results, discussing 
the meaning of the research results in the context of existing research, and emphasiz-
ing the limitations of the research. The last section is the conclusion.

Fig. 1  Task offloading method comparison
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2 � Related work
In an IoT network based on edge computing, task offloading is a major way to solve the 
limitation of edge device computing, storage, and power resources in edge computing. 
The edge device can offload part or all of the computing tasks to the edge computing 
server, thereby speeding up the processing speed of the tasks, saving the energy of the 
device, and reducing the response time. The main issues that need attention are whether 
to uninstall, when to uninstall, how many computing tasks should be uninstalled, and 
where to uninstall. The offload calculation will bring additional communication over-
head, such as transmission delay and energy consumption caused by communication. A 
lot of research is devoted to the optimal offloading strategy for different scenarios and 
different optimization goals.

Wang et al. proposed a joint base station cache and D2D offloading algorithm based 
on Q learning for edge computing architecture. They applied Q learning to distributed 
cache replacement strategies according to content popularity [3].

Flores et  al. designed and implemented a task delegation or code offloading frame-
work for a mobile cloud computing model. When task delegation, resource-intensive 
mobile tasks are delegated asynchronously by directly invoking services. When the code 
is uninstalled, the mobile application is partitioned and analyzed, complex computing 
operations are identified, and they are offloaded to cloud-based computing to improve 
the overall system performance [4].

You et al. studied multi-user edge computing scenarios based on time division multi-
ple access (TDMA) and orthogonal frequency division multiple access (OFDMA). Under 
the constraint of computing delay, the optimal resource allocation problem is expressed 
as a convex optimization problem that minimizes weighting and mobile energy con-
sumption. For a cloud with limited capacity, a suboptimal resource allocation algorithm 
is proposed to reduce the complexity of the calculation threshold [5].

Bi et al. studied the offloading problem in multi-user scenarios, decoupled the com-
bination of multi-user computing mode selection and the strong coupling of transmis-
sion time allocation, and proposed a simple two-segment search algorithm to obtain 
conditional optimal time allocation And on this basis, a coordinate descent method was 
designed to optimize the mode selection [6].

Guo et  al. proposed an energy-saving dynamic offloading and resource scheduling 
strategy to reduce energy consumption and shorten the application completion time. 
Under the premise of meeting the task dependency requirements and completion time 
limit constraints, the problem is transformed into an energy efficiency cost minimiza-
tion problem, and the problem is decoupled into three subtasks of calculation offload 
selection, clock frequency control, and transmission power allocation. [7].

In response to the current MEC offloading problem, Wang et al. proposed a new off-
loading framework based on deep reinforcement learning, which can automatically infer 
the optimal offloading strategy in different scenarios according to the characteristics of 
the offloading task to minimize The overall service delay [8].

Xu et  al. incorporated renewable energy into mobile edge computing and proposed 
an effective resource management algorithm based on reinforcement learning to learn 
dynamic optimal strategies for dynamic load offloading and edge server configuration to 
minimize long-term system costs [9].
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Dong et al. proposed an intelligent offloading system for vehicle edge computing based 
on deep reinforcement learning. The offloading system includes a task scheduling mod-
ule and a resource allocation module. With the goal of maximizing the quality of expe-
rience (QoE), a joint optimization problem of two modules was established, and this 
problem was solved through DQN [10].

The scene studied by Liu et al. is the Vehicle Edge Computing (VEC) network. In this 
paper, an efficient computational offloading scheme is proposed for the user, which is 
transformed into an optimization problem to maximize the use of the proposed VEC 
network, taking into account the randomness of vehicle traffic. In this paper, dynamic 
communication requirements and time-varying communication conditions are 
expressed as semi-Markov processes, and an algorithm based on Q-learning is proposed. 
Later, in order to avoid the problem of dimensionality guarantee, an algorithm based 
on Deep Reinforcement Learning (DRL) was proposed to obtain the optimal computing 
offload and resource allocation strategy [11].

3 � System model
In a single-cell multi-user scenario, multiple users N = {1,2,3,…,N} perform wireless 
communication through a single Long Term Evolution (LTE) macro base station. The 
base station can be divided into multiple sub-channels for different users. At the same 
time, the base station is connected to multiple edge servers M = {1,2,3,…,M} to provide 
users with computing resources to help them process computing tasks, as shown in 
Fig. 2. Each user can be a mobile phone, computer, wearable smart device, etc., all with 
different computing capabilities. At the same time, the computing power and load of 
each edge server are also different. In addition, computing tasks generated from multiple 

Fig. 2  Single-cell multi-user scenario in edge computing
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user equipments may also be competitive for limited computing resources. Since each 
user is selfish, he wants to offload his user tasks to the best performing server for cal-
culation. However, when a large number of concurrent user tasks reach a certain high-
performance edge server at the same time, the server will not be able to allocate the 
required computing resources for all user tasks, but it will affect the user experience. 
Although some servers have low performance, they are in a relatively idle state and can 
provide relatively superior computing resources, but they are not utilized, resulting in a 
waste of resources. Therefore, when the task distribution is relatively balanced, not only 
can the resource utilization rate of each server be improved, but also the overall user 
service quality can be improved. Under the constraints of limited resources, for hetero-
geneous user equipment and different user tasks, how to reasonably allocate the com-
puting resources of the edge server to each task, and to ensure that the user experience 
of the user to balance the load of each edge server is urgent to solve the problem.

We assume that there are n = {1,2,3,…,N} user devices UD (User Device) and an 
evolved base station (eNodeB, eNB) in a total cell. It is directly connected to an edge 
computing server ECS through optical fiber, with the number m = 1. At the same time, 
the edge server is also connected to other edge computing servers of the cell num-
ber m = {2,3,4…,M} through optical fibers, which can provide users with computing 
resources. It is assumed that at each moment, each user equipment will generate a com-
putationally intensive task, and can choose to calculate locally or offload to the edge 
server directly connected to the base station through the base station or the remaining 
edge servers connected to the edge server. Define the uninstall decision vector of the nth 
user as:

an,m ∈ {0, 1}。an,m = 0 means do not offload to the m-th edge computing server, 
an,m = 1 means offload to the m-th edge computing server. an,1 = 1 means the task will 
be offloaded to the edge computing server directly connected to the eNB. Especially, 
an,0 = 1 indicates that the task is calculated locally. Assuming that the task cannot be 
split, for the task generated by user n, the offload vector has the following constraints:

The decision space of all users is:

We use the length of the task and the number of calculation cycles required by the task 
to describe it.

(1)An = [an,0, an,1, an,2, ..., an,M]

(2)
M
∑

m=0

an,m(t) = 1, ∀n ∈ N

(3)A = [A1,A2,A3, . . . ,AN] =










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Ln is the length of the calculation task, including the calculation task request, data, 
code, etc. Cn is the number of CPU cycles required to complete the calculation task.

3.1 � Communication model

In the current scenario, multiple users share an eNB, so interval interference can be 
ignored. Assuming that N users choose to offload the calculation tasks generated at the 
same time, the bandwidth of the wireless channel will be evenly distributed to the UD. 
Then the upload rate available for the nth UD is:

where W is the bandwidth of the entire wireless channel, pn is the upload power of 
user equipment n, gn is the gain of the wireless channel allocated to user equipment n, 
and N0 is the variance of the complex Gaussian white noise channel.

3.2 � Computation model

3.2.1 � Local computation model

For user n, when the offloading variable an,0 = 1 , local operation will be performed. 
According to its task tag Sn , the total number of cycles Cn required to execute the task can 
be known. Then the time delay for the user task Sn to execute locally can be expressed as:

3.2.2 � Offloading computation model

For a task generated by a user n, when the offloading variable an,m(t) = 1 , it means that the 
task offloads the task to the m-th edge server. If m = 1, the m-th base station and the corre-
sponding edge computing server perform calculations, otherwise it will be forwarded again 
to reach the m-th server. User tasks are uninstalled through the following three steps:

1.	 User n uploads the task to the edge server ECS1 through the uplink allocated by the 
base station after the time tupn :

where rn is upload rate.
2.	 Determine whether m is 1. If it is 1, then calculate in ECS1, and return the calculation 

result after the computation time tcomp
n,1 .

3.	 If not, through ECS1, the task is forwarded to the edge computing server ECSm 
through time tcomp

n,m  , and after the calculation time, the result is obtained and returned.

(4)Sn � (Ln,Cn)

(5)rn =
W

N
log2

(

1+
pngn
W
N N0

)

(6)tlocaln =
Cn

flocal

(7)tupn =
Ln

rn



Page 8 of 21Zhang et al. J Wireless Com Network         (2021) 2021:17 

For each edge server, assuming that it uses the first-come-first-served strategy to server 
the arriving computing tasks, the response delay in the server is the delay in queue plus the 
calculation delay:

If m! = 1, it will take ttrann,m  to forward the task:

where μ is the forwarding rate between edge servers.
The delay in the entire task offloading process can be expressed as:

The delay that users spend in computing their tasks is:

For the overall offloading process, for each user, it is desirable to minimize the delay of 
their respective users. For the entire system, it is desirable to allocate user tasks reason-
ably so that the overall average user delay is minimized. In summary, the optimization 
problem can be modeled as:

The above problem is an objective optimization problem. In essence, it is a combinato-
rial optimization problem. It is NP-hard to solve the complexity. Traditional methods 
are more difficult to solve, mostly brute force search or heuristic algorithms. In order to 
improve the adaptability of the model, this chapter also uses reinforcement learning to 
solve this problem.

4 � Deep reinforcement learning‑based solution
Reinforcement learning is a field in machine learning. The biggest difference from super-
vised learning is that it does not require artificial labeling. The core lies in the exploration 
of the unknown environment and the use of known knowledge. Reinforcement learning 
through continuous trial and error, continuous interaction with the environment, and 
get rewards or punishment from the environment, and then obtain learning information 
to update its own model. It learns a behavior strategy. After a certain amount of training, 

(8)trespn,m = twaitn,m + tcomp
n,m =

∑

i∈k Ci

fm
+

Cn

fm

(9)ttrann,m =
Ln

µ

(10)t
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{

t
up
n + t
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n,m ,m = 1

t
up
n + t
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n,m + ttrann,m ,m! = 1

(11)tn =











Cn
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,m = 0

t
up
n + t
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n,m ,m = 1

t
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n + t

resp
n,m + ttrann,m ,m! = 1

(12)

P1 : min
1

N

∑

n∈N

tn

s.t.

M
∑

m=0

an,m(t) = 1

∀n ∈ N , ∀m ∈ M
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it can make decisions to maximize long-term returns based on environmental condi-
tions. After the introduction of deep learning, reinforcement learning can handle high-
dimensional actions and states, learning efficiency is greatly improved, and to a certain 
extent, the limitations of reinforcement learning are broken. In this paper, in order to 
make the model adaptively learn to offload decisions, deep reinforcement learning algo-
rithms will also be used to solve the task offloading problem in edge computing.

Deep reinforcement learning In order to apply deep reinforcement learning algo-
rithms, a Markov decision process model needs to be established. The three elements of 
the model are system state, action and reward function.

4.1 � System state

In the current state, a total of n ∈ {1, 2, . . .N } users will offload tasks, and the number 
of available edge computing servers is m ∈ {1, 2, . . .M} . In each state t ∈ {0, 1, 2, . . .T  }, 
each user has a computation-intensive task un(t) that needs to be calculated.

The edge server ECSm may provide computing resources for multiple user tasks at the 
same time, and the user tasks are queued in sequence in the computing queue. Assum-
ing that there are currently k user tasks queued in the task queue of ECSm, the comput-
ing power of ECSm is and the computing power of ECSm is fm . Define the current load 
factor of the edge server ECSm as the ratio of the required computing cycle of all tasks in 
the current edge server to the computing capacity of the server:

Define the current system state as the system load factor of each edge server, that is, 
how many tasks are queued and calculated in the system:

Assuming that each edge computing server has k user tasks in the current state, its 
load factor is:

Since each user has m servers that can be uninstalled, the entire state space is MN . It 
can be seen that as the number of users increases, the state space of the entire system 
will show an exponential growth.

4.2 � System action

Define the current system action as an offload vector for all user tasks:

And have the following constraints:

(13)LDm(t) =

∑

i∈k Ci

fm

(14)χ(t) = [LD1(t), LD2(t), LD3(t), ..., LDm(t)]

(15)LDm(t) =

∑

i∈k Ci

fm

(16)An(t) = [an,0, an,1, an,2, ..., an,M]
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The action space of the entire system is:

As can be seen from the above formula, the action space of the entire system is also 
quite large, and its dimension is M × N  . The action space is MN . It can be seen that as 
the number of users increases, the dimension of system actions will continue to increase, 
and the system action space will increase exponentially.

4.3 � System reward function

Since each user is selfish, it is easy for multiple users to select the same edge server for 
uninstallation at the same time, resulting in a decline in the user experience of each user. 
In order to improve the sociality of user decision-making and the adaptability of the 
model, we propose a task offloading algorithm based on load balancing and reinforce-
ment learning (TOLB-RL). That is, when setting the reward function in reinforcement 
learning, the system load balancing coefficient is introduced, so that tasks can be more 
evenly distributed, the training speed of the model is accelerated, and the average delay 
of the overall system user is reduced.

For the administrators of edge computing servers, they hope to improve the resource 
utilization of the servers and make the load of each server relatively balanced, so as to 
avoid all tasks being concentrated on individual servers for calculation, resulting in 
waste of resources. Define the load balancing factor of the system as the variance of the 
load of each server:

where |E| is the average of all edge server load factors.
Whenever the system takes an action in the current state, it will get an instant feed-

back of the action. In reinforcement learning, it is generally expected to maximize 
rewards. According to question P1, every user wants to minimize their task offload delay. 
Therefore, the inverse number of the delay can be used as a reward after the decision. At 
the same time, considering the load balancing coefficient of the system, when defining 
the reward function, the load balancing coefficient is used as the penalty term of the 
reward function. If the action causes the overall load balancing coefficient to increase, 
the penalty is increased, otherwise the penalty is reduced. We define the instant reward 
function as:

(17)
M
∑

m=0

an,m(t) = 1, ∀n ∈ N

(18)A(t) = [A1(t),A2(t),A3(t), . . . ,AN(t)] =


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






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
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.
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
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(19)var(LD) =

∑

m∈M (LDm − |E|)2

M

(20)R(t)n = −ω1tn − ω2var(LD)
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This reward function comprehensively considers user delay and system load balancing 
coefficient. The value depends on the current system status and the actions taken by the 
user. Where ω1 and ω2 represent the average task response time and the weight of the 
edge server load balancing, respectively. Here, since the optimization goal is to minimize 
the time delay and minimize the load factor, reinforcement learning is generally to maxi-
mize the reward during optimization. Therefore, the entire reward function is a negative 
number. When the maximum reward of the entire system is obtained, it is equivalent 
to a minimum delay and a load balancing factor. Define the system utility as the overall 
system reward.

4.4 � Multi‑agent reinforcement learning

The centralized DQN [12] needs to observe the global state, so each user’s offload deci-
sion requires agent observation, which has poor scalability and causes the problem of 
dimensional explosion. The speed of training and execution is relatively slow. In addi-
tion, for the centralized algorithm, once the central agent node making the decision fails, 
the entire system will be paralyzed and unable to operate, and its reliability is relatively 
low. Therefore, we will introduce a multi-agent reinforcement learning algorithm, which 
treats each user as a separate agent and can make task offload decisions for its own tasks, 
rather than relying solely on a centralized single agent.

For multi-agent reinforcement learning, first, a Markov Game model needs to be 
established. Markov game can be described by (n, S,A1, . . . ,An,R1, . . . ,Rn,):

•	 n is the number of agents, in this section is the number of users N.
•	 S is the system state, generally refers to the joint state of multiple agents, that is, 

the joint state of each agent. In this section, users share the load status of the cur-
rent edge computing server, which can be expressed as:

•	 Ri is the instant reward function of each agent, that is, the reward obtained in the 
next system state s’ after the joint action (A1, . . . ,An) taken by multiple agents in 
the current state s.

The reward function completely describes the relationship between multiple agents. 
It should be noted that the reward function here is the reward function of each agent. 
When the reward function of each agent is consistent, that is R1 = R2 = · · · = Rn , it 
means that there is a complete cooperative relationship between the agents; when 
there are only two agents, and the reward function is opposite, that is R1 = −R2 , it 
means that the agent’s The relationship is completely competitive; when the reward 
function is between the two, it is a mixed relationship of competition and cooperation.

Figure  3 is a multi-agent reinforcement learning system. Multi-agents act at the 
same time, and under joint action, the entire system will be transferred, and each 
agent will be rewarded immediately.

Directly adopting the centralized reinforcement learning algorithm DQN will cause 
the action dimension to be too large and difficult to converge. In order to solve the 

(21)χ(t) = [LD1(t), LD2(t), LD3(t), . . . , LDm(t)]
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above problems, the DTOMALB algorithm is proposed to solve the above problems, 
which is the DDPG [13] algorithm in the case of multi-agents combined with the load 
balancing factor.

DDPG is a deterministic strategy gradient algorithm based on the actor-critic 
model. It also combines the advantages of DQN, using Target network and experience 
playback.

The reinforcement learning method based on value function introduces the 
action value function q̂ by approximating the value function. This function is often 
approximated by a neural network with parameter w , and accepts state s and action 
a as inputs. After calculation, the approximate action value is obtained, and then the 
action is selected by the maximum value:

In the policy-based reinforcement learning method, a policy function is learned, 
and the action probability is directly obtained through the input state. At this time, 
the strategy π can be described as a function containing the parameter θ, namely

The optimization goal isL

Finally, the gradient to derive θ can be expressed as:

When using the Monte Carlo method to update, for each time step in each Monte 
Carlo sequence, the formula is used to update the parameters of the network:

(22)q̂(s, a,w) ≈ qπ (s, a)

(23)πθ = P(a|s, θ) ≈ π(a|s)

(24)J (θ) = Vπθ (s1) = Eπθ (G1) = Eπθ

[(

r1 + γ r2 + γ 2r3 + · · ·
)]

(25)∇θ J (θ) = Eπθ
(

∇θ logπθ (s, a)Qπ (s, a)
)

(26)θ = θ + α∇θ logπθ (st , at)vt

Fig. 3  Multi-agent reinforcement learning system
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When using the time difference method to learn the approximate function Qπ (s, a) of 
the real action value function, it evolves into the Actor-Critic algorithm. The Actor net-
work is responsible for selecting actions, and the Critic network is responsible for learn-
ing the real action value function, so as to guide the Actor to select actions.

The deterministic strategy adopted in the DDPG algorithm is to directly output actions 
according to the current state:

Random strategy, the strategy output is the probability of action. For example, the 
A2C[14] algorithm uses a normal distribution to sample the action, that is, each action 
has a probability of being selected. Random strategy integrates exploration and improve-
ment into one strategy, but requires a lot of training data.

In deterministic strategies, the output of the strategy is an action, which requires less 
data to be sampled and high algorithm efficiency, but it is impossible to explore the envi-
ronment. Since the deterministic strategy cannot explore the environment, the DDPG 
algorithm utilizes the off-policy learning method. Off-policy means that the sampling 
strategy and the improved strategy are not the same strategy. Similar to DQN, samples 
are generated using a random strategy and stored in the experience playback mecha-
nism. Samples are randomly selected during training. The improvement is the current 
deterministic strategy. The entire deterministic strategy learning framework adopts the 
AC method.

In DDPG, a deep neural network with parameters θµ and θQ is used to represent the 
deterministic strategy a = π(s|θµ) and the action value function Q(s, a|θQ) . Among 
them, the strategy network is used to update the strategy, corresponding to the actors in 
the AC framework; the value network is used to approximate the value function of the 
state action pair, and provides gradient information, corresponding to the critics in the 
AC framework. The objective function is defined as the total return with discounts:

The objective function is optimized end-to-end by stochastic gradient method. Silver 
et al. [15] proved that the gradient of the objective function with respect to θµ is equiva-
lent to the expected gradient of the Q-value function with respect to θµ:

According to the deterministic strategy a = π(s|θµ) , the following formula can be 
obtained:

The Actor network will update the parameters of the strategy network in the direction 
of increasing the Q value.

For the Critic network, it will be updated by updating the value network in DQN. The 
gradient information is:

(27)a = π(s|θµ)

(28)J
(

θµ
)

= Eθµ
[

r1 + γ r2 + γ 2r3 + · · ·
]

(29)
∂J (θµ)

∂θµ
= Es

[

∂Q(s, a|θµ)

∂θµ

]

(30)
∂J (θµ)

∂θµ
= Es

[

∂Q(s, a|θµ)

∂θµ

∂π(s|θµ)

∂θµ

]
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For the MADDPG [16] algorithm that introduces multi-agents, the system will adopt 
a centralized training and distributed execution framework. In the training process, 
learn by using some global information, and in the final test run, you only need to use 
local information to make decisions when applying. This is a disadvantage of Q-learning. 
Q-learning must use the same information when learning and applying. This algorithm 
improves the DDPG algorithm, Critic network adds the strategy information of other 
agents, and Actors can only access local information. After the training is completed, 
only Actors are used in the execution phase, and each Actor is executed in a distributed 
manner.

Let θ = {θ1, θ2, . . . , θN } denote the parameters of n agent strategies, 
and  π = {π1,π2, ...,πN } denote the strategy of n agents. For the cumulative expected 
reward of the i-th agent, for a random strategy, the strategy gradient is:

Here Qπ
i (x, a1, . . . , aN ) is a centralized action value function, which takes action 

a1, . . . , aN  of all agents, plus state information x as input, and then outputs the Q 
value of agent i.

The gradient formula obtained according to the deterministic strategy µθi is as 
follows:

The experience playback buffer D contains a tuple 
(

x, x′, a1, . . . , aN , r1, . . . , rN
)

 , 
which records the experience of all agents. The centralized action value function Qµ

i  is 
updated as follows:

Because DDPG is generally used to solve the problem of continuous action input, 
and the action space in us is discrete. Therefore, Gumbel-Softmax [16] network is 
used to convert discrete actions into continuous action estimates.

Figure  4 is a schematic diagram of the network structure of the DTOMALB 
algorithm.

The overall algorithm flow is shown in Table 1.

5 � Experiments and methods
In this section, the experiments are given to evaluate the algorithm from four aspects. 
The experiment mainly includes the simulation of the DTOMALB algorithm and 
the comparison with other algorithms in four index levels to test the availability and 

(31)∂L
(

θQ
)

∂θQ
= Es,a,r,s′∼D[(TargetQ − Q(s, a|θQ))

∂Q(s, a|θQ)

∂θQ
]

(32)TargetQ = r + γQ′(s′,π(s′|θµ
′

)|θQ
′

)

(33)∇θi J (θi) = Es∼pµ,ai∼πi

[

∇θi log πi(ai|oi)Q
π
i (x, a1, . . . , aN )

]

(34)∇θi J (µi) = Ex,a∼D[∇θiµi(ai|oi)∇aiQ
π
i (x, a1, . . . , aN )]|ai=µi(oi)

(35)
L(θi) = Ex,a,r,x′

[

(

Qπ
i (x, a1, . . . , aN )− y

)2
]

, y = ri + γQ
µ′

i

(

x′, a′1, . . . , a
′
N

)

|a′j=µ′
j(oj)
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Fig. 4  Schematic diagram of the network structure of the DTOMALB algorithm

Table 1  DTOMALB algorithm description
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superiority of the algorithm proposed in this paper, and the effect of adding some vari-
ables on the whole training process of the algorithm.

In this paper, the experimental method is to simulate the task unloading of edge com-
putation in a single-cell multi-user scenario. Firstly, the number of edge servers and users 
in the scene and other parameters in the simulation process are set. Then, DTOMALB 
algorithm is used to simulate the task unloading process. Compared with other existing 
algorithms in the same simulation environment, the performance of the proposed algo-
rithm is evaluated.

The analysis methods adopted here are cross-comparison method and trend analysis 
method. First of all, under the condition that other simulation parameters are the same, 
when changing a variable in the training process, observe its influence on the simula-
tion results. Then analyze the variation trend and reason of simulation results under this 
circumstance. Finally, different algorithms are respectively used to complete the simula-
tion experiment of the same setting, and the performance of different algorithms is com-
pared according to the simulation results, so as to verify the feasibility of the DTOMALB 
algorithm proposed in this paper.

In this paper, four experiments are designed, and the experimental simulation environ-
ment is set as follows.

In a single-cell multi-user scenario, there are 10 users and 5 edge servers on this exper-
iment. More detailed simulation parameters settings are shown in Table 2.

6 � Results and discussions
After the algorithm is simulated, the effectiveness of the algorithm is analyzed from four 
aspects: training convergence, load balancing coefficient, comparison of system utility 
and number of users, and task load balancing results. The simulation results are analyzed 
as follows, and the meaning of the research results and the limitations of the research are 
reflected in the result analysis.

7 � Training convergence analysis
In Fig. 5, DQN-TOLB and IDQL-TOLB[17] are the centralized DQN algorithm intro-
ducing load factor and the independent DQN algorithm in multi-agent. To facilitate 
comparison with the centralized DQN-TOLB algorithm, we define the system utility 
of the two multi-agent algorithms as the average of the cumulative rewards of multiple 

Table 2  Simulation parameter setting

Parameter Definition Value

M Number of edge servers 5

N Number of users 10

f Edge server computing power  ~ U[12,20]Ghz

flocal local computing ability  ~ U[300,500]Mhz

L Task transfer data size  ~ U[300,500]300 KB

C CPU resources required by the task  ~ U[800,1200]M cycles

B Link bandwidth 20Mhz

pup User upload power 500mw
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agents. It can be seen from Fig. 5 that the system utility of the three algorithms changes 
with the training process. It can be seen that the proposed DTOMALB algorithm has 
the fastest convergence and the highest utility. Observing the centralized training DQN-
TOLB algorithm, it can be found that it can also converge in the end, but it falls into 
the local optimum, and its convergence speed is slow. This is because its action space is 
huge, and it requires a lot of exploration to converge and find the optimal value. For the 
IDQL-TOLB algorithm, the training process is very unstable, and it can be seen that its 
fluctuation range is the largest. This is because each agent makes a decision indepen-
dently, which makes the entire system environment dynamically change, so the training 
process is unstable, and Reward fluctuates at a lower level.

Fig. 5  The convergence of the algorithm

Fig. 6  Comparison of training with and without load balance coefficient
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8 � With or without load balancing coefficient training
Figure 6 is a comparison of the training situation of the DTOMALB algorithm and the 
DTOMA algorithm without the introduction of load balancing coefficients. It can be 
seen that when the load balancing factor is introduced, the DTOMALB algorithm can 
converge faster and can achieve higher system utility. However, the DTOMA algorithm 
without introducing load balancing coefficients has a long training process, and the sys-
tem utility is relatively low. This is because after the introduction of the load balancing 
factor, the selfishness of each user is reduced, and each user will tend to choose an edge 
server with a lower load, thereby reducing unnecessary competition, thereby accelerat-
ing convergence, and improving the effectiveness of the system. Without the introduc-
tion of load balancing coefficients, competition will occur more easily, so that training 
requires more rounds to explore the optimal strategy, and it is easier to fall into the 
local optimal. Therefore, it is necessary to introduce load balancing coefficients, which 
can accelerate the training speed and promote the overall average delay reduction of all 
users.

9 � Comparison of system utility and number of users
As the total number of user equipment increases, the overall utility of the system 
decreases, because with the increase of user equipment, more and more tasks need to be 
uninstalled. On the one hand, as the number of users increases, each user occupies fewer 
and fewer communication resources, so the offload rate will decrease, and the offload 
delay will increase, resulting in reduced system utility. On the other hand, as the number 
of users increases, the computing resources that each user can allocate also decrease, 
resulting in an increase in latency and therefore a decrease in the overall system utility. It 
can be seen from Fig. 7 that the overall utility of the resource scheduling scheme based 
on DTOMALB is higher, reflecting the superiority of the algorithm.

Fig. 7  The relationship between system utility and number of users
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10 � Task load balance result analysis
Figure 8 shows the load balancing results achieved by the DTOMALB algorithm. The com-
puting power of servers 1 to 5 is [12,14,16,18,20]Ghz. It can be seen that the load of each 
server is more balanced, the server with strong computing power is assigned to relatively 
more computing tasks, and the server with weak computing power is assigned less com-
puting tasks. The load factor of each server is almost the same, and the load balancing is 
realized.

From the above experiments and results, it can be seen that the DTOMALB algorithm 
proposed in this paper can perform a reasonable unloading method under the scenario 
of single-cell and multi-user edge calculation to improve user experience and balance 
resource utilization. The limitations of this research mainly focus on model training, 
which can be improved from the offline training level.

11 � Conclusion
This chapter studies task offloading and resource allocation in a multi-user single-cell sce-
nario. In a single cell scenario, multiple users are connected to an edge server through a 
single LTE macro base station, and the edge server can schedule tasks to other servers 
connected to it. Aiming at the resource waste caused by the uneven load of multiple users 
in the process of uninstalling their computing tasks, and considering that the response 
time of the user tasks should be minimized, the problem of user offloading and resource 
allocation in this scenario is turned into more Goal optimization problem. At the same 
time, in view of the characteristics of dimensional explosion, scalability and poor dynam-
ics faced by the centralized task scheduling with the increase of the number of users, an 
algorithm model for centralized training and task offloading of distributed operations is 
proposed. By establishing each user as a Markov game model and introducing load bal-
ancing coefficients, a DTOMALB algorithm based on multi-agent is proposed. Through 
simulation experiments, comparing the centralized algorithm and the independent 
multi-agent algorithm, the DTOMALB algorithm proposed in this chapter can effectively 

Fig. 8  Edge server load balancing
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reduce the response delay of all users and make the load of each edge computing server 
relatively balanced, improving the robustness and scalability of the system.
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