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1  Introduction
It is well known that long-length LDPC codes with the sum-product (SP) decoding algo-
rithm show good decoding error properties near the Shannon limit; see sections 17.10–
17.19 of [13]. However, medium-length LDPC codes (whose length are a hundred to a 
few thousand bits) are adopted in some actual communication standards, such as IEEE 
802.11n (Wi-Fi), 802.16e (WiMAX) and telecommand (TC) links from ground to space 
[4, 5] because of their lower latency properties. Unfortunately, the error correction abili-
ties of these medium-length codes are inferior to that of long-length codes. As a method 
that compensates for this gap, the Ordered Statistic Decoding (OSD) method [8] has 
been considered effective. This method uses outputs of SP decoding as reliability meas-
ure and reprocesses them to improve the output quality. However, for each reprocessing 

phase i, the method requires 
(

k
i

)

 codewords to be processed, where k is the informa-

tion bit length. Thus, up to phase p, a total number of 
∑p

i=0

(

k
i

)

 codewords will be 

generated. This procedure is called “Order-p reprocessing”. Thus, in practice, the repro-
cessing procedure is limited to a relatively small number, for example at most order 4; 
see [2]. Due to this limitation on the reprocessing order, improvements from SP 
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decoding are not large enough as expected, especially if the order of reprocessing is 
small, such as p = 1 or 2. To resolve these contradictory requirements on decoding pre-
cision and decoding time, we propose a method, that is a concatenation of the iterative 
decoding method (SP) and OSD method. It is known that shortened LDPC codes 
improve the decoding error rate to a certain extent, e.g., see [16, 17] and references 
therein. Thus, by choosing shortened LDPC codes in some appropriate way, the number 
of erroneous bits in most reliable bits (MRB) are expected to be reduced, and this 
decreasing of errors in the MRB improves the total decoding error significantly even in 
the adoption of “Order-1” or “Order-2” reprocessing. Here, we used the term “-appropri-
ately shortened LDPC codes-” for LDPC codes whose shortening positions were selected 
to decrease the decoding error. We compared three methods for the selection of short-
ening positions, namely (A): Every 8 bits, (B): Worst reliable bits [16], (C): Integer Pro-
gramming based approach. We note that in method (C), the 
Feldman–Wainwright–Karger code polytope [7] is used for demonstrating integer pro-
gramming (IP) procedure to enumerate a set of codewords with small Hamming weight. 
We exclude these codewords by suitably choosing shortening positions and for this 
choice of shortening positions, IP again plays an important role. To the best of our 
knowledge, the approach (C) is new in our current paper.

For the decoding time, it was suppressed to be reasonable, because we assumed a 
relatively small-order reprocessing scheme. We examine this in Sect. 6 with numerical 
experiments.

For an error-correcting performance, by appropriately choosing shortening positions 
of information bits, we found that Order-2 reprocessing is enough to achieve a code-
word error rate (CER) of less than 10−5 at a signal-to-noise ratio Eb/N0 = 3.0 dB. To be 
specific, the followings accomplish this property: 

(1)	 IEEE 802.16e (WiMAX) LDPC code with (n, k) = (576, 288) shortened 36 bits,
(2)	 IEEE 802.11n (Wi-Fi) LDPC code with (n, k) = (648, 324) shortened 40 and 36 bits,
(3)	 Consultative Committee for Space Data System (CCSDS) TC link LDPC code with 

(n, k) = (512, 256) shortened 32 bits,

where n is the code length and k the information bit length. We note that the codeword 
error rate level in TC links is required to be lower than 10−5 ; see Baldi et al. [2]. Of three 
methods for the determination of shortening positions, method (C) seems to be effective 
especially in the case of a relatively high signal-to-noise ratio range.

Finally, we note that the method we are proposing here is a sort of concatenation of SP 
and OSD methods, analogous to [2]. Hence, further concatenation with a cyclic redun-
dancy check (CRC) as [9, 14] may be possible by decreasing the number of shortening 
bits and using them for CRC.

This paper is organized as follows. In Sect.  3, we review the shortened LDPC code, 
the OSD method, and their concatenation. In Sect. 4, we propose three different meth-
ods for shortening positions. We evaluate these methods through a series of numeri-
cal experiments in Sect. 5. Section 6 discusses our evaluations from the execution time. 
Throughout the experiments, we assume relatively small order OSD, while keeping the 
ability of error correction at some satisfactory level. Thus, the execution time is also 
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relatively small in these OSD decoding class. Finally, in Sect. 7 we discuss some topics 
which we leave for future research.

2 � Methods
We have examined the effectiveness of an encoding/decoding method via computer 
simulations, which were performed on an Intel(R) Xeon(R) E5-1660 3.70GHz processor 
host using gcc 4.4.7 -O3.

3 � Shortened LDPC codes and the OSD method
In this section we review the shortened LDPC codes with SP decoding and the OSD 
method, and then we look for the way to combine them into a single coding algorithm. 
First, we introduce some notations. Let (n,  k) denote code length and information bit 
length respectively. We assume an additive white Gaussian noise (AWGN) channel and 
N0/2 to be the two-sided noise power spectral density, thus the standard deviation of a 
noise is σ =

√
N0/2 . As for modulation, binary phase-shift keying (BPSK) is assumed, 

whose signal energy per one information bit is denoted by Eb . Thus, over a noiseless 
channel, outputs of the matched filters are

where R is the code rate. Next, we briefly introduce the encoding algorithm, which is 
standard for shortened LDPC code. Assume a (n+ α, k + α) base LDPC code is avail-
able. Let α be the number of shortened bits from the base LDPC code. We denote the 
parity check matrix of base LDPC code by H =

(

hi,j
)

 . 

We introduce the following three different methods to determine the shortening posi-
tion T:

(1)
{

−
√
REb, if sending information is 1,√

REb, if sending information is 0,
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We note that the length of n+ α sequence is not transmitted in the above encoding 
process. Instead, we transmit the length of a n sequence, thus, the coding rate is k/n 
(Fig. 1). Because both sender and receiver know α bits of shortening position T and they 
are set to be zero, hence it is not necessary to transmit these all zero bits.

Next, we introduce a decoding algorithm, which is a concatenation of the SP-algo-
rithm for shortened LDPC codes and the OSD method. We note that the following 
decoding algorithm is essentially the same as the hybrid decoding algorithm in [2], 
except for the adoption of shortened LDPC codes (for the applications of this hybrid 
decoding algorithm to non-binary LDPC codes, consult Baldi et al. [1]). However, as 
shown in the numerical experiments discussed in Sect.  5, adoption of appropriate 
shortened LDPC codes fairly improve error correction ability compared to the one 
that uses prime base LDPC codes for the OSD process.

In the following, L denotes a maximum iteration number of SP-algo-
rithm, M is a large real number, and y = (y1, . . . , yk , yk+α+1, . . . , yn+α) 
(yj ∈ R, j ∈ {1, . . . , k , k + α + 1, . . . , n+ α}) , a received sequence. In step (2) of the fol-
lowing decoding procedure, we will use accumulative log-likelihood ratio (LLR) infor-
mation as in [11] owing to its efficiency. In step (3), we apply hard decision process 
to the outputs of SP. If this hard decision satisfy parity condition, we adopt this hard 
decision as the final decoding result. In step (4), positions corresponding to set T are 
set to large value M, since these bits include no error. Step (5) and (6) are conven-
tional OSD method. 







(A) T = {8, 16, . . . , 8α} (equal interval)
(B) Worst reliable α positions according to [16]
(C) Integer Programming based approach

Fig. 1  Encoding process
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Here we note that we do not flip any of z′π(n+1), . . . , z
′
π(n+α) in step (6) since this 

sequence does not contain any errors.
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4 � Selection of α‑shortening positions
The selection of shortening positions in α information bits is important for improving 
CER; see [3, 16, 17] and their references. Shortening techniques do not depend on the 
code length, however, they result in significant progress in the error correction ability 
when they are adopted to medium-length codes with OSD decoding. This is because, 
a small refinement in error rate of MRB often results in large improvement in the pro-
cess of OSD decoding, as we shall see in the numerical experiments in the following 
sections. In the experiments, we try the following three types of shortening methods. 
First method is a code independent, while other two methods are code dependent 
one. 

In the case of (B), we fixed Es = 0.5Eb = 0.5N0 = 4 and M = 50 . By applying 
the above method (B), we obtained the following tables that describe the shorten-
ing positions for (1) (n+ α, k + α,α) = (576, 288, 36) IEEE 802.16e (WiMAX) LDPC 
code, (2) (n+ α, k + α,α) = (648, 324, 40) and  (648,324,36)  IEEE 802.11n (Wi-
Fi) LDPC code, (3) (n+ α, k + α,α) = (256, 128, 16) CCSDS LDPC code and (4) 
(n+ α, k + α,α) = (512, 256, 32) CCSDS LDPC code (Table 1). 

For the third method, we need some definitions.

Definition 1  Let

and

(2)
Ai :=

{

j ∈ {1, 2, . . . , n+ α} : hi,j = 1
}

∀i ∈ {1, 2 . . . , n− k}

(3)Ti := {S ⊂ Ai : |S| is odd}
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The following polytope is called the Feldman–Wainwright–Karger code polytope [7]:

First, we determine a code set which has small Hamming weight. 
The set C obtained through above process represents a collection of codewords 

that have a small Hamming weight. Table 2 shows (a part of ) the positions that take 
x∗t = 1 , for (1) (n+ α, k + α,α) = (576, 288, 36) IEEE 802.16e (WiMAX) LDPC code 
and (2) (n+ α, k + α,α) = (648, 324, 40) IEEE 802.11n (Wi-Fi) LDPC code. We have 
computed 900 codewords in ascending order of the Hamming weight for case (1) and 
800 codewords for case (2) by using MIP Solver Gurobi optimizer 8.1. We tried to 
avoid codewords of small Hamming weight appearing in set C as much as possible. To 

(4)
1+

∑

t∈S
(xt − 1)−

∑

t∈Ai\S
xt ≤ 0,

∀i ∈ {1, . . . , n− k}, ∀S ∈ Ti

(5)0 ≤ xj ≤ 1, ∀j ∈ {1, . . . , n+ α}.

(6)P(H) = {x ∈ R
n+α : x satisfies (4) and (5)}.

Table 1  Shortening positions T of each LDPC code when method (B) is applied

(1) (n + α, k + α, α) = (576, 288, 36) IEEE 802.16e

T 551, 550, 549, 548, 547, 546, 545, 544, 543, 542, 541, 540, 539, 
538, 537, 536, 535, 534, 533, 532, 531, 530, 529, 528, 347, 
346, 345, 344, 343, 342, 341, 340, 339, 338, 337, 336

(2) (n + α, k + α, α) = (648, 324, 40) and (648,324,36) IEEE 802.11n

T 620, 619, 618, 617, 616, 615, 614, 613, 612, 611, 610, 609, 608, 
607, 606, 605, 604, 603, 602, 601, 600, 599, 598, 597, 596, 
595, 594, 431, 430, 429, 428, 427, 426, 425, 424, 423, 422, 
421, 420, 419

(3) (n + α, k + α, α) = (256, 128, 16)  CCSDS

T 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 
162, 161, 160

(4) (n + α, k + α, α) = (512, 256, 32)  CCSDS

T 351, 350, 349, 348, 347, 346, 345, 344, 343, 342, 341, 340, 339, 
338, 337, 336, 335, 334, 333, 332, 331, 330, 329, 328, 327, 
326, 325, 324, 323, 322, 321, 320
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decide the shortening positions of the code so as to achieve this objective, we make 
use of the integer programming technique again. We set a positive integer K as large 
as possible so that the following optimization problem is feasible. We put N as the 
total number of shortening positions. 

The vector z = (z1, . . . , zn) above represents a position to be shortened. More pre-
cisely, if zi = 1 then i-th position in original codeword is shortened and its value is 
set to be “0”. Next proposition shows any codeword up to K-th position in the set C is 
prohibited in the proposed shortened code.

Proposition 1  Assume z = (z1, . . . , zn) be a feasible solution to the integer program-
ming problem (C). Further, if zi = 1, then we set i ∈ T  in “Encoding Algorithm”. Then, any 
codeword up to K-th position in the set C never appears in the set of codewords designed 
by the “Encoding Algorithm”.

1 � (Proof)
Set CK ⊂ C be the set of codewords up to K-th position in C and C be the set of codewords 
designed by the “Encoding Algorithm”. Let x∗ be an element in CK  with minimum Ham-
ming weight d∗ . Then, from the definition of z , at least one position of x∗ whose bit has 
a value “1” is forced to be “0” in “Encoding Algorithm”. Thus, x∗ is never contained in C . 
Assume any codeword of CK  with Hamming weight d ( d > d∗ ) is not contained in C . Now 
let xd+1 ∈ CK  be an arbitrary codeword with Hamming weight d + 1 . Then, again from 
the definition of z , at least one position of xd+1 whose bit has a value “1” is forced to be “0” 
in “Encoding Algorithm”(thus modified xd+1 has a Hamming weight less than or equal to 
d). Hence, by induction hypothesis, xd+1 is never contained in C , which proves the asser-
tion. �
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Thus, the minimum free distance of the proposed shortened code is significantly 
increased compared to the original code. Hence, we can expect erroneous bits in the 
proposed shortened code decrease, especially in a relatively high signal-to-noise ratio 
environment. This minor improvement on erroneous bits accelerates total improvement 
on OSD decoding method.

Although we have experimented with four cases of different LDPC codes, we have 
demonstrated approach (C) for only the above two cases (1) and (2) (different two cases 
α = 40 and α = 36 ); see Table 3. This is mainly due to the limit of computation time (in 
our computing environment, it took about a month to obtain the result of Table 2). As 
we shall see in the following, method (C) shows a remarkable advantage in error correc-
tion ability, it seems worthwhile to try to explore some methods to obtain the result of 
(C)-I (as shown in Table 2) within more reasonable time. Combination of some proba-
bilistic methods for weight distribution, e.g., [6, 10, 12, 15] and IP approach might prove 
promising. Specifically, an approach based on the “impulse method” by Hu et  al. [10] 
and Declercq and Fossorier [6] is known to be effective for enumerating such low weight 
codewords.

5 � Numerical experiments
For our experiments, we used four different LDPC codes, which have a systematic struc-
ture (WiMAX code, Wi-Fi code and two CCSDS codes). We evaluated error correction 
ability with codeword error rate (CER), which is defined as the ratio of the number of 

Table 2  A set of codewords which have small Hamming weight

No. (n+ α, k + α,α) = (576, 288, 36) IEEE 802.16e

1 100, 158, 247, 261, 345, 409, 419, 423, 433, 443, 494, 504, 518

2 109, 167, 246, 256, 354, 408, 418, 428, 442, 452, 503, 513, 527

3 116, 150, 253, 263, 337, 411, 415, 425, 435, 449, 486, 510, 520
.
.
.

                                     ..
.

24 104,162, 241, 251, 349, 413, 423, 427, 437, 447, 498, 508, 522

25 96, 110, 144, 154, 243, 247, 341, 355, 409, 415, 439, 443, 480, 490, 504, 524

26 99, 113, 147, 157, 246, 250, 344, 358, 412, 418, 442, 446, 483, 493, 507, 527
.
.
.

                                     ..
.

899 1, 47, 101, 159, 251, 258, 334, 341, 346, 358, 365, 382, 389, 400, 406, 424, 430, 454, 471, 481, 508, 539, 
563

900 11, 27, 59, 113, 154, 158, 217, 308, 314, 317, 338, 362, 382, 391, 428, 436, 466, 492, 494, 516, 517, 540, 
541

No. (n+ α, k + α,α) = (648, 324, 40) IEEE 802.11n

1 84, 85, 263, 301, 355, 382, 409, 435, 452, 462, 488, 581, 582, 609, 636

2 100, 101, 252, 317, 371, 398, 425, 441, 451, 478, 504, 570, 571, 598, 625

3 92, 93, 244, 309, 363, 390, 417, 433, 443, 470, 496, 589, 590, 617, 644
.
.
.

                                     ..
.

27 90, 91, 269, 307, 361, 388, 415, 441, 458, 468, 494, 587, 588, 615, 642

28 33, 45, 85, 139, 168, 288, 355, 382, 396, 409, 468, 495, 522, 561, 565, 580, 582, 607

29 28, 43, 95, 149, 178, 271, 365, 379, 392, 419, 478, 505, 532, 544, 548, 590, 592, 617
.
.
.

                                     ..
.

799 73, 136, 163, 181, 188, 259, 307, 335, 352, 397, 404, 431, 448, 458, 475, 511, 524, 558, 560, 587, 631, 632

800 79, 187, 193, 265, 382, 403, 409, 436, 454, 463, 481, 488, 490, 515, 542, 557, 569, 584, 596, 611, 623, 638
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decoding failures to total number of received codewords. In each of the following fig-
ures, horizontal axis represents the signal to noise ratio: Eb/N0 . In all experiments we 
assumed Es = REb = 1 and they were performed on Intel(R) Xeon(R) E5-1660 3.70 GHz 
host using gcc 4.4.7-O3.

(1) In this case, we used (n+ α, k + α,α) = (576, 288, 36) IEEE 802.16e (WiMAX) 
LDPC code as the base code. Thus, (n, k) = (540, 252) , and hence coding rate is 
R = k/n = 0.467 . The result for this case is shown in Fig. 2. In the figure, label SP shows 
the CER of the “original” (576,288) LDPC code with the SP-algorithm, and OSD1 stands 
for the result of Order-1 OSD method applied to base LDPC code. SHA , SHB and SHC 
are the results of α bit shortened codes whose shortening positions were determined by 
(A), (B) and (C) as described in the previous section, respectively. SHOSD1A , SHOSD1B 
and SHOSD1C are the proposed methods which apply the Order-1 OSD method to SHA , 
SHB and SHC , respectively. SHB , SHC and OSD1 showed almost the same CER abilities 
(whereas SHA is inferior to those). However, we observed that SHOSD1A , SHOSD1B and 

Table 3  Shortening positions T of each LDPC code in case method (C) were applied

(1) (n+ α, k + α,α) = (576, 288, 36) IEEE 802.16e

T 150, 313, 317, 330, 345, 350, 355, 358, 362, 366, 370, 409, 410, 
413, 417, 418, 419, 421, 422, 426, 429, 430, 431, 449, 470, 
483, 486, 487, 490, 491,495, 499, 503, 506, 520, 574

(2) (n+ α, k + α,α) = (648, 324, 40) IEEE 802.11n

T 290, 372, 379, 381, 383, 387, 396, 402, 405, 407, 409, 411, 413, 
424, 430, 445, 455, 471, 515, 516, 553, 568, 576, 579, 585, 
586, 589, 594, 596, 598, 599, 600, 601, 602, 609, 615, 617, 
618, 619, 620

(2’) (n+ α, k + α,α) = (648, 324, 36) IEEE 802.11n

T 86, 379, 397, 398, 399, 407, 408, 409, 413, 420, 422, 429, 431, 
441, 470, 555, 572, 581, 588, 594, 595, 596, 598, 601, 602, 
603, 605, 607, 609, 612, 613, 614, 616, 618, 619, 620

Fig. 2  IEEE 802.16e (n+ α, k + α) = (576, 288) base LDPC code. M = 50, L = 10,000



Page 11 of 18Watanabe et al. J Wireless Com Network         (2021) 2021:22 	

SHOSD1C accomplished CER under 10−5 at Eb/N0 = 3.0 dB and 3.5 dB and constantly 
overperformed the result of OSD-1 decoding. In particular, the SHOSD1C is superior 
even if compared to SHOSD1A and SHOSD1B at Eb/N0 = 3.0 dB and 3.5 dB. Table  4 
shows the effectiveness of the OSD effect for the base and shortened LDPC codes. As 
shown in Table 4, the SHA/SHOSD1A and SHB/SHOSD1B ratios are, in most cases, supe-
rior to the SP/OSD ratio, except at 3.0 dB and 3.5 dB. However, SHC/SHOSD1C shows a 
far superior improvement rate compared with the other three cases. This indicates that if 
we properly select shortening positons, the OSD effect is accelerated by the correspond-
ing shortened codes. Table  5 shows the number of excluded codewords, out of No.1 
through No.900, appearing in Table 2 by methods (A), (B) and (C), respectively. From 
this, we see that the number of excluded codewords by method (C) is larger than those 
with methods (A) and (B). Figure 3 gives the distribution of the number of codewords 
which are not covered by each of the shortening methods (A), (B) and (C). The hori-
zontal axis indicates the code weight, while the vertical gives the number of (log scaled) 
codewords uncovered by respective methods. Method (A) and (B) remain considerable 
amount of uncovered codewords (especially for a low weight distribution, such as 13 and 
16), whereas the method (C) keeps only three uncovered codewords at a weight 23. The 
error correction ability at 3.0 dB and 3.5 dB appears to be affected by these numbers of 
uncovered numbers of codewords with small Hamming weight in Table 5.

(2)-1 In this case, we used (n+ α, k + α,α) = (648, 324, 40) IEEE 802.11n (Wi-Fi) 
LDPC code as the base code. Therefore, (n, k) = (608, 284) , and hence coding rate is 
R = k/n = 0.467 . The result for this case is shown in Fig. 4. All labels mean the same 
as in Fig.  2. We can see that SHA , SHB , SHC and OSD1 show almost the equivalent 
CER abilities. On the other hand, we observe that SHOSD1A , SHOSD1B and SHOSD1C 
accomplish CER under 10−5 at Eb/N0 = 2.5 dB and constantly overperform OSD-1 
decoding. In particular, the SHOSD1B and SHOSD1C results at Eb/E0 = 3.0 dB are 
strong compared to those of SHOSD1A . Table 6 shows the efficiency of the OSD effect 

Fig. 3  Distribution of number of codewords which are not covered by each shortening methods for WiMAX 
(n+ α, k + α,α) = (576, 288, 36) LDPC code
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Table 4  OSD effect for base and shortened codes: case (1)

Following abbreviation is used: RA = SHA/SHOSD1A , RB = SHB/SHOSD1B and RC = SHC/SHOSD1C

dB SP/OSD RA RB RC

1.0 1.39 1.78 1.66 1.66

1.5 1.83 2.69 2.31 2.30

2.0 3.04 5.56 4.20 3.54

2.5 5.38 8.57 6.41 8.57

3.0 8.35 6.91 3.68 18.35

3.5 4.73 4.99 2.75 38.1

Table 5  Number of  covered (inhibited) codewords appearing in Table  2 for  IEEE 802.16e 
code by method (A), (B) and (C) respectively

Method (A) (B) (C)

Number 524 823 897

Fig. 4  IEEE 802.11n (n+ α, k + α) = (648, 324) base LDPC code (α = 40) . M = 50, L = 10,000

Table 6  OSD effect for base and shortened codes: case (2) (α = 40)

dB SP/OSD RA RB RC

1.0 1.36 1.75 1.44 1.43

1.5 1.78 2.69 2.13 2.12

2.0 2.88 7.47 5.00 4.5

2.5 10.21 17.1 12.63 14.62

3.0 14.20 13.59 39.73 47.53
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for the base and shortened LDPC codes. As shown in Table 6, the ratios SHA/SHOSD1A , 
SHB/SHOSD1B and SHC/SHOSD1C , except for the case of 3.0 dB for SHA/SHOSD1A , are 
superior to the ratio SP/OSD, which means that the proposed method accelerates the 
OSD effect. As a possible cause that SHOSD1A loses its efficiency at Eb/E0 = 3.0 dB , we 
mention the following. First, as shown in Table 7, the covered codewords for methods 
(B) and (C) are relatively large (771 and 793) compared to the number for method (A). 
Second, from Fig. 5, we observe similarity in the distribution of the number of uncov-
ered codewords for the methods (B) and (C), although the distribution with method (B) 
has non-zero value at weight 20. On the other hand, the distribution of the number of 
the uncovered codewords for method (A) has non-zero value at low Hamming weight 
(at 15, 18, 19). This likely causes the degradation of CER at Eb/E0 = 3.0 dB for method 
SHOSD1A. 

(2)-2 Next, we examine the same IEEE 802.11n (Wi-Fi) LDPC code as a base 
code for a different parameter, specifically, (n+ α, k + α,α) = (648, 324, 36) . Thus, 
(n, k) = (612, 288) and hence R = k/n = 0.471 . The results are shown in Fig. 6, with its 
efficiency in Table 8, the number of covered codewords for each method in Table 9, and 
the distribution of the number of uncovered codewords for each Hamming weight of 
codeword in Fig. 7. We observed almost the same tendency as in the case of α = 40.

(3) In this case, we used (n+ α, k + α,α) = (256, 128, 16) CCSDS LDPC code as the 
base code see; [4]. Thus, (n, k) = (240, 112) , and hence coding rate is R = k/n = 0.467 . 

Table 7  Number of  covered (inhibited) codewords appearing in  Table  2 for  the  IEEE 
802.11n code ( α = 40 ) by method (A), (B) and (C) respectively

Method (A) (B) (C)

Number 432 771 793

Fig. 5  Distribution of number of codewords which are not covered by each shortening method for Wi-Fi 
(n+ α, k + α,α) = (648, 324, 40) LDPC code
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The result for this case is shown in Fig. 8. In the figure, the meanings of SP, SHA and SHB 
are the same as in Fig. 2. OSD2 shows the result from the Order-2 OSD method applied 
to the base LDPC code. SHOSD2A and SHOSD2B are proposed methods that apply the 
Order-2 OSD method to SHA and SHB respectively. We found that the error correction 
ability of OSD2 is superior to those of SHA and SHB . We observed that SHOSD2A and 
SHOSD2B accomplish CER under 10−5 at Eb/N0 = 3.5 dB and constantly outperforms 
the result of OSD-2 decoding. As an interesting finding, we observe in this case CER 
of SHOSD2A constantly outperforms SHOSD2B , although not so significant degree. 
Table 10 shows the efficiency of OSD effect for a base and shortened LDPC codes. From 

Fig. 6  IEEE 802.11n (n+ α, k + α) = (648, 324) base LDPC code (α = 36) . M = 50, L = 10,000

Fig. 7  Distribution of number of codewords which are not covered by each shortening methods for Wi-Fi 
(n+ α, k + α,α) = (648, 324, 36) LDPC code
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Table 8  OSD effect for base and shortened codes: case (2) (α = 36)

dB SP/OSD RA RB RC

1.0 1.36 1.69 1.47 1.46

1.5 1.78 2.71 1.75 1.75

2.0 2.88 6.67 2.98 2.91

2.5 10.21 11.01 9.28 9.32

3.0 14.20 10.57 24.73 39.5

Fig. 8  CCSDS (n+ α, k + α) = (256, 128) base LDPC code. M = 50, L = 10,000

Fig. 9  CCSDS (n+ α, k + α) = (512, 256) base LDPC code. M = 50, L = 10,000
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this table, we see that ratios SHA/SHOSD2A and SHB/SHOSD2B consistently improve the 
ratio of SP/OSD2. Hence, in this case, by shortening the base LDPC code, the OSD effect 
was accelerated.

(4) In this case we used (n+ α, k + α,α) = (512, 256, 32) CCSDS LDPC code as the 
base code see; [4, 5]. Thus, (n, k) = (480, 224) , and hence coding rate is R = k/n = 0.467 . 
The results for this case is shown in Fig. 9. All captions are the same as in Fig. 8. SHA , 
SHB and OSD2 show almost the same CER abilities. On the other hand, SHOSD2A and 
SHOSD2B accomplish CER under 10−5 at Eb/N0 = 3.0 dB and consistently improve the 
OSD-2 decoding result. As in case (3), the CER of SHOSD2A slightly better than that of 
SHOSD2B . Table 11 shows the efficiency of the OSD effect for the base and shortened 
LDPC codes. As shown in Table 11, we see that SHA/SHOSD2A and SHB/SHOSD2B con-
stantly improve the ratio of SP/OSD2. Therefore, as in case (3), by shortening the base 
LDPC code, the OSD effect was accelerated.

6 � Execution time evaluation
The decoding algorithm we presented in this paper is a kind of hybrid type decoding 
algorithms and its structure is analogous to that of Baldi et al. [2]. As explained in [2], 
most decoding trials end with procedure (3) of the decoding algorithm. Moreover, we 
assumed a relatively small order OSD reprocessing procedure (in the experiment dis-
cussed in the previous section order one and two reprocessing was used), thus, the 

Table 9  Number of  covered (inhibited) codewords appearing in Table  2 for  IEEE 802.11n 
code (α = 36) by method (A), (B) and (C) respectively

Method (A) (B) (C)

Number 394 764 774

Table 10  OSD effect for base and shortened codes: case (3)

dB SP/OSD RA RB

1.0 2.50 3.98 3.81

1.5 4.34 6.87 6.33

2.0 7.29 12.06 10.96

2.5 14.28 24.61 19.09

3.0 24.91 58.68 49.79

3.5 75.93 170.45 145.52

Table 11  OSD effect for base and shortened codes: case (4)

dB SP/OSD RA RB

1.0 1.46 2.19 2.03

1.5 2.41 3.74 3.53

2.0 3.91 6.87 6.19

2.5 7.14 18.46 16.30

3.0 24.71 72.48 60.12
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average decoding time would not be so apart from that of SP. We demonstrated this 
via numerical experiments. Tables 12 and 13 show the average computing time of ratio 
for the experiment cases (1) and (2) ( α = 40 ) of the previous section respectively. Here 
“OSD1” represents the average execution time for Order-1 OSD process (without the 
time for Sum-product part) and similarly, “SHOSD1A ” shows the average execution 
time for OSD process with shortened LDPC code and shortening method (A). OSD 
ratio refers to the percentage of OSD trials, i.e., the ratio of SP decoding failure. The 
labels OSD1/SP and SHOSD1A/SP refer to the execution time ratios. We note execution 
times shown in these tables are based on Intel(R) Xeon(R) E5-1660 3.70GHz processor 
host using gcc 4.4.7 -O3. Both Tables 12 and 13 show that the execution times for OSD 
and SHOSD1A do not depend on the signal to noise ratio Eb/N0 . From Table  12, we 
can observe that in the case, Eb/N0 is relatively low ( = 1.0 dB ), execution times of SP 
and OSD1 (or SHOSD1A ) do not show a remarkable difference (OSD1/SP=SHOSD1A
/SP = 1.27 ). On the other hand, in the case, Eb/N0 is relatively high ( = 2.0 dB ), execu-
tion times of OSD1 and SHOSD1A are approximately three times longer than that of 
SP. However, in the case Eb/N0 = 2.0 dB , OSD ratio is only 2.08 %, so about 98 % of 
instances are sufficient for SP decoding, as we have noted at the beginning of this sec-
tion, that most of decoding trials end at procedure (3) of decoding algorithm. Thus, even 
from the viewpoint of the total execution time, OSD-based decodings do not seem to 
lose their advantage (high precision decoding property) compared with SP decoding 
even in a relatively high Eb/N0 circumstance. Almost same tendency can be observed in 
Table 13.

7 � Results and discussion
An effective way to increase the OSD decoding ability was presented. As mentioned 
regarding the experiments described in Sect. 5, by determining T appropriately, CER can 
be reduced. In particular the method (C), which is based on mathematical programming, 

Table 12  Average execution time of Case (1)

dB/Method 1.0 2.0

SP (s) 0.011 0.0043

OSD1 (s) 0.014 0.014

OSD1/SP 1.27 3.26

SHOSD1A (s) 0.014 0.013

SHOSD1A/SP 1.27 3.02

OSD ratio (%) 48.7 2.08

Table 13  Average execution time of Case (2) (α = 40)

dB/Method 1.0 2.0

SP (s) 0.012 0.0052

OSD1 (s) 0.018 0.019

OSD1/SP 1.5 3.65

SHOSD1A (s) 0.018 0.019

SHOSD1A/SP 1.5 3.65

OSD ratio (%) 35.6 0.71
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seems to be effective. However, this method requires a collection of the codewords that 
have a small Hamming weight as shown in Table 2. Obtaining these tables via only math-
ematical programming as in method (C)–(I) is a computationally very hard task. Hence, 
hybrid methods with some heuristic approaches are desirable; see [6, 10, 12, 15].

Abbreviations
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TC: Telecommand; IP: Integer programming.

Acknowledgements
The authors are grateful to the referees for their careful reading and invaluable comments. The first author (KW) is grate-
ful to Professor Takeo Yamada for his careful reading and comments.

Authors’ contributions
RK and TS carried out the simulation and tuned up the encoding/decoding algorithm and KW designed the encoding/
decoding algorithm. All authors read and approved the final manuscript.

Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Received: 6 March 2020   Accepted: 12 January 2021

References
	1.	 M. Baldi, F. Chiaraluce, N. Maturo, G. Liva, E. Paolini, A hybrid decoding scheme for short non-binary LDPC codes. IEEE 

Commun. Lett. 18(12), 2093–2096 (2014)
	2.	 M. Baldi, N. Maturo, E. Paolini, F. Chiaraluce, On the use of ordered statistics decoders for low-density parity-check 

codes in space telecommand links. EURASIP J Wirel Commun Netw 2016, 272 (2016)
	3.	 M. Beermann, T. Breddermann, P. Vary, Rate-compatible LDPC codes using optimized dummy bit insertion, in 8th 

International Symposium on Wireless Communication Systems (2011). p. 447–451
	4.	 CCSDS, Short Block Length LDPC Codes for TC Synchronization and Channel Coding, Orange Book. CCSDS 231.1-

O-1 (2015)
	5.	 CCSDS, TC Synchronization and Channel Coding, Blue Book. CCSDS 231.0-B-3 (2017)
	6.	 D. Declercq, M.P.C. Fossorier, Improved impulse method to evaluate the low weight profile of sparse binary linear 

codes, in 2008 IEEE International Symposium on Information Theory, Toronto (2008). p. 1963–1967
	7.	 J. Feldman, M.J. Wainwright, D.R. Karger, Using linear programming to decode binary linear codes. IEEE Trans. Inf. 

Theory 51(3), 954–972 (2005)
	8.	 M.P.C. Fossorier, Iterative reliability-based decoding of low-density parity check codes. IEEE J. Sel. Areas Commun. 

19(5), 908–917 (2001)
	9.	 S. Gounai, T. Ohtsuki, Lowering error floor of irregular LDPC codes by CRC and OSD algorithm. IEICE Trans. Commun. 

E89–B(1), 1–10 (2006)
	10.	 X. Hu, M.P.C. Fossorier, E. Eleftheriou, On the computation of the minimum distance of low-density parity-check 

codes, in 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), 2 (2004). p. 767–771
	11.	 M. Jiang, C. Zhao, E. Xu, L. Zhang, Reliability-based iterative decoding of LDPC codes using likelihood accumulation. 

IEEE Commun. Lett. 11(8), 677–679 (2007)
	12.	 J. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Inf. 

Theory IT–34(5), 1354–1359 (1988)
	13.	 S. Lin, D.J. Costello, Error Control Coding, 2nd edn. (Pearson, Hoboken, 2004)
	14.	 J. Lim, D.J. Shin, A novel bit flipping decoder for systematic LDPC codes. IEICE Electron. Express 14(2), 1–8 (2017)
	15.	 J. Stern, A method for finding codewords of small weight, in Coding Theory and Applications, ed. by G. Cohen, J. 

Wolfmann (Springer, New York, 1989)
	16.	 H. Wang, Q. Chen, Y. Zhang, On the LLR criterion based shortening design for LDPC codes, in IEEE 2016 Annual 

Conference on Information Science and Systems (2016). https​://doi.org/10.1109/CISS.2016.74604​82
	17.	 A. Wongsriwor, V. Imtawil, P. Suttisopapan, Design of rate-compatible LDPC codes based on uniform shortening 

distribution. Eng. Appl. Sci. Res. 45(2), 140–146 (2018)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CISS.2016.7460482

	Shortened LDPC codes accelerate OSD decoding performance
	Abstract 
	1 Introduction
	2 Methods
	3 Shortened LDPC codes and the OSD method
	4 Selection of -shortening positions
	5 Numerical experiments
	6 Execution time evaluation
	7 Results and discussion
	Acknowledgements
	References


