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1  Introduction
As crowdsourcing technology becomes more and more widely used in daily life, crowd-
sourcing applications have become more diverse. Spatio-temporal crowdsourcing is 
developed from traditional crowdsourcing through combining time and space informa-
tion [1].

In Spatio-temporal crowdsourcing, tasks with spatio-temporal data require workers 
to complete tasks at the specified time and place instead of being completed on the web 
platform as traditional crowdsourcing [2].

There are three core study issues for spatio-temporal crowdsourcing: task assignment 
[3–7], quality control [8], and privacy protection [9–15]. Similar to the research of tra-
ditional crowdsourcing, incentive mechanism will be one of the important study issues 
in future [16–20]. In addition, more and more researches also focused on the combina-
tion of crowdsourcing and social networks [21, 22] or Big Data [23]. There are also some 
researches that combine crowdsourcing with blockchain [24, 25].
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Earlier studies [26] focused on the two-objective online task assignment, where 
tasks are assumed to come dynamically while workers are considered static. A few 
recent efforts explored the two-objective online task assignment, which has two 
online objectives. In [27], authors proposed a two-phase-based framework to max-
imize the total utility. In [28], authors summarized all the algorithms, which mini-
mize the total cost. In [29], authors researched the online task assignment based on 
task conflict constraints. In [30], authors applied the multi-armed bandit model to 
the online task assignment and proposed a heuristic algorithm for spatio-temporal 
crowdsourcing. In [31], authors proposed a novel adaptive batch-based solution 
framework for optimizing the total utility and designed a reinforcement learning 
based algorithm, which makes near-optimal decisions on batch splitting. The above 
methods were proposed for two objectives, which cannot adapt the three-objective 
optimization.

Different from the two-objective online task assignment, some new emerging O2O 
applications not only consider tasks and workers, but also consider workplaces [32]. As 
shown by Fig.1, task requester and worker move to workplace to complete task in three-
objective online task assignment. For example, Bella wants to haircut in her free time. 
She had fixed barber and favorite barber shop before. However, it is hardly that Bella, 
her barber and the barber shop are free at the same time. In fact, there may be some 
other free barbers and barber shops near her home when she is free. The three-objective 
online task assignment can match customers, barbers and barber shops in real time.

In [32], authors first studied the three-objective online task assignment and pro-
posed Adaptive RT (Adaptive Random Threshold) algorithm to maximize the total 
utility. However, Adaptive RT not only has higher time cost, but also ignores the fair-
ness between task requester and workers. Based on the above shortcomings, [33] 
quantified fairness as the match quality and proposed QCA (Quality Constraint 
Algorithm) algorithm to improve the match quality. Although the above researches 
are based on three objectives, their optimization goal is to maximize the total utility, 
which is different from the goal of minimizing the travel cost in this paper.

Fig. 1  Three-objective online task assignment.
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The optimization of the travel cost is extremely meaningful for three-objective online 
task assignment. Travel costs may be time or money costs in different scenarios. For task 
requesters, lower time cost means tasks can be executed more timely, and lower money 
cost means higher cost performance. For workers, lower time cost means more tasks can 
be completed in the same amount of time, and lower money cost means higher profit. 
But few researches focus on travel cost for three-objective online task assignment.

In summary, this paper proposes a three-objective online task assignment to minimize 
the travel cost. To solve the problem, this paper proposes the two-stage GH algorithm 
based on Greedy algorithm and Hungarian algorithm. In GH algorithm, the assignment 
process is divided into continuous time windows, and the unmatched objectives are 
assigned offline at the end of each time window. If the departure time of tasks are earlier 
than the end time of the current time window, the tasks are assigned based on Greedy 
algorithm.

Although GH algorithm reduces travel costs well, the efficiency of GH algorithm is not 
ideal due to the time complexity of Hungarian algorithm . Therefore, this paper proposes 
GH-AT algorithm based on GH algorithm. In GH-AT algorithm, we improve Hungarian 
algorithm and add an adaptive threshold mechanism to further improve efficiency and 
reduce travel cost.

In summary, this paper has the following contributions.

•	 This paper proposes a three-objective online task assignment method to minimize 
travel cost.

•	 This paper proposes a two-stage GH algorithm based on Greedy algorithm and Hun-
garian algorithm. Then, in view of the shortcomings of GH algorithm, this paper 
proposes GH-AT algorithm. In GH-AT, we improve Hungarian algorithm and add 
an adaptive threshold mechanism to further improve the efficiency of GH algorithm 
and reduce the travel cost.

•	 The effectiveness and efficiency of the proposed algorithm are verified through com-
parison experiments on real and synthetic datasets.

2 � Related work
In this section, the related works on task assignment and Hungarian algorithm are intro-
duced and discussed.

2.1 � Task assignment

According to the type of modeling, the task assignment can be divided into the maxi-
mum weighted task assignment and the minimum weighted task assignment.

2.1.1 � Maximum weighted task assignment

Ting et  al. [26] studied the maximum weighted b-matching problem. In the problem, 
tasks are assumed to come dynamically while workers are static. Ting et al. gave a modi-
fication of the randomized algorithm Greedy-RT called Greedy-vRT. However, the above 
researches were based on a single online objective and failed to apply to many emerging 
crowdsourcing applications. Tong et al. [27] studied the more practical task assignment 
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problem, called Global Online Micro-task Allocation (GOMA) in which tasks and work-
ers are assumed to arrive dynamically. Tong et al. proposed a two-phase-based frame-
work with competitive ratio of 1/4 to maximize the total utility and further designed 
the framework, which runs faster but has lower competitive ratio of 1/8. She et al. [29] 
studied the online task assignment based on task conflict constraints and designed two 
approximation algorithms with provable approximation ratios. In [30]], authors applied 
the multi-armed bandit model to the online task assignment and proposed a heuristic 
algorithm for spatio-temporal crowdsourcing. In [31], authors proposed a novel adap-
tive batch-based solution framework for optimizing the total utility and designed a rein-
forcement learning based algorithm for batch splitting. The above studies were proposed 
based on two objectives, but failed to adapt the three objectives optimization problem.

With the emergence of more and more crowdsourcing applications, crowdsourcing 
participants include not only workers and task requesters, but also workplaces. Song 
et  al. [32] proposed a novel dynamic task assignment problem, called three-objec-
tive online task assignment in spatio-temporal crowdsourcing. This problem not only 
includes the three objectives, but also focuses on dynamic scenarios where tasks, work-
ers and workplaces arrive dynamically. They first proposed Random algorithm to maxi-
mize the total utility for the problem. Then, in order to further improve the total utility, 
they proposed Adaptive RT algorithm. Adaptive RT is a threshold-based randomized 
algorithm that includes an adaptive optimization technique, which can learn the optimal 
threshold for the randomized algorithm. However, Adaptive RT algorithm only consid-
ers the total utility as a whole, but ignores the fairness for each match. Therefore, [33] 
first quantified the fairness as the match quality and proved that the match quality and 
the total utility are positively correlated. Then, [33] proposed QCA (Quality Constraint 
Algorithm) algorithm to improve the match quality.

The problems studied above can be modeled as maximizing weighted bipartite match-
ing problem or maximum weighted tripartite matching problem. They are different from 
minimum weighted matching problem studied in this paper.

2.1.2 � Minimum weighted task assignment

In [34], authors introduced and studied online versions of weighted matching problems, 
and presented a simple 2k − 1 competitive algorithm for online minimum weighted 
bipartite matching, where 2k is the number of nodes. Tong et al. [28] presented a com-
prehensive experimental comparison of the representative algorithms of online mini-
mum matching on real spatio-temporal data. They also found a surprising result that the 
simple greedy algorithm was significantly more effective than other algorithms. Pan et al. 
[33] minimized travel cost while maximizing total utility by agent negotiation strategy. 
But minimizing travel cost is not the primary goal, result is not ideal. Similarly, Ren et al. 
[35] proposed a novel Matrix Completion Technique based Data Collection (MCTDC) 
scheme to minimize the total cost while guaranteeing the quality of service (QoS) of the 
tasks. Wang et al. [31] proposed a novel adaptive batch-based solution framework for 
optimizing the total utility and designed a reinforcement learning based algorithm for 
batch splitting. This solution framework can not only optimize the total utility but also 
minimize the travel cost. This is because Hungarian algorithm in the solution framework 
can solve both the maximum weighted problem and the minimum weighted problem.
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Most of the problems studied above are based on two objectives, but the problem 
studied in this paper is based on three objectives.

2.2 � Hungarian algorithm

The Hungarian method is a combinatorial optimization algorithm that solves the assign-
ment problem in polynomial time. It was developed and published in 1955 by Harold 
Kuhn, who gave the name Hungarian method because the algorithm was based on the 
earlier works of two Hungarian mathematicians [36]. The time complexity of the original 
algorithm was O(n3m ). Wong [37] published a version with time complexity O(n2m ) in 
1979, which is also the currently popular version.

Hungarian algorithm can get the lowest cost matching result in the cost matrix. How-
ever, the time complexity of Hungarian algorithm is O(n2m ), which will bring a heavy 
computational burden when processing large-scale data.

3 � Problem definition
The following are the relevant definitions and problem descriptions of task assignment 
to minimize travel cost for three objectives.

•	 Definition 1:Crowd Task. A crowd task is denoted by < lt , rt ,RPt , bt , et > . lt is the 
location of the task requester in a 2D space. rt is the radius of the limited circular 
range of t, whose center is lt . RPt is the task reward. bt and et are the release and leav-
ing time of t, respectively. et − bt is the maximum waiting time for crowd tasks. This 
paper assumes that the maximum waiting time for all tasks is equal.

•	 Definition 2:Crowd worker. A crowd worker is denoted by < lw , rw , qw , bw > . lw , rw 
and bw are the location, the radius and the release time of w, which are similar as 
those of task. Workers’ skill proficiency is denoted by qw ∈ (0, 1].

•	 Definition 3:Crowd Workplace. A crowd workplace is denoted by < lp, bp, cp > . A 
workplace p has a location lp , a release time bp and a capacity cp . cp indicates the 
maximum number of tasks executed in the workplace at the same time.

•	 Definition 4:Travel Cost. The travel cost of a single match is defined as 
D(t, p,w) = dtp + dpw . dtp and dpw are Euclidean distances between t and w, p and w, 
respectively.

•	 Definition 5:Utility. In [32], the utility of a single match is defined as 
U(t, p,w) = RPt × qw . In addition to reward of tasks and skill proficiency of work-
ers, this paper considers that the total utility is also related to the travel cost. The 
smaller the travel cost, the higher the benefits for worker and task requesters. There-
fore, the utility of a single match is defined as U(t, p,w) =

RPt×qw
D(t,p,w) in this paper.

•	 Definition 6:Task Assignment to Minimize Travel Costs for Three Objectives. Given 
a set of tasks T, a set of workers W and a set of workplaces P on crowdsourcing plat-
form, which has no objective initially and allows each objective to arrive dynami-
cally. A match < t, p,w > is denoted by m. M is the set of m. The goal of task assign-
ment is to find M among the task set T, the worker set W and the workplace set 
P to minimize the travel costs MinAveDis(M) shown by 1 and maximize the total 
utility MaxSumUtility(M) shown by 2.The following constraints should be satisfied. 
Deadline constraint : tasks should be matched between the release time and the 
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leaving time. Invariable constraint : once the task assignment < t, p,w > is given, 
it cannot be changed. Range constraint : any workplace matched to a task t and a 
worker w must locate in the restricted radius. Capacity constraint : workplace p can 
only be matched to cp tasks and cp workers at the same time.

4 � Methods
Existing researches on task assignment mostly use the real-time assignment strategy. In 
real-time assignment strategy, for example, when a new task arrives, algorithm imme-
diately looks for an unmatched workplace. The real-time assignment strategy has two 
shortcomings. First, when each new object arrives, the assignment algorithm will be 
executed once. This greatly reduces the efficiency. Second, the assignment strategy may 
miss better matches that are coming soon. In order to avoid the above problems, this 
paper uses a batch-based assignment strategy. In batch-based assignment strategy, the 
assignment process is divided into n time windows of equal length. At the end of each 
time window, task assignment is performed. Based on the above assignment strategy, 
this paper proposes GH algorithm.

4.1 � GH algorithm

In the batch-based assignment strategy, the first problem is how to set the length of time 
window Hn . If Hn is too short, the batch-based assignment strategy is close to the real-
time assignment strategy. If Hn is too long, the task will leave the crowdsourcing plat-
form before it is assigned. Therefore, in GH algorithm, the length of time window Hn is 
set to the maximum waiting time of crowd tasks. In this way, the time window can be 
made long enough, and the objects arrived in the current time window will not leave the 
crowdsourcing platform before it is assigned.

As shown in Fig.  2, the assignment process is divided into time windows Hn−1 , Hn , 
Hn+1 and Hn+2 according to time sequence. During the task assignment process, objects 
arrived in the current time window Hn are not assigned immediately, but are assigned at 
the end of the time window Hn . At the end of Hn , the unmatched objects in the crowd-
sourcing platform include newly arrived objects in Hn and objects that arrived in Hn−1 
and were not successfully assigned. When assigning unmatched objects, since the infor-
mation of the unmatched objects is known at this time, the task assignment at the end 
of the time window Hn can be considered as the minimum weighted tripartite match-
ing problem in offline scenarios. Hungarian algorithm can solve the minimum bipartite 
matching problem in offline scenarios, but there is no applicable algorithm for the mini-
mum weighted tripartite matching problem. To solve this problem, GH algorithm uses 
a two-stage assignment strategy which decomposes the minimum weighted tripartite 

(1)MinAveDis(M) =

∑
t∈T ,p∈P,w∈W D(t, p,w)

Sum(M)

(2)MaxSumUtility(M) =
∑

t∈T ,p∈P,w∈W
U(t, p,w)
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matching problem into the minimum weighted bipartite matching problem, as shown in 
Fig. 3. In the first stage, GH algorithm assigns the unmatched crowd workplaces p and 
the unmatched crowd task t using Hungarian algorithm. Since the crowd workplaces p 
has a capacity attribute cp , and Hungarian algorithm does not support objects with a 
capacity attribute, we consider the crowd workplace p with capacity cp as cp same crowd 
workplaces with capacity 1. p̃ is the crowd workplaces already assigned to crowd task. 
In the second stage, GH algorithm assigns p̃ and the unmatched crowd workers w using 
Hungarian algorithm.

In the first stage, due to the difference of the number of crowd participants and range 
constraint, the matches obtained by Hungarian algorithm are usually not perfect match-
ing, where all objects are successfully assigned. If the workplace p is not successfully 
assigned in the current time window, then it will continue to be assigned in the next time 
window until it is successfully assigned. However, the crowd task t has a leaving time 
attribute et and the maximum waiting time is et − bt , so if the crowd task t is not success-
fully assigned in the current time window, it will leave the crowdsourcing platform and 
cannot be assigned anymore. The above problem will cause the total number of matches 
to be greatly reduced. The reduction of the number of matches will lead to a reduction 
in the total utility. To solve the above problem, GH algorithm uses Greedy algorithm to 
assign the crowd task t that arrived in Hn and were not successfully assigned at the end 
of Hn . The above process is performed within the time window Hn+1.

In the second stage, there will also be p̃ and w that have not been successfully assigned. 
Since p and w do not leave the crowdsourcing platform until they are successfully assigned, 
they can continue to wait for the next assignment. It should be noted that p̃ is a optimal 

Fig. 2  Online arrival of crowd participants

Fig. 3  Two-stage assignment strategy. a The first stage. b The second stage
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match only in the current time window. In the subsequent time window, because the set of 
unmatched objects has changed, p̃ is no longer a optimal match. Therefore, before the next 
assignment, GH algorithm will split p̃ which is not successfully assigned in the second stage 
into unmatched p and unmatched t.

The input of Hungarian algorithm is the cost matrix between two objectives shown by 3. 
It represents Euclidean distance between object i and object j.

The result obtained by using the above matrix as the input of Hungarian algorithm is 
M = (t1, p3), (t2, p2), (t3, p1) . Assuming the range constraint r is 30, the match (t3, p1) in 
the result does not satisfy the range constraint and GH algorithm can only get two valid 
matches. Hungarian algorithm cannot solve the task assignment problems with con-
straints that will lead to a reduction in the number of matches. GH algorithm uses the 
cost setting method shown by 4 and 5 to solve this problem.

where dtipj is Euclidean distance between ti and pj . The cost matrix shown by 3 can be 
transformed into the cost matrix shown by 6 through the above cost setting method.

When the cost matrix shown by (6) is used as the input of Hungarian algorithm, the 
result is M = (t1, p3), (t2, p2), (t3, p1) . In M, all matches meet range constraint. Algo-
rithm 1 shows the whole procedure of GH algorithm. The input of the algorithm is the 
crowd task t, crowd worker w, and crowd workplace p that come dynamically, and the 
output is a set M of matches. In line 1, GH algorithm divides the assignment process 
into continuous time windows. In lines 2-7, Vc is used to store newly arrived objects in 
the current time window, Tl is used to store tasks that have arrived in the previous time 
window and have not been successfully assigned. Whenever a new object other than task 
t arrives, use Greedy algorithm to match it with task t that will leave the crowdsourcing 
platform. In line 8, GH algorithm deletes the objects that have been successfully assigned 
and the timeout tasks from the sets. In lines 9-18, If the current time window ends at the 
current time, GH algorithm uses Hungarian algorithm to assign the objects in the sets 
Pc and Tc to get the set p̃ . Then, GH algorithm again uses Hungarian algorithm to assign 
the objects in the sets p̃ and Wc to get the set Mc . In line 14, GH algorithm deletes the 

(3)

(4)tipj =

{
dtipj , dtipj ≤ rti
rti × 10, dtipj > rti

(5)wipj =

{
dwipj , dwipj ≤ rwi

rwi × 10, dwipj > rwi

(6)
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objects that have been successfully assigned from the sets and moves unmatched t in Tc 
to Tl.

In summary, GH algorithm divides the assignment process into continuous time win-
dows. At the end of each time window, All unmatched objects are assigned offline. Com-
pared with the real-time assignment strategy, the batch-based assignment strategy not 
only has higher efficiency, but also can get better assignment results. However, when 
processing large-scale data, the time cost of GH algorithm is not ideal. Because GH algo-
rithm uses Hungarian algorithm with a time complexity O(n2m) twice in each time win-
dow. In order to further improve the efficiency of GH algorithm and reduce the travel 
cost, this paper designs GH-AT algorithm based on GH algorithm.

4.2 � GH‑AT algorithm

There two differences between GH-AT and GH algorithm. First, the offline assignment 
algorithm used is no longer the traditional Hungarian algorithm, but an improved Hun-
garian algorithm called sHungarian in GH-AT algorithm. Second, GH-AT algorithm 
adds an adaptive threshold mechanism, which further improves the algorithm efficiency 
and reduces the travel cost.

4.2.1 � sHungarian algorithm

In GH algorithm, we implemented Hungarian algorithm under a dense cost matrix 
and analyzed its operation process. We find that if we set the cost greater than range 

Table 1  The density of the cost matrix

Range constraint 10 15 20 25 30

Density 0.03 0.07 0.09 0.16 0.21
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constraint to 0, the zero elements in the cost matrix are much more than the non-zero 
elements and the cost matrix becomes a sparse matrix. Table  1 is the density of the 
500× 500 cost matrix under different range constraints in the real data. The definition 
of matrix density is shown by 7. NZE is the number of non-zero elements in the cost 
matrix. From Table 1, it can be concluded that the larger the range constraint, the denser 
the cost matrix. Even at the maximum range constraint, the density is only about 0.21.

Based on the above observations, we consider the cost matrix of the task assignment 
problem with constraints as a sparse cost matrix and operate the sparse matrix through 
data structures suitable for sparse matrix such as row compression. This greatly reduces 
the time complexity of Hungarian algorithm. In addition to the data structures suitable 
for sparse matrix, the steps of Hungarian algorithm also need to be modified. The modi-
fied version proposed in this paper is sHungarian algorithm.

In the data structures suitable for sparse matrix such as row compression, zero elements 
in cost matrix are not stored when storing sparse matrix. Therefore, in sHungarian algo-
rithm, the cost matrix is shown by 8 and 9.

The specific process of sHungarian algorithm is as follows.

•	 Step 0 : Create an n×m matrix called the cost matrix in which each element rep-
resents the cost of assigning one of n workers to one of m jobs. Rotate the matrix so 
that there are at least as many columns as rows and let k = min(n,m) . Variable label 
is False.

•	 Step 1 : For each row of the matrix, find the smallest element and subtract it from 
every element in its row. Record all addition and subtraction operations and go to 
Step 2.

•	 Step 2 : Find a zero(Z) in the resulting matrix. If there is no starred zero in its row or 
column, star Z. Repeat for each element in the matrix. Go to Step 3.

•	 Step 3 : Cover each column containing a starred zero. If k columns are covered, 
the starred zeros describe a complete set of unique assignments. In this case, Go to 
DONE, otherwise, Go to Step 4.

•	 Step 4 : Find a uncovered zero and prime it. If there is no starred zero in the row 
containing this primed zero, Go to Step 5. Otherwise, cover this row and uncover 
the column containing the starred zero. Continue in this manner until there are no 
uncovered zeros left. Go to Step 6. If the uncovered positions are all zero elements in 
the initial cost matrix in Step 0, set the variable label to True and go to Step 6.

(7)density =
NZE

n×m

(8)tipj =

{
dtipj , dtipj ≤ rti
0, dtipj > rti

(9)wipj =

{
dwipj , dwipj ≤ rwi

0, dwipj > rwi
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•	 Step 5 : Construct a series of alternating primed and starred zeros as follows. Let Z0 
represent the uncovered primed zero found in Step 4. Let Z1 denote the starred zero 
in the column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there 
will always be one). Continue until the series terminates at a primed zero that has no 
starred zero in its column. Unstar each starred zero of the series, star each primed 
zero of the series, erase all primes and uncover every line in the matrix. Return to 
Step 3.

•	 Step 6 : If label is False, minval is equal to the minimum value of the uncovered ele-
ments in the cost matrix. Add minVal to all covered rows in the matrix, subtract 
minVal from all uncovered columns, record all addition and subtraction operations 
and go to Step 4. If label is True, form uncovered elements into a new matrix C ′

(i, j) . 
Set the value of the zero elements in C ′

(i, j) to r × 10 and the non-zero elements to 
the initial value before the addition and subtraction operation. Perform all recorded 
addition and subtraction operations on C ′

(i, j) . Then, minval is equal to the mini-
mum value in the matrix C ′

(i, j) . If the position of minval is zero elements in the 
original matrix C ′

(i, j) , set the value of the corresponding position in C ′
(i, j) to min-

val. Add minval to all covered rows, subtract minval from all uncovered columns in 
C

′
(i, j) , record all addition and subtraction operations and go to Step 4.

In summary, sHungarian algorithm converts the cost matrix of task assignment problem 
with constraints into a sparse matrix, and uses a data structure suitable for the sparse 
matrix, which reduce the time complexity of Hungarian algorithm from O(n2m) to 
O(nk). k is the number of non-zero elements in the sparse matrix. sHungarian algorithm 
is not only suitable for the problem studied in this paper, but also for all task assignment 
problems with constraints.

4.2.2 � Adaptive threshold mechanism

sHungarian algorithm has the following two characteristics. First, the efficiency of sHun-
garian algorithm is related to the density of the cost matrix. Second, although sHungar-
ian algorithm can reduce the average travel cost, there are still some matches with higher 
travel costs.

Based on the above two characteristics, we can further improve the efficiency of sHun-
garian algorithm and reduce the average travel cost. GH-AT algorithm adds thresh-
old θ × r to the cost matrix. If dtipj > θ × r , set tipj in the cost matrix to 0. Adding the 
threshold can not only further reduce the density of the matrix, improve the efficiency 
of the algorithm, but also eliminate the matches with higher travel costs. The objects in 
eliminated matches may be better assigned in subsequent assignment.

The value of the threshold directly affects the performance of the algorithm. Too small 
a threshold will cause too many matches to be eliminated. Too large a threshold will 
cause the effect of setting the threshold to be not obvious. GH-AT algorithm adopts an 
adaptive threshold mechanism, which adaptively selects a threshold in the threshold 
pool according to the cost matrix.
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First, set the value range of θ to the closed interval shown by

AveDis is the average travel cost of the result set obtained by Greedy algorithm. For 
example, AveDis is 6.5 and range constraint r is 10, then θ ∈ {0.7, 0.8, 0.9} . If the value of 
θ is less than ⌈

10×AveDis
r ⌉

10
 , the matches eliminated by θ is most likely to fail in the subsequent 

matching process, which will cause the total number of matches to be greatly reduced. If 
the value of θ is 1, the threshold mechanism will have no effect. Before using sHungarian 
for assignment, GH-AT algorithm first calculates the weight wl of each threshold θl in 
the threshold pool according to the cost matrix. The weight is calculated by

where ϕi represents the average travel cost between the ith object and all objects in the 
other category. For example, for task ti , ϕi represents the average travel cost between task 
ti and all workplaces in the cost matrix. ϕi is calculated by

In (11), the denominator represents the number of travel costs in the cost matrix that is 
greater than the threshold. The smaller the denominator, the more sparse the cost matrix 
is, and the faster the algorithm is. The numerator represents the number of objects in 
the matches that sHungarian algorithm may eliminate when the current threshold is 
selected. The smaller the numerator, the fewer objects eliminated, and the greater the 
total number of matches. Therefore, when GH-AT algorithm selects a threshold from 
the threshold pool, it also selects the threshold with the largest weight.

In summary, GH-AT algorithm uses an improved version of Hungarian algorithm. 
Compared with GH algorithm, it greatly improves the efficiency of the algorithm. Then, 

(10)θ ∈

[
⌈ 10×AveDis

r ⌉

10
, 0.9

]

(11)wl = 1−
|{ti|ϕi > θl × r}| +

∣∣{pj|ϕj > θl × r}
∣∣

∣∣∣{dtipj |dtipj > θl × r}
∣∣∣

(12)ϕi =

∑|Pc|
j=1

dtipj

|Pc|

Table 2  Synthetic Dataset

Factor Setting

|T | = |W | = 10|P| 2k, 3k, 4k , 5k, 6k

Maximum waiting time of tasks 20, 25, 30, 35, 40

Range of tasks and workers 15, 20, 25, 30, 35

Mean of tasks’ rewards 50

Standard deviation of tasks’ rewards 20

Capacity of workplaces 10

Mean of success ratio 0.7

Standard deviation of success ratio 0.1

Locations of objects within 100×100 grid

Release time [0,480]
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GH-AT adds an adaptive threshold mechanism, which further improves the efficiency of 
the algorithm and reduces the travel costs.

5 � Results and discussion
The experiments in this section are divided into two parts. In the first part, the perfor-
mance of sHungarian algorithm is verified on the real dataset named gMission [38], and 
the comparison algorithm is Hungarian algorithm. In the second part, a large number of 
experiments are performed on the gMission dataset and synthetic dataset to verify the 
performance of GH-AT algorithm. The comparison algorithms are GH algorithm and 
Greedy algorithm. The statistics and configuration of synthetic data are illustrated in 
Table 2, where default setting is marked in bold font.

The distribution of the synthetic dataset is extended on the basis of the gMission 
dataset. For example, the maximum wait time of tasks on gMission dataset is 30. The 

Fig. 4  Test of sHungarian algorithm performance.
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maximum wait time of tasks on synthetic dataset is set to 20,25,30,35 and 40. The pur-
pose is to ensure that the distribution of dataset is close to the real situation and study 
the performance of GH-AT algorithm on various distributed datasets. For the param-
eters that have no effect on travel costs, we set them as fixed values. Tasks’ rewards and 
workers’ skill proficiency follow a normal distribution. Locations and release time of 
objects follow a uniform distribution.

5.1 � sHungarian algorithm

This comparison experiments are conducted to verify the efficiency of sHungarian algo-
rithm in the task assignment problem with constraints on gMission data. gMission data 
is divided into 5 datasets according to the range constraints, which are the datasets with 
range constraints of 10, 15, 20, 25, and 30. The experimental results are shown in Fig. 4.

The x-coordinate represents the size of square matrix, and the y-coordinate repre-
sents the running time of the algorithms. It can be seen from Fig. 4 that when the square 
matrix is larger, the running time gap between the two algorithms also increases. In 
this experiments, the minimum running time of sHungarian algorithm is only 9.1% of 
Hungarian algorithm. Therefore, in large-scale data processing, sHungarian algorithm 
is far superior to Hungarian algorithm. As the range constraints and square matrix size 
increase, the running time of sHungarian algorithm increases faster and faster. This is 
because the time complexity of the sHungarian algorithm is O(nk), and k is the number 
of non-zero elements in the sparse matrix. As the range constraints increases, the more 
non-zero elements in the matrix, the higher the time complexity.

Fig. 5  Varing the number of objects.
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5.2 � GH‑AT algorithm

We conduct the comparison experiments for the average travel costs, the algorithm effi-
ciency, the number of matches, and the total utility of GH algorithm, GH-AT algorithm, 
and Greedy algorithm on gMission dataset and synthetic dataset.

5.2.1 � Effect of cardinality

In this experiment, the effect of cardinality is studied. The experimental results of vary-
ing |T | are shown in Fig. 5. The x-coordinate represents |T | and |T | = |W | = 10× |P| . 
The y-coordinate represents the average travel cost, total utility, number of matches and 
time cost of algorithms, respectively.

The purposes of the experiments are to compare the performance of the average travel 
cost, total utility, number of matches and time cost of the three algorithms under differ-
ent data sizes.

In terms of average travel cost, GH-AT algorithm is 13% lower than GH algorithm 
and 30% lower than Greedy algorithm on average. It can be seen from Fig. 5 that with 
the increase of the cardinality, the average travel cost of GH algorithm and GH-AT 
algorithm is decreasing. This is because the increase of the cardinality leads to an 
increase in the amount of objects in each time window, and the better the effect of 
Hungarian algorithm and sHungarian algorithm.

In terms of total utility, GH-AT algorithm is 15% higher than GH algorithm and 
53% higher than Greedy algorithm. This is because lower travel costs mean higher 
total utility. It can be seen from Fig. 5 that as the cardinality increases, the total utility 

Fig. 6  Varing the range of tasks and workers.
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of the three algorithms increases. This is because the number of matches increases as 
the cardinality increases.

In terms of number of matches, it can be seen from Fig.  5 that the number of 
matches of the three algorithms seems to be equal. In fact, GH algorithm is slightly 
higher than Greedy algorithm and GH-AT algorithm. This is because GH algorithm 
and GH-AT algorithm use a batch-based assignment strategy, which can avoid miss-
ing some matches. Because of the threshold mechanism, GH-AT algorithm has a 
lower number of matches than the Greedy algorithm.

In terms of time cost, GH-AT algorithm and GH algorithm are higher than Greedy 
algorithm. Compared with GH algorithm, the time cost of GH-AT algorithm is 
reduced by 41% on average.

5.2.2 � Effect of range constraint

In this experiment, the effect of range constraint is studied. The experimental results 
of varying range are shown in Fig. 6. The x-coordinate represents the range constraint 
of tasks and workers. The y-coordinate represents the average travel cost, total utility, 
number of matches and time cost of algorithms, respectively.

The purposes of the experiments are to compare the performance of the average 
travel cost, total utility, number of matches and time cost of the three algorithms 
under different range constraints.

In terms of average travel cost, GH-AT algorithm is 14.8% lower than GH algorithm 
and 33% lower than Greedy algorithm. With the increase of the range constraint, the 
advantages of GH-AT algorithm become more and more obvious compared with 
Greedy algorithm.

In terms of total utility, GH-AT algorithm is 13% higher than GH algorithm and 
31% higher than Greedy algorithm. As the range increases, the total utility of the 
three algorithms decreases overall. This is because as the range increases, the average 
travel cost of the three algorithms increases.

In terms of number of matches, as the range increases, the number of matches for 
all three algorithms is increasing. This is because the increase in range constraints 
leads to an increase in the number of matches that meet the constraints.

In terms of time cost, GH-AT algorithm and GH algorithm are higher than Greedy 
algorithm. Compared with GH algorithm, the time cost of GH-AT algorithm is 
reduced by 31% on average. With the increase of the range, the time cost of the three 
algorithms is gradually decreasing. This is because the larger the range, the more 
matches that meet the range constraints, and the faster the speed of assignment. 
The smaller the range, the easier it is for objects to pile up, and each object may be 
assigned multiple times.

5.2.3 � Effect of waiting time

In this experiment, the effect of waiting time of tasks is studied. The experimental 
results of varying waiting time are shown in Fig. 7. The x-coordinate represents the 
waiting time of tasks. The y-coordinate represents the average travel cost, total utility, 
number of matches and time cost of algorithms, respectively.
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The purpose of the experiments are to compare the performance of the average 
travel cost, total utility, number of matches and time cost of the three algorithms 
under different waiting time.

In terms of average travel cost, GH-AT algorithm is 28% lower than GH algorithm 
and 30% lower than Greedy algorithm. It can be seen from Fig.  7 that as the wait-
ing time increases, the average travel cost of GH-AT algorithm and GH algorithm is 
decreasing. This is because the length of the time window increases, resulting in an 
increase in the number of objects arriving within each time window, and the better 
the effect of Hungarian algorithm and sHungarian algorithm.

In terms of total utility, GH-AT algorithm is 13% higher than GH algorithm and 
35% higher than Greedy algorithm. It can be seen from Fig. 7 that as the waiting time 
increases, the total utility of both GH-AT algorithm and GH algorithm increases. This 
is because as the waiting time increases, the average travel cost of GH-AT algorithm 
and GH algorithm are decreasing.

In terms of number of matches, GH-AT algorithm is lower than GH algorithm and 
Greedy algorithm due to threshold mechanism. With the increase of waiting time, the 
number of matches of all three algorithms is increasing. This is because the increase 
of waiting time leads to more time for crowd task t to wait for the assignment to sat-
isfy the constraint, which reduces the number of tasks leaving the crowdsourcing 
platform.

In terms of time cost, GH-AT algorithm and GH algorithm are higher than Greedy 
algorithm. compared with GH algorithm, GH-AT is 30% lower than GH algorithm. As 
the waiting time increases, the time cost of GH algorithm and GH-AT algorithm also 

Fig. 7  Varing the waiting time of tasks.
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increases. This is because the increase of the time window causes the cost matrix to 
become larger.

5.2.4 � Experiment on gMission dataset

In this experiment, the result on real dataset is studied. The gMission dataset can be 
divided into five parts according to the range constraint of tasks and workers. The 
experimental results of the five parts are shown in Fig. 8. The purpose of the experi-
ments are to compare the performance of the average travel cost, total utility, number 
of matches and time cost of the three algorithms on the real dataset.

In terms of average travel cost, GH-AT is 7% lower than GH algorithm and 24.8% 
lower than Greedy algorithm. As the range constraint increases, the average travel 
cost of all three algorithms increases.

In terms of total utility, GH-AT algorithm is 13% higher than GH algorithm and 
31.1% higher than Greedy algorithm. As the range constraint increases, the total util-
ity of the three algorithms decreases, because the travel cost of the three algorithms 
increases as the range constraint increases.

In terms of number of matches, GH-AT algorithm is lower than GH algorithm and 
Greedy algorithm due to the threshold mechanism. As the range increases, the num-
ber of matches for all three algorithms is increasing. This is because the increase in 
range constraints leads to more matches meet the constraints.

In terms of time cost, GH-AT algorithm and GH algorithm is higher than Greedy algo-
rithm. Compared with GH algorithm, the time cost of GH-AT algorithm is reduced by 

Fig. 8  Experiment results on gMission dataset.
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41% on average. With the increase of the range, the time cost of the three algorithms is 
gradually decreasing. This is because the larger the range, the more matches that meet 
the range constraints, and the faster the speed of assignment. The smaller the range, the 
easier it is for objects to pile up, and each object may be assigned multiple times.

5.3 � Experiment summary

The experiment of this paper is divided into two parts. First, the performance of the 
sHungarian algorithm is verified on a real dataset. The experimental results show that 
compared with Hungarian algorithm, the running time of the sHugarian algorithm can 
be reduced by more than 90%.

Then, the performance of GH-AT algorithm is verified on real and synthetic data-
set. It is found that GH-AT algorithm is always superior to GH algorithm and Greedy 
algorithm in terms of average travel cost and total utility. In terms of number of 
matches, GH and Greedy algorithm are slightly higher than GH-AT algorithm, which 
is due to the adaptive threshold mechanism of the GH-AT algorithm. In terms of the 
time cost of the algorithm, because of the improvement of Hungarian algorithm and 
the adaptive threshold mechanism, the average time cost of GH-AT algorithm is far 
lower than GH algorithm, and GH-AT algorithm and GH algorithm are higher than 
Greedy algorithm, but the time cost of the GH-AT algorithm processing a single time 
window can fully meet the real-time requirements of real applications.

6 � Conclusion
In this paper, a three-objective online task assignment to minimize the travel cost is pro-
posed. In order to solve the problem, this paper proposes a two-stage solution frame-
work based on Greedy algorithm and Hungarian algorithm, which is the GH algorithm. 
In order to further improve the performance and efficiency of GH algorithm, this paper 
designs GH-AT algorithm based on GH algorithm. In GH-AT algorithm, the offline 
assignment algorithm used is no longer Hungarian algorithm, but an improved version 
based on the Hungarian algorithm. In addition, GH-AT algorithm also adds an adaptive 
threshold mechanism, which further reduces the time cost of the algorithm and reduces 
the average travel cost. Finally, through experiments on real and synthetic dataset, this 
paper proves that the proposed algorithm is not only better than other algorithms, but 
also has the time overhead that can meet the real-time requirements.

In future work, we will further consider the impact of certain human behaviors on 
the three-objective task assignment, such as free-riding and false-reporting problems 
due to selfish behaviors.
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