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1  Introduction
Cloud computing provides massive computing, storage and network resources to 
support various services. Users can not only obtain various resources and services 
anytime and anywhere but also scale out or in resources to ensure their applications’ 
performance or low cost. With the development of big data and artificial intelligence, 
cloud resource requests possess the characteristics of being diverse, coming in bursts 
and being sudden. The existing cloud resource allocation methods cannot guarantee 
the timeliness and optimization of the resource allocation for a large number of sud-
den resource requests. However, users pay more attention to the timeliness and opti-
mization of their emergent resource requests that can guarantee their applications’ 
performance, and cloud service providers are highly concerned with how to manage 
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the massive resources and improve the resource utilization. An efficient resource allo-
cation method is crucial to meet these goals.

The resource allocation process is a problem to find the suitable physical servers 
upon which to place virtual machines (VMs). In previous studies, some simple heu-
ristic algorithms, such as round robin (RR) [1], best fit (BF) [2] and min–max [3], 
are applied to solve the cloud resource allocation problem for small-scale cloud 
platforms. These algorithms are simple and easy, but they are also prone to wasting 
resources, especially in large-scale cloud platforms. The bin packing problem is one 
classical cloud resource allocation method. The VM placement problem on physi-
cal servers is transformed into the bin packing problem of packing n objects into m 
boxes, which requires that all objects be placed in the minimum number of boxes. A 
dynamic bin packing method is proposed to reduce the total cost of cloud resource 
allocation by permanently closing empty boxes [4]. Another classical cloud resource 
allocation method is to model VM placement as a mathematical multiobjective opti-
mization problem. The main idea is to express a cloud resource allocation problem as 
a multiobjective mathematical function and then to use a multiobjective evolutionary 
algorithm to solve it.

Although these methods are effective, most of them do not rapidly allocate resources 
for a large number of sudden resource requests and reduce resource waste of servers. 
An effective cloud resource allocation method should meet the following conditions for 
such requests. First, a large number of sudden resource requests should be processed 
in a timely manner. Second, the optimal resources should be provided to satisfy the 
resource requests. Third, the physical servers should be used as little as possible, and 
the proportion between the different types of resources (number of CPU cores, memory 
capacity and disk size) should be as uniform as possible to reduce resource waste.

The contributions of this paper are summarized as follows.

(1)	 We propose a runs test (RT)-based adaptive prediction algorithm for resource 
requests. This algorithm is built based on our previously studied ensemble empiri-
cal mode decomposition (EEMD)-Autoregressive Integrated Moving Average 
model (ARIMA) and EEMD-RT-ARIMA algorithms [5, 6], and it can select a more 
accurate algorithm to implement the short-term prediction of resource requests via 
an adaptive prediction strategy.

(2)	 We propose a proactive resource allocation strategy that combines the active pre-
diction and the passive response of resource requests, which can allocate resources 
in advance for the future sudden resource requests to guarantee the timelessness of 
the resource allocation.

(3)	 We further propose a resource proportion matching model to ensure the uniform 
usage of different types of server resources, which can reduce resource waste. Then, 
a mathematical multiobjective optimization problem of the resource allocation is 
formulated.

(4)	 We improve the Nondominated Sorting Genetic Algorithm with the Elite Strat-
egy (NSGA-II) to accelerate the solution speed of the multiobjective optimization 
mathematical problem, which further ensures the timelessness of the resource allo-
cation.
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The rest of this paper is organized as follows. Section II introduces related works. Sec-
tion III describes the proactive resource allocation approach. Section IV presents the 
experiments and analysis. Section V concludes this paper.

A list of the mathematical notations used in this paper is given in Table 1.

2 � Related works
There are some cloud resource allocation methods for big data applications [7], cloud-
based software services [8], scientific applications [9], cloud manufacturing [10], work-
flows [11] and cloud healthcare [12]. Some algorithms or mechanisms have been applied 
in resource allocation, such as the grasshopper optimization algorithm (GOA) [13], ant-
colony optimization and deep reinforcement learning [14], the data-driven probabilistic 
model [15], and auction mechanisms [16]. Some researchers have proposed the exist-
ing resource and task scheduling methods. A systematic review classifies task schedul-
ing approaches into the single cloud environment, multicloud environments and mobile 
cloud environments for different aims [17]. A comprehensive survey divides the sched-
uling techniques into three categories: heuristic, meta-heuristic and hybrid schemes 
[18]. Recently, state-of-the-art multiobjective VM placement mechanisms have been 
introduced [19]. A review of auction-based resource allocation mechanisms has been 
comprehensively conducted [20]. Resource allocation methods involve in the aims of 
reducing cost, minimizing the energy consumption, improving the resource utilization 
and guaranteeing the quality of service (QoS). A performance-cost grey wolf optimiza-
tion (PCGWO) algorithm has been proposed to reduce the processing time and cost of 
tasks [21]. A JAYA algorithm has been used to optimize VM placement and minimize 
the energy consumption [22]. A fair resource allocation method has been proposed to 
rapidly and fairly allocate resources and maximize the resource utilization via a flow 
control policy [23]. These methods cannot provide an effective mechanism to ensure the 
timelessness of the resource allocation for a large number of sudden resource requests. 
A multidimensional resource allocation model MDCRA that uses a single weight algo-
rithm (SWA) and a double weight algorithm (DWA) to minimize the number of physical 
servers, save energy and maximize the resource utilization in cloud computing has been 
proposed [24]. It models the multidimensional resource allocation problem as a vec-
tor bin packing problem. The bin packing problem is an NP hard problem. At present, 
there is no polynomial complexity optimization algorithm to solve it. Moreover, it only 
solves the resource capacity constraint without considering incompatible constraints. 

Table 1  List of mathematical notations

Symbol Annotation Symbol Annotation

Tth The predefined threshold of main types of 
VMs

Q1 First quartile

Q3 Third quartile IQR Interquartile range

M(t) Current number of VM requests at t  time D(t + h) The predicted number of VM requests at t + h 
time

N(t) The total number of VM requests at t  time xij The mapping element between a VM and a 
PM

MDij Resource performance matching distance MPMij resource proportion matching distance
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An energy-efficient resource allocation scheme considers the energy consumption of the 
CPU and RAM to reduce the overall energy costs and maintain the service level agree-
ment (SLA) [25]. An empirical adaptive cloud resource provisioning model has been 
proposed to reduce the latency of the resource allocation and SLA violations via specu-
lative analysis [26]. Both methods focus on workload consolidation and prediction with 
one target of reducing SLA violations while our method considers the trade-off among 
the number of physical machines, resource performance and proportional matching. A 
levy-based particle swarm optimization algorithm has been proposed to minimize the 
number of running physical servers and balance the load of physical servers by reduc-
ing the particle dispersion loss [27]. A dynamic resource allocation algorithm has been 
proposed to solve resource scheduling and resource matching problems [28]. Here, the 
Tabu search algorithm is used to solve the resource scheduling problem, the weighted 
bipartite graph is used to solve the resource matching problem for the tasks on the edge 
servers, and an optimal solution is further proposed to schedule resources between the 
edge servers and a cloud data center. This algorithm concentrates on the resource sched-
uling between the edge server and cloud, but our method focuses on VM placement in a 
cloud data center. In addition, a cloud workflow scheduling algorithm is proposed based 
on an attack-defense game model, where a task-VM mapping algorithm is presented to 
improve the workflow efficiency and different VMs are provided for workflow executions 
[29]. A fog computing trust management approach that assesses and manages the trust 
levels of the nodes is proposed to reduce the malicious attacks and the service response 
time in the fog computing environment [30]. Everything-as-a-Resource as a paradigm is 
proposed to design collaborative applications for the web [31].

The proactive resource allocation method based on prediction is an effective solution 
to ensure the timelessness of resource allocation. One type of prediction method is based 
on machine learning. A prediction-based dynamic multiobjective evolutionary algo-
rithm, called NN-DNSGA-II [32], has been proposed by combining an artificial neural 
network with the NSGA-II [33]. This algorithm first uses the neural network to predict 
the pareto-optimal solutions as the initial population of the NSGA-II and then solves 
the multiobjective optimization problem. The empirical results demonstrate that this 
algorithm outperforms nonprediction-based algorithms in most cases for the Pegasus 
workflow management system. However, this algorithm cannot predict the future VM 
requests, but it does predict a better solution to solve the workflow scheduling problem, 
which cannot alleviate the resource allocation delay for the future VM request increases. 
A hybrid wavelet neural network method has been proposed to improve the prediction 
accuracy through training the wavelet neural network with two heuristic algorithms 
[34]. The machine learning-based prediction needs to conduct training using a large 
amount of data, which increases the time consumption and thus cannot guarantee a 
timely resource allocation. A generic algorithm (GA)-based prediction method has been 
proposed, and its prediction accuracy is better than the gray model at improving the 
resource utilization of VMs and physical machines (PMs) [35]. An anti-correlated VM 
placement algorithm, in which the VMs and the overloaded hosts are predicted to pro-
vide the suitable VM placement, has been proposed to reduce the energy consumption 
[36]. Another type of prediction method is based on statistics. ARIMA is a classical pre-
diction model for time series, and it can also be combined with other methods to predict 
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nonstationary time series. ARIMA and other methods are often combined to implement 
prediction. A model combining the ARIMA and fuzzy regression, in which the predic-
tion accuracy is improved by setting sliding windows, has been proposed to predict 
network traffic [37]. An adaptive workload forecasting method dynamically selects the 
best method from the simple exponential smoothing (SES), ARIMA and linear regres-
sion (LR) methods to improve the workload forecasting accuracy [38]. However, this 
method uses the previous predictions of a set of models and different amounts of train-
ing data to execute the next prediction, which increases the prediction cost. A frame-
work combining the ARIMA and LR methods has been used to predict VM and PM 
workloads, PM power consumption and their total costs [39]. The combination of the 
ARIMA and Back Propagation Neural Network (BPNN) methods improves the work-
load prediction accuracy and promotes the minimization of the cost of an edge cloud 
cluster [40]. An adaptive prediction model has been used to select the best one from the 
LR, ARIMA and support vector regression (SVR) methods to obtain better prediction 
results according to workload features [41]. An ensemble model ESNemble combines 
five different prediction algorithms and extracts their features to forecast the work-
load time series based on an echo state network, and it outperforms each single algo-
rithm in terms of the prediction accuracy [42]. The above methods combine the classic 
ARIMA model with other prediction methods, which improve the prediction accuracy 
to a certain degree. However, these methods may achieve low prediction accuracy for 
the current resource request sequences with complex characteristics and strong fluctua-
tions. Data preprocessing should be performed to smooth the extremely nonstationary 
sequences to enhance the prediction accuracy. Our previously proposed EEMD-ARIMA 
and EEMD-RT-ARIMA algorithms improve the prediction accuracy through decom-
posing a nonstationary sequence into a few relatively stationary component sequences 
via EEMD method [5, 6]. The main difference between EEMD-RT-ARIMA and EEMD-
ARIMA methods is that EEMD-RT-ARIMA method reduces the cumulative error and 
the prediction time by selecting and reconstructing the component sequences with simi-
lar characteristics into few component sequences based on RT values when the origi-
nal sequence has weak fluctuation. RT [43] is a method to check the randomness of a 
sequence. A RT is defined a component with successive symbols (0 or 1). For instance, 
a sequence ‘111,001,110,011′’ includes three components with successive “1” and two 
components with successive “0.” Each component with successive “1” or “0” is regarded 
as a RT. The total RT number reflects the random fluctuation of the sequence. Any 
time series can be changed into a sequence with successive symbols (0 or 1) [44]. The 
larger the total number of RT, the stronger the sequence fluctuates. Once the original 
sequence has strong fluctuation determined by the RT, EEMD-ARIMA method can get 
higher prediction accuracy than EEMD-RT-ARIMA due to more stationary component 
sequences.

3 � Methods
To address the resource allocation lagging behind resource requests, we propose a 
proactive resource allocation method based on the prediction of resource requests. 
Figure 1 shows the implement process of this method. First, a RT-based adaptive predic-
tion method is used to forecast the future resource requests based on the past data of 
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resource requests. Then, a proactive resource allocation strategy is proposed based on 
the prediction of resource requests. Finally, a multiobjective resource allocation method 
is proposed and solved by an improved NSGA-II algorithm. 

3.1 � RT‑based adaptive prediction method

The prediction method is designed with two goals: reduce the prediction time and 
improve the prediction accuracy. The prediction procedure is shown in Fig.  2. The m 
component sequences are extracted from a VM request sequence using the principal 
component analysis method. Next, these component sequences are detected to find and 
preprocess the outliers. Then, the RT values of these preprocessed sequences are calcu-
lated. Finally, these sequences are predicted by adaptively selecting the EEMD-ARIMA 
or EEMD-RT-ARIMA method according to the comparison between their RT values 
and the thresholds.

A cloud platform provides many VM flavors, such as 2CPU4G (2 CPU cores, 4G 
memory) and 4CPU8G (4 CPU cores, 8G memory). We cannot predict each type of 
VM requests due to the high prediction time. Therefore, principal component analy-
sis is first used in our prediction method, which can extract the major component 
sequences to reduce the prediction time. For example, a VM request sequence with n 
types of VMs is denoted as S =< s1, ..., si, ..., sk > , where si represents the VM number 
of the ith request. A component sequence Sl = < sl1,...,sli,...,slk> can be extracted from 
this sequence S for the VM type l , where sli denotes the VM number of the ith request. 
Thus, an original VM sequence can be divided into many component sequences. We can 
select the fewest component sequences to implement the prediction of VM requests, 
where the ratio of the sum of their VM requests to the total number of VM requests (it 
is called the proportion of VM requests) is beyond the predefined threshold Tth at each 
sampling point. These components sequences can be regarded as the major component 
sequences. For example, there are two component sequences Sh =< sh1, ..., shi, ..., shk > 
and Sg =< sg1, ..., sgi, ..., sgk > , where shi and sgi are the quantities of the different types of 
VM requests. For ∀shi ∈ Sh and sgi ∈ Sg,

resource requests

RT-based Adaptive 
prediction method  

historical data

Multiobjective resource 
allocation method  

Proactive resource 
allocation strategy

Fig. 1  Implementation process of a proactive resource allocation. First, a RT-based adaptive prediction 
method is used to forecast the future resource requests based on the past data of resource requests. Then, 
a proactive resource allocation strategy is proposed based on the prediction of resource requests. Finally, a 
multiobjective resource allocation method is proposed and solved by an improved NSGA-II algorithm
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These two component sequences are selected into a set Smain with the major com-
ponent sequences to implement the prediction. Intuitively, the higher the threshold 
Tth , the more the selected component sequences. The prediction of VM requests is 
more accurate, which ensures resource allocation to be more correct. However, the 
more the component sequences, the higher the prediction cost. For instance, if the 
threshold is set as T ′

th higher than the one Tth , that is T ′
th > Tth , three major compo-

nent sequences Sh,Sg and Sl may be selected into the set Smain . For ∀shi ∈ Sh , sgi ∈ Sg 
and sli ∈ Sl . 

.
Then, each component sequence is decomposed into many subsequences to per-

form the prediction using EEMD-ARIMA or EEMD-RT-ARIMA method. Supposing 
a component sequence is decomposed into m subsequences and each subsequence 
cost n seconds to finish the prediction. Here, the running time of each prediction is 
almost identical, we suppose that it is n seconds for each subsequence. If two compo-
nent sequences Sh and Sg are selected under the threshold Tth , the prediction cost can 
be calculated as follows.

(1)if (shi + sgi)/si ≥ Tth, select(Sh, Sg ) → Smain

(2)if (shi + sgi + sli)/si ≥ T ′
th, select(Sh, Sg , Sl) → Smain

A VM request sequence
(including n VM types)

m component sequences

Principal component 
analysis 

Outlier detection and 
preprocessing 

RT value calculation 

Ri>Rth ?

EEMD-
ARIMA

EEMD-RT-
ARIMA

Predicted result

Adaptive prediction strategy

Yes

No

Fig. 2  RT-based adaptive prediction method. The m component sequences are extracted from a VM request 
sequence using the principal component analysis method. Next, these component sequences are detected 
to find and preprocess the outliers. Then, the RT values of these preprocessed sequences are calculated. 
Finally, these sequences are predicted by adaptively selecting the EEMD-ARIMA or EEMD-RT-ARIMA method 
according to the comparison between their RT values and the thresholds
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However, if three component sequences Sh , Sg and Sl are selected under the threshold 
T ′
th , the prediction cost will be calculated as follows.

It can be seen that the prediction cost will greatly increase though more component 
sequences selected by setting a higher threshold can improve the prediction accuracy. 
This will cause a delayed resource allocation not to ensure the normal running of appli-
cations. Therefore, setting the threshold Tth is important, which not only need to reflect 
the major VM requests but also reduce the prediction time cost. Supposing p major 
component sequences have been selected to predict the future VM requests and a unse-
lected component sequence Sl has more VM requests than other component sequences. 
The threshold Tth can be set as an approximation of the minimum value of the propor-
tion of VM requests according to the following formula when one of two conditions is 
satisfied. The threshold Tth impact the prediction accuracy and the prediction time cost.

εl and εt indicate a threshold of the proportion of VM requests and a threshold of 
the ratio of prediction time cost, respectively. When both the added proportion of VM 
requests sli/si is beyond this threshold εl and the added ratio of prediction time cost 
1/(p+ 1) is below this threshold εt , the component sequence Sl will be selected to pre-
dict the future VM requests.

The quartile method is adopted to detect the outlier points of these major component 
sequences. Firstly, we calculate the first quartile Q1 , the third quartile Q3 and the inter-
quartile range (IQR) by the formula IQR = Q3− Q1 , detect the outliers more than 1.5 
times over Q3 or less than 1.5 times below Q1 and finally replace these outliers via a 
cubic spline interpolation method.

The preprocessed component sequences are executed using RT method. Then, we set 
up an adaptive prediction method based on the RT (APMRT). If the RT value of a com-
ponent sequence is higher than a predefined threshold Rth , the EEMD-ARIMA method 
is selected to predict the future resource requests. Otherwise, the EEMD-RT-ARIMA is 
selected to make the prediction. Thus, the prediction accuracy can be improved by pre-
processing the outliers of the major component sequences and selecting a more accurate 
prediction method. We can determine the future number of each type of VM requests 
and proactively allocate resources to guarantee the timeliness of the resource allocation.

In this method, the time complexity of extracting a component sequence is O(k) . 
Thus, the time complexity of extracting m component sequences and data preprocess-
ing becomes O(m · k) . Then, the RT values of the extracted sequences are calculated 
and predicted by using the adaptive prediction algorithm APMRT. The time complexity 

(3)C
(

Sh, Sg ,Tth

)

= 2m · n

(4)C ′
(

Sh, Sg , Sl ,T
′
th

)

= 3m · n

(5)Tth ← min
{

(s11 + ...+ s1k)/s1, ..., (si1 + ...+ sik)/si...,
(

sp1 + ...+ spk
)

/sp
}

(6)S.T. sli/si < εl

(7)or 1/(p+ 1) > εt
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becomes O(2m · k + q ·m · k) or O(2m · k + p ·m · k) , where q,p are separately the num-
ber of the decomposed component sequences and the new component sequences recon-
structed ( p < q ). Therefore, the time complexity of the APMRT algorithm is O(Q ·m · k) 
or O(P ·m · k) , which is less than the time complexity O(Q · n · k) or O(P · n · k) of all 
n component sequences. The prediction time is largely reduced by extracting the main 
component sequences.

3.2 � Proactive resource allocation strategy

A cloud resource allocation algorithm should actively predict the future resource 
requests and allocate resources in advance to cope with the sudden increase of resource 
requests in the future. The proactive resource allocation framework is shown in Fig. 3. 
The RT-based adaptive prediction method is used to predict the future number of VM 
requests based on past data. A hybrid VM request queue is formed by combining the 
future VM requests predicted with the current VM requests.

Suppose that the current VM request sequence is denoted as 
V (t) =< v1(t), ..., vi(t), ...vn(t) > , where vi(t) indicates the VM number of the i th 
request at time t . The number D(t + h) of the future l major types of VM requests at 
time t + h predicted via the adaptive prediction method APMRT is denoted as follows.

Di(t + h) is the i th major type of VM requests at time t + h . The total number of VM 
requests N (t) at t time should be the sum of the current number of VM requests V (t) 
and the predicted number of VM requests D(t + h) as follows.

M(t)=v1(t)+ ...+ vi(t)+ ...+ vn(t) is the current number of VM requests at t time. If 
the predicted number of VM requests D(t + h) is not less than the threshold Nth , some 
VMs should be allocated resources in advance. The parameter C(t) should equal to 1 and 
P(t) is a percentage (e.g., 30%) of VM requests to be allocated resources in advance with 
respect to the predicted number of VM requests D(t + h) . Otherwise, it does not need 
to provide VMs in advance, that is, C(t) = 0.

After the predicted number of VM requests D(t + h) is determined, the VM request 
sequence should be established. Assuming that the predicted number of VM requests is 

(8)D(t + h) = D1(t + h)+ ...+ Di(t + h)+ ...+ Dl(t + h)

(9)N (t) = M(t)+ D(t + h) · C(t) · P(t)

Fig. 3  Proactive resource allocation strategy. The RT-based adaptive prediction method is used to predict the 
future VM requests based on past data. A hybrid VM request queue is formed by combining the future VM 
requests predicted actively with the current VM requests
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ordered in descending order from VM type 1 to l , the largest VM requests (i.e., the type 
1 VM requests) are placed at the front of the VM request sequence, and the smallest VM 
requests (i.e., the type l VM requests) are placed at the end of the VM request sequence. 
The predicted VM request sequence can be expressed as follows.

vij(t + h) and vij+1
(t + h) are the quantities of the j th and j+1 th VM requests with the 

same VM type i . Thus, the VM request sequence at time t can be expressed as follows.

3.3 � Multiobjective resource allocation method

Our previous work has presented a multiobjective resource allocation method [45]. This 
method builds a multiobjective function with the minimum number of the used PMs 
min{

∑

S

xij} and the minimum total resource performance matching distance between 

VMs and PMs min{
∑

S

MDij} , where xij denotes the mapping element between the VM vi 

and the PM pj . If the VM vi is placed on the PM pj , xij equals 1. Otherwise, xij equals 0. 
Thus, the formula 

∑

S

xij represents the total number of the used PMs under a solution S. 

In the formula of the resource performance matching distance 

MDij =

√

3
∑

k=1

(npvik − nppjk)2 , npvik represents the normalized resource performance 

variable of VM vi , nppjk represents the corresponding normalized resource performance 
variable of the PM pj and k=1, 2, 3 denote the CPU, memory and disk resources, 
respectively.

This paper proposes a new resource allocation method based on the prediction of 
VM requests (RAMPVR), which further considers two issues to improve the previ-
ous resource allocation method. One is to reduce the waste of physical resources. If 
the proportion of different types of resources from a VM request is closer to those free 
resources of a PM, it is less likely to cause resource waste for this PM. That is, the closer 
the resource proportion vi1 : vi2 : vi3 of a VM is to that pj1 : pj2 : pj3 of a PM, the lower 
the resource waste, where vi1 , vi2 and vi3 represent the requested number of CPU cores, 
memory capacity and disk size of the VM vi , respectively; and pj1 , pj2 and pj3 denote the 
free number of CPU cores, memory capacity and disk size of the PM pj , respectively. 
Therefore, we build the resource proportion matching distance model shown in formula 
(12), where pjk and vik represent the free capacity of resource type k of the PM pj and 
the requested resource capacity of the VM vi , respectively, and Rk denotes the coeffi-
cient that adjusts the imbalanced values of parameter H = pjk · vi1/pj1 − vik for different 
resource types. For instance, if the values of the parameter H for CPU and disk resources 
are 2 and 200, the disk will become the dominant resource. Therefore, the adjustment 
coefficient Rk for the disk resource should be adjusted to a lower value than that for 
the CPU resource, such as using Rk = 1 for the CPU resource and Rk = 0.1 for the disk 
resource.

(10)
V (t + h) =< v11(t + h), v12(t + h), v13(t + h), ..., vij(t + h), vij+1(t + h)...vlm(t + h) >

(11)
V ′(t) =< v1(t), ...vn(t), v

1
1(t+h), v12(t+h), v13(t+h), ..., vij(t+h), vij+1(t+h), ..., vlm(t+h) >
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 Thus, we set up a multiobjective optimization problem of resource allocation accord-
ing to the number of the used PMs 

∑

S

xij , the total resource performance matching dis-

tance 
∑

S

MDij and the total resource proportion matching distance 
∑

S

MPMij as follows.

The first goal of the multiobjective optimization problem M of resource allocation is 
to minimize the total number of the used PMs, as shown in formula (13), which depends 
on the value of each mapping element xij between the VM vi and the PM pj under a 
solution S . The second goal of the problem M is to minimize the total resource perfor-
mance matching distance under a solution S , as shown in formula (14), which depends 
on the resource performance matching distance MDij between the VM vi and the PM pj . 
The third goal of the problem M is to minimize the total resource proportion matching 
distance under a solution S , as shown in formula (15), which depends on the resource 
proportion matching distance MPMij between the VM vi and the PM pj . In addition, the 
total CPU, memory and disk capacities requested by the VMs placed on PM pj are less 
than its free CPU, memory and disk capacities, respectively. Thus, the constraint condi-
tions are shown in formulas (16), (17) and (18), respectively. 

Another is to optimize the solution algorithm that accelerates the solution speed of 
the multiobjective optimization function. The NSGA-II is a classical algorithm for solv-
ing a multiobjective optimization problem [46–48]. As a Nondominated Sorting Genetic 
Algorithm, it has been widely applied in solving the multiobjective problem and achieves 
good effectiveness [39–41]. However, the NSGA-II algorithm has a problem that the 
computation time of the fitness values (i.e., the objective functions) is too long to ensure 

(12)MPMij =

√

√

√

√

3
∑

k=1

((

pjk · vi1

pj1
− vik

)

· Rk

)2

(13)M : min

{

∑

S

xij

}

(14)min

{

∑

S

MDij

}

(15)min

{

∑

S

MPMij

}

(16)S.T.
∑

S

vi1 · xij ≤ pj1

(17)
∑

S

vi2 · xij ≤ pj2

(18)
∑

S

vi3 · xij ≤ pj3
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the timelessness of the resource allocation. Furthermore, the fitness values of a large 
number of individuals need to be calculated in the population evolution. Hence, we will 
improve the NSGA-II algorithm to accelerate the solution speed using the parallel com-
putation of the fitness function. We adopt multicore processors to calculate the fitness 
values of the individuals in parallel, which can accelerate the convergence of the pro-
posed algorithm. The fitness values of each individual are calculated as follows.

4 � Experiments and analysis
4.1 � Prediction of VM requests

We select two time series S1 and L1 of continuous container requests, which are taken 
from the Alibaba cluster data [49] as the experimental dataset of VM requests. These 
time series only include the data on CPU and memory resources. We will use the 
sequence S1 as an example to illustrate the adaptive prediction process. This sequence S1 
includes 95 sampling points (475 min) and 28 types of VMs, where each sampling point 
counts the total number of VMs in a 5-min period. We use the principal component 
analysis method to extract its component sequences S2 and S3 and calculate the thresh-
old Tth=85% according to the predefined thresholds εl=5% and εt=20% and formula 
(5)–(7). These sequences are all shown in Fig. 4, where the sequences S2 and S3 repre-
sent the VM numbers for the types of 4-core CPU and 1.56 memory (CPU = 400 means 
4-core CPU and mem = 1.56 means 1.56 memory) and 8-core CPU and 3.13 memory 
(CPU = 800 and mem = 3.13), respectively. It is noted that the number of CPU cores and 
amounts of memory are normalized.

It can be observed that the number of VM requests dynamically changes and dem-
onstrates the characteristic of suddenness, which makes the future resource requests 
difficult to predict. It can also be seen that the sequence S2 with the 4-core CPU and 
1.56 memory is consistent with the trend of the sequence S1 . The sequence S3 with the 
8-core CPU and 3.13 memory is roughly the same as the trend of the sequence S1 , but 
they have some differences in the detailed fluctuations.

Next, we use the quartile method to detect the outliers with red “ + ” shown in Fig. 5. 
Sequentially, they are replaced by new data generated by a cubic spline interpolation 
method. Thus, we get the preprocessed sequences shown in Fig. 6.

Then, we use the adaptive prediction method APMRT to implement the prediction 
for these preprocessed sequences. The RT values of these sequences are first calculated. 
And the threshold Rth is set as 20, which can be roughly observed from the experimental 
testing for Alibaba cluster data [6]. It is noted that this threshold Rth is different for dif-
ferent traces or scenarios, which need to be achieved from the experimental testing or 

(19)f1(Ik) =
∑

S

xij

(20)f2(Ik) =
∑

S

MDij

(21)f3(Ik) =
∑

S

MPMij
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via your expert experience. We select the first 80 sampling points as the training data 
and the next 5 points, 10 points, and 15 points as the testing data, respectively. When 
the RT value of a sequence is lower than the predefined threshold Rth , the EEMD-RT-
ARIMA method is selected to execute the prediction; otherwise, the EEMD-ARIMA 
method is selected.

Figure 7 shows the mean absolute percentage error (MAPE) of the prediction results. 
It can be seen that the MAPEs of the 10-point and 15-point predictions increase greatly 
compared with those of the 5-point prediction. For instance, the EEMD-RT-ARIMA 
method achieves a MAPE of 9.87% for the 5-point prediction of the sequence S1 , but 
it achieves MAPEs of 29.62% and 54.99% for the 10-point prediction and 15-point pre-
diction, respectively. Similarly, the EEMD-ARIMA method achieves a MAPE of 11.28% 
for the 5-point prediction of the sequence S2 , but its MAPEs are 38.31% and 64.51% 
for the 10-point prediction and 15-point prediction, respectively. It implies that both 
methods are not suitable for long-term prediction but are for short-term prediction. The 
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reason is mainly due to the strong fluctuation of the sampling data in a short time. The 
EEMD-RT-ARIMA method achieves lower MAPEs than the EEMD-ARIMA method 
for the sequences S1 and S3 , while it is the opposite for the sequence S2 . We find that 
the RT values of S1-S3 are 19, 21 and 19, respectively. This indicates that the proposed 
prediction method is effective. When a sequence has strong fluctuation, the cumulative 
prediction error of the component sequences obtained by EEMD decomposition can be 
less than that caused by the non-stationary sequence. Thus, EEMD-ARIMA method can 
achieve higher prediction accuracy. Otherwise, EEMD-RT-ARIMA method can reduce 
more prediction error accumulation than EEMD-ARIMA, and thus, it can achieve 
higher prediction accuracy. Figure 8 depicts the future 5-point values predicted via the 
proposed APMRT method. In the same way, we predict the future 5-point values for 
the sequence L1 , as in Fig. 9. It is also possible that other factors impact the prediction 
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Fig. 7  The MAPEs of adaptive prediction for different types of VM request sequences. The first three columns 
represent the MAPEs of the 5-point, 10-point and 15-point prediction obtained by EEMD-ARIMA method. 
The last three columns represent those obtained by EEMD-RT-ARIMA method. The blue, red and green parts 
represent the MAPEs of the S1, S2 and S3 sequences in each column, respectively
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accuracy. In the future, we will further study this issue. This paper pays more attention 
on virtual resource allocation based on an adaptive prediction of resource requests.

4.2 � Simulation of the resource allocation

As shown in Fig. 8, 519 VMs (4-core CPU and 1.56 memory) and 62 VMs (8-core CPU 
and 3.l3 memory) are predicted for 425 sampling points. There is sudden growth over 
300. Therefore, we should allocate resources for some VMs in advance to alleviate the 
latency of the resource allocation at 424 sampling points. We set up the ratio of the 
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proactive resource allocation Pi = 0.3 . Thus, the number of VMs that needs to be cre-
ated at 424 sampling points can be calculated by the formula 408 + (457 + 62)*0.3 = 564. 
The number of available PMs is 2972. The resource allocation problem becomes the 
problem of creating 564 VMs on 2972 available PMs. Similarly, we can observe that the 
method predicts 281 VMs (4-core CPU and 1.56 memory) and 31 VMs (8-core CPU and 
3.l3 memory) for 1065 sampling points for the sequence L1 from Fig. 9. If we set the ratio 
of the proactive resource allocation Pi = 1/3 , we should create 423 + (281 + 31)/3 = 527 
VMs on 2972 PMs at 1064 sampling points.

Even if the prediction may fail, the proactive resource allocation will not be greatly 
affected. For example, if the predicted number of VM requests is 893 or 297 for 425 sam-
pling point, the MAPE will exceed 50%, that is, the prediction fails. We should create 268 
or 89 VMs more than the original number of 408 according to the proactive resource 
strategy for 424 sampling points. It is not more than the actual number of VM requests 
for 425 sampling points. However, the more the proactive number of VM requests is, the 
longer the resource allocation time is for 424 sampling points. Therefore, the prediction 
error should be limited in a certain range.

To verify the effectiveness of the proposed RAMPVR method, we adopt these follow-
ing metrics to compare our method with others.

(1)	 Number of the used PMs: If the number of the used PMs is less, some idle PMs can 
be closed to reduce the energy consumption and cost.

(2)	 Resource performance matching distance: The smaller the resource performance 
matching distance is, the better the VMs match with the PMs regarding their 
resource performance.

(3)	 Resource proportion matching distance: The smaller the resource proportion 
matching distance is, the less the resource waste.

(4)	 Resource utilization: A good resource allocation method should maximize and 
homogenize each type of resource utilization.

(5)	 Time cost of resource allocation: Our prediction-based resource allocation method 
reduces the VM creation time by allocating resources for the future VM requests 
in advance. This paper mainly focused on reducing the solving time of this method. 
The lower the solving time is, the more resource allocation time that is reduced.

We set the population size, the crossover probability, the crossover distribution 
index and the mutation distribution index as 200, 0.85, 20 and 20, respectively; and 
set the reciprocal of the number of variables as the mutation probability in the simu-
lation. The maximum evaluation times of the fitness values and the maximum num-
ber of iterations of populations are set as 20,000 and 100, respectively. We compare 
the proposed RAMPVR method with the round robin (RR), SPEA2 and NSGA-II 
methods in terms of the number of the used PMs, the resource performance match-
ing distance, the resource proportion matching distance, the resource utilization and 
the solving time. SPEA2 is another presentative elite multi-objective evolutionary 
algorithm [50], which can obtain multiple pareto optimal solutions in a single run. 
It has been widely used in different domain [41, 52] and has become the standard for 
performance comparison of multi-objective evolutionary algorithms [53, 54]. Each 
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method is executed 10 times and the respective average results are computed. The 
experimental results are shown in Tables 2 and 3.

It can be seen from Table 2 that the SEPA2, NSGA-II and RAMPVR methods use 
different numbers of PMs. Even the RAMPVR method uses different numbers of PMs 
in different experiments, such as 460 and 462 PMs. The less the number of the used 
PMs is, the more the saved resource cost is. The CPU and memory utilization of the 
used PMs are more balanced via resource proportion matching, which will reduce 
the resource waste. The SPEA2 method achieves CPU utilization of 58.62% and mem-
ory utilization of 60.28%, the NSGA-II method obtains 64.01% and 65.45%, and the 
RAMPVR method achieves 62.80% and 64.29% under the parallel computing of 8 
threads, respectively. In addition, they basically keep a similar number of the used 
PMs, similar resource performance matching and similar resource proportion match-
ing because they achieve the trade-off among them. The RR method demonstrates big 
differences in these aspects. It uses the most PMs because it adopts a polling mech-
anism. Furthermore, it achieves the highest resource performance, the highest pro-
portion matching distances, and the most unbalanced resource utilization with CPU 
utilization of 74.90% and memory utilization of 28.76% due to the polling mechanism, 
which will cause high resource waste. However, it has a lower solution time of only 
0.3  s because it uses a simple heuristic algorithm to solve the problem. Compared 
with the SPEA2 and NSGA-II methods, the RAMPVR method uses less time to solve 
the multiobjective functions. For instance, the SPEA2 and NSGA-II methods, respec-
tively, use 1593 and 1551  s to solve the multiobjective problem, but the RAMPVR 
method only costs 886 s to solve it with the parallel computing of 10 threads. Table 3 
also demonstrates this situation. Thus, the VM creation time can be greatly reduced 

Table 2  Experimental results of resource allocation for S1 sequence

Metrics RR SPEA2 NSGA-II RAMPVR

8 Threads 10 Threads

Number of used PMs 564 477 473 460 462

Resource performance matching distance 352.20 435.72 402.57 407.57 395.27

Resource proportion matching distance 18,769.42 11,299.49 12,319.08 11,975.88 12,521.97

Resource utilization (CPU) 74.90% 58.62% 64.01% 62.80% 64.79%

Resource utilization (memory) 28.76% 60.28% 65.45% 64.29% 66.20%

Solution time 0.3 s 1593 s 1551 s 977 s 886 s

Table 3  Experimental results of resource allocation for L1 sequence

Metrics RR SPEA2 NSGA-II RAMPVR

8 Threads 10 Threads

Number of used PMs 527 423 435 430 426

Resource performance matching distance 338.46 290.66 295.06 292.39 303.66

Resource proportion matching distance 17,464.66 11,071.06 11,541.04 11,508.03 10,608.15

Resource utilization(CPU) 73.12% 63.58% 63.13% 64.15% 61.53%

Resource utilization(memory) 27.68% 65.04% 64.61% 65.58% 63.07%

Solution time 0.3 s 1592 s 1375 s 821 s 777 s
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according to the time saved by predicting the VMs in advance. The timelessness and 
rapidness of resource allocation can be guaranteed.

5 � Conclusion
Cloud resource requests demonstrate the characteristics of being diverse, arriv-
ing in bursts and being uncertain, which causes the resource allocation to lag behind 
the resource requests and the quality of service not to be ensured in a cloud platform. 
This paper proposes a multiobjective resource allocation method based on an adaptive 
prediction method for resource requests. This method can allocate virtual resources 
in advance to alleviate the delay problem of resource provision by using an adaptive 
method to predict the future resource requests. The timelessness of the resource allo-
cation is further guaranteed by improving the NSGA-II algorithm to reduce the solv-
ing time of the multiobjective optimization problem. In addition, the various types of 
resources in a PM are evenly utilized, which reduces resource waste. Two experiments 
are conducted to verify the effectiveness of our proposed method. The experimental 
results show that this method realizes the balance between CPU and memory resources 
and reduces the resource allocation time by at least 43% (10 threads) compared with the 
SPEA2 and NSGA-II methods.
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