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1 � Introduction and background
The growing demand for wireless communications has impacted the dynamics of spec-
trum management and the challenge of accommodating more users into a finite number 
of frequency bands is being investigated since the publication of [1]. Cognitive Radio 
(CR) emerged as a new paradigm for the intelligent use of the spectrum. A native user 
of a particular frequency band is known as primary user (PU), while the device that uti-
lize CR is known as secondary user (SU). Under the interweave paradigm, the SU device 
senses different frequency bands and when verifying the absence of the PU in any of 
them, it occupies it in an opportunistic way.

1.1 � State of the art

The most simple and effective mechanism for spectrum sensing is the energy detector 
(ED), presented for the first time in [2]. This technique is based on the level of signal 
energy sensed and their performance is measured in terms of detection and false alarm 
probabilities. The correct specification of these parameters provides robust protection to 
PU’s transmission. The PU has the priority in the use of the frequency band; therefore, 
the SU senses the spectrum periodically and after that it can execute two actions in the 
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second interval: transmission of information or remain in standby. The optimal duration 
of the sensing interval was studied in [3] where it was theoretically shown that there is 
an ideal detection sensing interval duration that maximizes the cognitive radio network 
(CRN) throughput. In that work, the Gaussian approach, or central limit theorem (CLT) 
approach was used when assuming a large number of samples in the sensing interval [4].

The method presented in [5] also employs energy detection and analyzes the optimal 
sensing duration but different from [3], it assumes that the PU has a variable occupation 
for the full duration of the frame. In [6] a cognitive radio analysis is given for the design 
of codes in the finite blocklength regime and energy detection with the CLT approach is 
also used. In [7] the compromise between sensing and energy efficiency of the CRN is 
analyzed through the introduction of two models: channel handoff and stop-and-wait. 
The hidden terminal problem is investigated in [8] in a joint analysis of energy detection 
and Hidden Markov model.

Cooperation between SUs is addressed in [9] where a threshold optimization is devel-
oped estimating the energy of the primary signals based on a finite number of samples. 
The cooperation is also studied in [10], where the energy detector is used together with 
signal correlation analysis to improve the performance of the entire network. Coopera-
tion is also verified in [11], this work takes into account the impact of multiple SUs and 
PUs accessing the network, which reduces the network throughput, in addition the com-
promise problem between sensing and throughput is redefined using the PU interfer-
ence probability.

The performance of the energy detector is also investigated in [12], where an adaptive 
detection threshold is proposed to improve the sensing performance. The energy detec-
tor also serves as basis for the work of [13], which uses the approximations found in [3] 
and an approach based on state transitions to generate new expressions for the detection 
and false alarm probabilities, allowing simultaneous analysis of the problem between 
sensing and flow for high activity PU.

The Gaussian approach to the energy detector is also studied in more recent works. 
The authors of [14] present an adaptive interval sensing algorithm where a discrete gain 
is obtained. In [15] a cooperative analysis is presented considering some models of fad-
ing channels. In [16] an energy detector with two dynamic thresholds is used to optimize 
signal detection. The energy detection threshold is also studied in the work of [17] which 
proposes an algorithm to select the optimum threshold providing improved throughput. 
Finally, in [18] a reinforcement learning-based multi-slot double-threshold spectrum 
sensing with Bayesian fusion is proposed to sense big spectrum data, which can find 
required idle channels faster while guaranteeing spectrum sensing performance. The 
authors of [19] developed a multi-hypothesis test perspective for illegitimate access and 
rogue power emission in cognitive radio scenarios. This work provides a comprehensive 
mathematical analysis concerning energy detection based on central and non-central 
chi-square distributions.

1.2 � System model

In the proposed system model we assume a pair of PU transceiver and a pair of SU trans-
ceiver, and the PU receiver is within the range of the SU transmitter. We also are assum-
ing single band detection.
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As mentioned before the PU has higher priority and SU transmissions could not impact 
the PU link. To achieve this restriction the SU senses spectrum periodically, this cycle is 
known as SU frame and it is divided into two intervals which are repeated after a time T. In 
the first interval of the frame, SU performs sensing and based on the result, it can execute 
two actions: transmitting information or remaining in standby. The sensing time is denoted 
as τS.

The probability associated with the activity of PU (traffic density) is denoted as P(H0) 
where no transmissions are made or P(H1) if the PU is definitely using the channel. We 
also assume that the PU activity remains constant throughout the sensing period. Figure 1 
shows the proposed system model and the SU frame with the sensing interval.

1.3 � Energy detector

Spectral sensing can be implemented by several methods found in the literature, such as 
energy detection, matched filter and cyclostationary feature detection. The energy detector, 
first introduced in [2], is the simplest and most effective technique, and the output is pro-
portional to the energy of the received signal.

The energy detector implemented in the SU is detailed in Fig. 2, where samples of the 
received signal passes through a squared lift device followed by an integrator, the output is 
compared with a threshold value. The result can be presented as a binary hypothesis, the 
occupation or the vacancy of the spectrum [3]:

(1)
{

H0 : y(t) = n(t)
H1 : y(t) = hx(t)+ n(t),

Fig. 1  a System model. b SU frame [3, 17]
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where n(t) represents the noise at the detector input, sampled at time t, h is the channel 
gain, x(t) is the PU’s signal and y(t) is the signal received at the SU. Under the hypothesis 
H0 only the noise is present in the SU receiver, while in the hypothesis H1 the PU signal 
is present on the SU side. The energy detector collects a total number of N samples to 
perform the hypothesis test.

Noise samples n(t) are assumed to be AWGN with zero mean and variance σ 2
n [3]. The 

SNR between PU and SU, measured at the SU’s receiver, is given by γ = |h|2σ 2
x

σ 2
n

 , where σ 2
x  is 

the variance of x(t). The received signal y(t) passes through the energy detector and the 
detector output is used to determine the test statistic, � . The detection probability Pd and 
the false alarm probability Pf are defined according to the test statistic as [4]:

where �th is the detection threshold value. The test statistic � follows different prob-
ability density functions when analyzed under hypotheses H0 e H1 , being denoted as 
f�|H0(�) and f�|H1(�) , respectively. Thus, Pf is the probability that the energy detec-
tor identify the existence of signal, which actually, is not present at the receiver input. 
Besides, Pd is the probability that the energy detector assigns the presence of a signal and 
the signal actually exists. Another parameter that is also defined in [2] is the miss-detec-
tion probability Pmd = 1− Pd which is the probability that the energy detector does not 
identify the presence of a signal; however, it is present at the receiver input. This study 
did not take into account the fading, thus h = 1.

Regarding hypothesis H0 , the test statistic, � , is the result of a sum of 2N squares of inde-
pendent Gaussian random variables. The output of the energy detector therefore follows a 
central chi-square distribution ( χ2 ), with ν degrees of freedom, whose probability density 
function (PDF) is [20]:

where Ŵ(a) =
∫∞
0 ba−1e−bdb is the gamma function. The false alarm probability is 

defined through (2), i.e. it is the complementary cumulative distribution function (CDF) 
of the central chi-square distribution, as:

where F�|H0(�) is the CDF of a random variable with central chi-square distribution [20]:

(2)
{

Pd = P[� > �th|H1]
Pf = P[� > �th|H0],

(3)f�|H0(�) =
�
ν/2−1e−�/2

Ŵ(ν/2)2ν/2
,

(4)Pf = 1− F�|H0(�),

Fig. 2  Stages of the energy detector implemented in the SU
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The function γL(a, b) =
∫ b
0 ca−1e−cdc is the lower incomplete gamma function. The cen-

tral chi-square distribution tends toward the normal distribution when ν → ∞ . In this 
case the CLT approach is used [20] to give:

where

denotes the CDF of the normal distribution. According to [4], � = �th

σ 2
n

 and ν = 2N  , so (4) 

can be rewritten [3], just replacing the variables:

The function Q(a) = 1−�(a) is known as the Gaussian-Q function and represents the 
tail of the standard normal distribution. The superscript (CLT) in (6) and (8) identify 
the use of the CLT approach. As indicated in Sect. 1, Eq. (8) is widely used in the energy 
detector, as can be seen in [3–18]. However, as presented in [21], the CLT approach is 
not very accurate unless N is very large.

For the hypothesis H1 , � is a sum of 2N squares of random variables with Gaussian 
distribution and nonzero mean that follows a non-central chi-square probability distri-
bution ( χ ′2

ν  ), with ν degrees of freedom and non-centrality parameter φ [21]:

where Ia(b) = (b/2)a
∑∞

c=0
(b2/4)c

c!Ŵ(a+c+1) is the Besel function of first type [22]. The detec-
tion probability is defined using (2), that is, the complementary CDF of the non-central 
chi-square distribution which can be and written as:

where

The expression QM(a, b) is the Marcum-Q function [22]. Again, the works [3–18] applied 
the approximation of the CLT in (11) [21], obtaining:

(5)F�|H0(�) =
γL(ν/2, �/2)

Ŵ(ν/2)
.

(6)FCLT
�|H0

(�) ≃ �

(

�− ν√
2ν

)

,

(7)�(a) = 1

2

[

1+ erf

(

a√
2

)]

,

(8)PCLT
f ≃ 1−�

(

�th − Nσ 2
n√

Nσ 2
n

)

≃ Q

(

�th − Nσ 2
n√

Nσ 2
n

)

.

(9)f�|H1(�) =
1

2
e−(�+ϕ)/2

(

�

ϕ

)ν/4−1/2

Iν/2−1

(

√

ϕ�

)

,

(10)Pd = 1− F�|H1(�),

(11)F�|H1(�) = 1− Qν/2(
√
ϕ,

√
�).
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According to [4], � = �th

σ 2
n

 , ν = 2N  and ϕ = 2Nγ , the detection probability is rewritten 

[3], just replacing the variables:

Similar to (8), the detection probability given by (13) is valid for very large N, otherwise 
the approximate values start to deviate from those obtained by the original equations.

1.4 � Throughput analysis

The network throughput is defined as the ratio between the total transmitted data and 
the total consumed time. If the channel is sensed busy, the SU will not transmit data and 
the throughput will be zero. If the channel is sensed idle and the real state of the channel 
is also unoccupied, the throughput will be equal to [17]:

where α = T−τS
T  and γS is the the SNR between the SU transmitter and the SU receiver. If 

the channel is sensed as idle but its real state is busy, then the throughput will be reduced 
because there will be interference in the channel, as follows:

The total average throughput for the cognitive network is:

where P(H0) and P(H1) are the probabilities of PU activity (traffic density) defined in 
Sect. 1.2.

1.5 � Motivation and objectives

Thus far, works [3–18] use the energy detector with the CLT approach. Low signal-to-
noise ratio (SNR) scenarios require the energy detector to analyze a large number of 
samples to perform well. When the number of samples is very large, the probability dis-
tribution of the sum of these random variables with finite mean and variance is close 
to the normal distribution. However, in some cases, this approach does not prove to be 
the most appropriate, especially for scenarios where the number of samples is restricted 
(SNR design next to 0 dB). As shown in [6], when finite blocklength communications are 
analyzed, the number of samples is very small. Moreover, analysis of sensor networks 
shown in [23, 24] also used a small amount of samples.

This study is motivated by the fact that the previous work on the subject focused on 
the design of the energy detector using a large number of samples. As far as we know, 
the literature is scarce in addressing the design of the energy detector for a small 
number of samples. As the output of the energy detector has characteristics of the 

(12)FCLT
�|H1

(�) ≃ �

(

�− ν − ϕ√
2(ν + 2ϕ)

)

.

(13)PCLT
d ≃ Q

(

�th − Nσ 2
n (1+ γ )√

N (1+ 2γ )σ 2
n

)

.

(14)R0 = α (1− Pf ) log2(1+ γS),

(15)R1 = α Pmd log2

(

1+ γS

γ + 1

)

.

(16)R = P(H0)R0 + P(H1)R1,
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central chi-square and non-central chi-square distributions, some expressions of classi-
cal approximations found in the literature are used to formulate new expressions for the 
energy detector. It was possible to find expressions that are more appropriate for scenar-
ios that demand a moderate amount of samples, these expressions have a better fit than 
CLT approach expressions. It is also assumed that the PU signal samples are Gaussian.

The contributions of this work are described below:

•	 Derivations of approximated expressions for the detection probability and the false 
alarm probability for the energy detector.

•	 Derivation of new expressions to evaluate the constant threshold based on the 
approximations.

Simulations performed show the use of new expressions presented achieve gains nearly 
6% in terms of measured false alarm probability and nearly 16% in terms of miss-detec-
tion probability. Simulations also show gains up to 9% in terms of throughput when novel 
expression is used in comparison with CLT approach. The rest of this work is divided as 
follows. Section 2 introduces the proposed improvements. Section 3 presents the results 
of the simulations. Finally, in Sect. 4, some conclusions are discussed.

2 � Proposed improvements
2.1 � Methods/experimental

The research content of this article is divided into two parts, the first being a theoretical 
analysis of approximations of probability distributions, in the second part through the 
expressions computational simulations were performed with the MATLAB®2018 soft-
ware from the company Mathworks®.

2.2 � Novel energy detector metrics

The classical literature presents some approximate equations for solving (5) such as Fish-
er’s approximation [25]:

In this case, the false alarm probability can be determined with a new expression. For 
this procedure we just replace the variables � = �th

σ 2
n

 and ν = 2N  in (17):

where the index F indicates the Fisher approximation. Another approach to (5) was 
introduced by Wilson–Hilferty [26]:

Again replacing the aforementioned variables � and ν we get this expression:

(17)FF
�|H0

(�) ≃ �(
√
2�−

√
2ν − 1).

(18)PF
f ≃ Q

(
√
2�th

σn
−

√
4N − 1

)

,

(19)FWH
�|H0

(�) ≃ �

(
√

9ν

2

{

(

�

ν

)1/3

− 1+ 2

9ν

})

.
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where the index WH indicates the Wilson–Hilferty approach to differentiate the expres-
sion. Approximations for the CDF of the non-central chi-square distribution are also 
found in the literature, such as the Abdel-Aty approach [27]:

where f = (ν+ϕ)2

ν+2ϕ  . Knowing that ϕ = 2Nγ , the detection probability can be rewritten 
with the substitution of the variables in (21), generating:

where the index AA indicates Abdel-Aty’s approach.
It is also possible to use the Sankaran approach [28] for the CDF of the non-central chi-

square distribution:

where ψ = 1− 2
3
(ν+ϕ)(ν+3ϕ)

(ν+2ϕ)2
 , p = ν+2ϕ

(ν+ϕ)2
 and m = (ψ − 1)(1− 3ψ) . In this case the 

detection probability can be rewritten using (24) and the variables aforementioned, 
where the index S indicates the use of the Shankaran approach, generating expression:

2.3 � Constant threshold design

The performance of the energy detector is highly impacted by the correct choice of 
parameters that generate the equations presented in Sect. 2.2. One procedure to estab-
lish an excellent sensing performance is the specification of constant parameters in prac-
tical energy detection design. The design parameters are the constant values P̂f and P̂d or 
P̂md , where P̂md = 1− P̂d , defined for a certain project SNR, γ̂ . The definition of estab-
lished parameters generates a constant threshold ˆ�th [12, 17].

According to [3, 17], the threshold can be selected with constant detection rate (CDR) 
or constant false alarm rate (CFAR) based on the CLT approach. The CFAR threshold 
requires a constant false alarm probability [17]:

(20)PWH
f ≃ Q





2+ 9N
�

3

�

4�th
Nσ 2

n
− 2

�

6
√
N



,

(21)FAA
�|H1

(�) ≃ �

(
√

9f

2

{

(

�

ν + ϕ

)1/3

− 1+ 2

9f

})

,

(22)PAA
d ≃ Q





(γ + 1)
√
N
�

9
�

3

�

4�th
N (γ+1)σ 2

n
− 2

�

+ 2γ+1
(γ+1)2N 2

�

6
√
2γ + 1



,

(23)FS
�|H1

(�) ≃ �

(

( �

ν+ϕ
)ψ − (1+ ψp(ψ − 1− 1/2(2− ψ)mp))

ψ
√
2p(1+ 1/2mp)

)

,

(24)

PS
d ≃ Q













9(γ + 1)(2γ + 1)5N

�

�

�th

σ 2
n (2γN+2N )

�
6γ 2+4γ+1

3(2γ+1)2 + (3γ+1)
�

6γ 2+4γ+1
��

γ 2(2γ (9γ+10)+5)+6(γ+1)2(2γ+1)3N
�

54(γ+1)3(2γ+1)6N 2 − 1

�

�

6γ 2 + 4γ + 1
�

�

2γ+1

(γ+1)2N

�

γ 2(3γ + 1)+ 3(γ + 1)(2γ + 1)3N
�













.

(25)ˆ�th
CFAR−CLT =

(

Q−1(P̂f )+
√
N
)√

Nσ 2
n .
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In CDR approach the miss-detection probability is constant [17]:

The optimum number of samples N ∗ for some specific parameters can be defined com-
bining the CLT expressions (25) and (26) [4]:

the novel equations presented in Sect. 2.2, such as (18) can be arranged with constant 
false alarm probability, inverting (18) in respect to P̂f , in this expression:

Also setting a constant false alarm probability in (20) and inverting this expression we 
obtain:

Equation (22) can be also arranged with respect to the constant miss-detection probabil-
ity, fixing Pmd in (22), resulting in:

Finally, it is possible to define the fixed threshold project based on (24), with a fixed 
miss-detection probability as in the expression (31):

The expressions (28) and (29) are alternative representations to the CFAR-CLT approach 
(25). Expressions (30) and (31) are an alternative form to the CDR based on CLT 
approach (26). The novel expressions presented in this work achieve more accurate 
results as will be explored in Sect. 3. In addition to the constant threshold design, the 
equations can be adjusted to define the number of samples N for convenient detection.

Another important analysis resulting from the energy detector parameters is the 
total error probability Pe = Pf + Pmd , which indicates the expectation of inaccuracy 
of the energy detector. If the total error probability is evaluated based on �th , it has 

(26)ˆ�th
CDR−CLT = σ 2

n

[

Q−1(1− P̂md)
√

N (1+ 2γ )+ N (1+ γ )

]

.

(27)N ∗ = [Q−1(P̂f )− Q−1(P̂d)
√

2γ + 1]2γ−2

(28)ˆ�th
CFAR−F =

σ 2
n

(

Q−1(P̂f )+
√
4N − 1

)2

2
.

(29)ˆ�th
CFAR−WH =

Nσ 2
n

(

2− 2−6
√
NQ−1(P̂f )
9N

)

4
.

(30)
ˆ�th

CDR−AA =

Nσ 2
n (γ̂ + 1)



2−
2γ̂+1

N2(γ̂+1)2
−Q−1( ˆ1−Pmd)6

√
2γ̂+1√

N (γ̂+1)

9





3

4
.

(31)

ˆ�th
CDR−S = σ 2

n (2γN + 2N )




Q−1(P̂d)
�

6γ 2 + 4γ + 1
�

�

2γ+1
(γ+1)2N

�

γ 2(3γ + 1)+ 3(γ + 1)(2γ + 1)3N
�

9(γ + 1)(2γ + 1)5N
−

�

(3γ + 1)
�

6γ 2 + 4γ + 1
��

γ 2(2γ (9γ + 10)+ 5)+ 6(γ + 1)2(2γ + 1)3N
�

54(γ + 1)3(2γ + 1)6N 2

�

+ 1

�

�

3(2γ+1)2

6γ 2+4γ+1

�

.
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a global minimum, which indicates that there is only one value of �th minimizing Pe , 
that is, there is an optimal threshold �∗th , such that �∗th = arg min�th(Pe) , this is [29],

To achieve this result, we chose a novel expression of false alarm probability (18) and a 
novel expression of detection probability (22) (both presented in Sect. 2.2) by the facility 
of algebraic manipulation.

To solve (32), we analyze each part of equation separately. Using the error function 
relation Q(x) = 1

2 − 1
2erf

(

x√
2

)

 , the first part of Eq.  (32) is the derivative of Eq.  (18), 

rewritten as:

To solve the derivative we use the identity:

the partial derivative of PF
f  in relation to �th is given by the expression:

Equation (22) can be in terms of Pmd and the error function as:

The partial derivative of PAA
md  in relation to �th can be achieved using the identity:

Finally, the partial derivative of PAA
md  in relation to �th is given by the original equation:

In this way, either the optimal detection threshold or the optimum number of samples 
can be found numerically through the resolutions of Eqs. (35) and (38).

(32)
∂Pe

∂�th
= ∂Pmd

∂�th
+

∂Pf

∂�th
= 0.

(33)PF
f = 1

2
− 1

2
erf





√
2�th
σn

−
√
4N − 1

√
2



.

(34)∂

∂x

(

a+ b · erf
(

c
√
x − d

k

))

= bc · e
−
(

(d+c
√
x)2

k2

)

k
√
π
√
x

,

(35)∂PF
f

∂�th
= −

e
− 1

2

(√
2

√

�th

σ2n
−
√
−1+4N

)

√

�th

σ 2
n

2
√
π�th

.

(36)PAA
md = 1

2
+ 1

2
erf





(γ + 1)
√
N
�

9
�

3

�

4�th
N (γ+1)σ 2

n
− 2

�

+ 2γ+1
(γ+1)2N 2

�

6
√
2γ + 1



.

(37)∂

∂x

(

a+ b · erf
(
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3 � Results and discussion
The analytical results presented in the previous section are discussed together with 
results obtained from computer simulations.

Figure  3 shows different measures of Pd as a function of Pf , or Pd = f (Pf ) , through 
receiver operating characteristic curves (ROC) which allow to evaluate the performance 
of the energy detector based on the theoretical and approximate expressions of the prob-
abilities presented in Sect. 2.2. The following parameters were used: N = {10, 20, 50, 90} , 
σn =

√
1/2 and γ = −5 dB . For each value of N, Fig.  3 provides four ROC curves: 

Pd = f (Pf ) generated by original Eqs. (4) and (10), PCLT
d = f (PCLT

f ) generated by the CLT 
approach using (8) and (13), PAA

d = f (PF
f ) obtained by combining the novel expressions 

(18) and (22) and finally PS
d = f (PWH

f ) also obtained by combining the novel expressions 
(20) and (24).

As there were two expressions of Pd and two of Pf in Sect. 2.2, four new ROC curves 
could be generated only with the alternative approaches; however, it was decided to 
choose the presentation of only two new ROC curves for a more concise graphical anal-
ysis. In this sense, the chosen pairs were PAA

d = f (PF
f ) and PS

d = f (PWH
f ) . The closer to 

the upper left corner the ROC curve is, the better its performance as it provides a higher 
Pd with a lower Pf . The increase of N is a way to improve the performance of the ROC 
curve, graphically we can see that all curves tend to match when we increase the value of 
N. Through the analysis of Fig. 3 it is possible to verify that the curve generated through 
the CLT approach, besides having a significant distance in relation to the original curves, 
also has a lower performance compared to the curves generated by the proposed approx-
imations. It is possible to observe, therefore, that the alternative approaches to the CLT 
approach are more accurate in relation to the original curve.

Figure  4 presents the measured false alarm probability and detection probability as 
functions of γ̂ obtained through simulations. The energy detection employs the fixed 
threshold schemes presented in Sect.  2.3. In all simulations, the optimum number of 
samples N̂  is calculated according to (27) for each value of γ̂ . For the analysis of the fixed 

Fig. 3  Theoretical and approximate ROC curves for N = 10,N = 20,N = 50 and N = 90 , with σn =
√
1/2 

and γ = −5 dB
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threshold design we choose two scenarios. In the first scenario PU is not present and 
only noise is considered at the SU radio input, the fixed threshold schemes used in this 
case are based on constant false alarm rate (CFAR), given by the expressions (25), (28) 
and (29).

In the second scenario PU is present, the fixed threshold schemes used in this instance 
are based on constant detection rate (CDR), given by the expressions (26), (30) and (31). 
The aim of each scenario is to measure Pf for the first scenario or Pmd for the second 
scenario. In the first scenario, the design signal-to-noise ratio value ( ̂γ ) is used only as 
a parameter for the energy detector design as it is necessary to estimate the number of 
samples. Figure 4 shows the measured false alarm probability Pf or miss-detection prob-
ability Pmd as a function of several values of γ̂ . It was performed a total of Na = 20,000 
rounds of simulation and was considered σn =

√
1/2 . For the different values of γ̂ ana-

lyzed, fixed project values P̂f = 0.1 and P̂d = 0.9 were kept. It is possible to verify that 
the results for low values of γ̂ ( N >> 1 ) are very similar in all six simulations. In the 
region − 20 dB < γ̂ < −8 dB , the values of Pf measured in the SU are really close to the 
project values P̂f.

Also in Fig.  4, for γ̂ > −8 dB it is possible to observe a difference between meas-
ured values of Pf and Pmd for all approaches employed. However, there is a greater gap 
between the measured values of Pf using the CLT approach compared to the project 
value P̂f and also with the values measured by the other approaches. A major difference 
can be observed between the measured values Pmd using the CLT approach and the pro-
ject value ˆPmd . The overall performance of the energy detector with the fixed thresh-
olds presented in (28) and (29) shows closer proximity to P̂f in comparison with the CLT 
approach (25). For γ̂ = 0 dB the project with �CFAR−CLT

th  shows a difference about 6% 
compared to the project �CFAR−WH

th .
The performance of the energy detector in the second scenario with the constant 

thresholds presented in (30) and (31) also shows closer proximity to ˆPmd . For γ̂ = 0 dB 
the project with �CDR−CLT

th  shows a difference about 16% compared to the project 

Fig. 4  Measured false alarm probability (for �̂CFAR−CLT , �̂CFAR−F and �̂CFAR−WH ) and measured miss-detection 
probability (for �̂CDR−CLT , �̂CDR−F and �̂CDR−S ) as a function of γ , using P̂f = 0.1 , P̂d = 0.9 and σn =

√
1/2
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�
CDR−AA
th  . These differences occur because for the same number of samples defined in 

the project, the false alarm probabilities and miss-detection probabilities have different 
values as can be seen in Fig. 3.

Some constant threshold expressions presented in this work are more complex than 
those based on the CLT approach, but we can see that they bring benefits in terms of 
energy detector performance. In order to analyze the computational complexity when 
using these expressions, the empirical complexity measuring method of [30] was used, 
which measures the computer workload in terms of time spent. In Fig. 5, each bar repre-
sents the measured computational complexity relative to the CLT-based expressions. In 
Fig. 5a, comparisons are based on the CFAR expressions: (25), (28) and (29). In Figure 5b, 
comparisons are made with the CDR expressions: (26), (30) and (31). From Fig. 5a it can 
be seen that the expression based on the Wilson–Hilferty approach is approximately 50% 
more costly when compared to the CLT approach. On the other hand, when the Fisher’s 
approximation is used, there is a gain of approximately 6% in terms of computational 
effort. Figure  5b shows that both approaches used (Abdel-Aty and Sankaran) demand 
a greater computational effort when compared to the CLT approach. The expression 
based on the Abdel-Aty approach is approximately 94% more costly than the CLT-based 
expression while the CDR-based Sankaran expression is 345% more costly than the 
CLT-based expression. Although this difference appears to be very large, it should be 
noted the gain, in terms of performance of the energy detector, which the use of these 
expressions provides. It is important to emphasize that the computational cost is not 
demanded continuously when the SU performs sensing. In practical implementation 
based on constant detection threshold the SU makes use of these expressions only in 
the definition of the project for a given set of parameters. Thus, for a given environment, 

a

b
Fig. 5  Measured relative computational complexity comparison between the proposed fixed threshold 
schemes. CFAR expressions are compared in a. CDR expressions are related in b 
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the SU calculates the constant detection threshold once and then configures its internal 
circuits for boundlessness sensing intervals.

Figure  6 shows the total error probability Pe = Pf + Pmd simulated, using two 
approaches: original equations and approximations presented in Sect.  2.3 depending 
on (a) the detection threshold, and (b) the number of samples. To generate the present 
result, different design values were used P̂f , P̂d , σn = 1 and SNR = 0 dB . First, it is possi-
ble to verify the minimum local of both curves that show the optimal values of �th and N 
as discussed in Sect. 2.3 for various design values. The lower the total error probability, 

a

b

Fig. 6  Total error probability Pf + Pmd simulated, using original equations and approximations, depending on 
a detection threshold and b number of samples, using different design values P̂f , P̂d , σn = 1 and SNR = 0 dB

Fig. 7  Measured probabilities as function of γ for a constant number of samples N = 50 . The arrows show 
the measured probabilities in the region of the design probabilities
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the higher the values of �th and N, as expected. It can also be observed that the approxi-
mations proposed in this work are properly adjusted to the curves of the original equa-
tions. The differences in terms of the number of samples N and the optimal detection 
threshold level were less than 1% , when compared with the original functions and the 
proposed total error probability model, thereby showing the accuracy of the results 
obtained.

Figure 7 shows the measured false alarm probability and detection probability as func-
tions of γ̂ . In this scenario we verified the proposed constant threshold design for a wide 
range of SNR; however, the same number of samples N = 50 is kept for each SNR value 
evaluated. The design parameters were set to P̂d = 0.9 and P̂f = 0.1 , which represents 
γ̂ ≈ −4 dB , with the limited number of samples. The curves generated by the simulation 
were obtained first by finding the constant threshold values for each of the approaches 
presented, expressions (25-31). For all CFAR approaches, the Pf value is constant and 
equal to P̂f , the same occurs for all the CDR approaches, the Pd value is also constant and 
equal to P̂d . In addition, for each CDR threshold value, the false alarm probabilities are 
calculated, therefore expression (8) is calculated with respect to (26), (18) is calculated 
using (30) and (20) is calculated with (31). For each CFAR threshold value, the detection 
probabilities are calculated; hence, expression (13) is calculated using (25), (22) is calcu-
lated with (28) and (24) is calculated with respect to (29).

It can be observed in Fig. 7 that evaluating several SNR values and keeping the same 
number of samples, the new expressions generate a high value of measured Pd and a 
low value of measured Pf compared to the thresholds based on the CLT approach. For 
γ = −10 dB , PF

f (�
CDR−AA) = 0.72 , while PCLT

f (�CDR−CLT) = 0.76 , which provides a 
gain up to 5% . As can be seen, in Fig. 7, for a very low SNR the false alarm probability is 
high and the detection probability is low due to the reduced number of samples. When 
increasing the SNR, the probabilities tend to improve until the measured values are close 
to those defined in project P̂d = 0.9 and P̂f = 0.1 , in the region close to γ ≈ −4 dB. By 
further increasing the SNR, the measured detection probability reaches the maximum 
value.

Fig. 8  Throughput for SU link as function of γ for a constant number of samples N = 50
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The simulation results presented in Fig.  8 show the throughput of the secondary 
network, described in Sect.  1.2, as a function of γ for a constant number of samples. 
We used the same parameters as in [17], where T = 100ms , τS = 2.5ms , γS = 20 dB , 
P̂f = 0.1 , P̂d = 0.9 and PU’s activity is set as P(H0) = 0.8 and P(H1) = 0.2 . For this simu-
lation we used a constant number of samples N = 50 and we verified the novel constant 
threshold design as described in Sect.  2.3. It is possible to observe a gain in terms of 
throughput when the novel constant threshold is employed in comparison with the con-
stant threshold based on CLT approach. For γ̂ = −9 dB the throughput of SU network 
is R = 5.4853 bits/sec/Hz when we use �̂CFAR−F , the throughput with �̂CFAR−CLT based 
on CLT approach is R = 5.4798 bits/sec/Hz , which represents a gain up to 0.6% . The 
throughput gain is greater when the comparison is made between �̂S or �̂AA and �̂CDR . 
For γ̂ = −9 dB , a gain up to 12% is observed when the constant threshold �̂CDR−S is 
used in comparison with �̂CDR−CLT . Also a gain up to 7% is presented when the constant 
threshold �̂CDR−AA is employed in comparison with �̂CDR−CLT , for γ̂ = −7 dB . These 
results show that in an unfavorable situation where the measured SNR is different from 
the project SNR γ̂ , there is a moderate gain in terms of throughput for the cognitive 
radio network when we use the new approaches presented in this work. Some numerical 
values are compared in Table 1.

4 � Conclusions
Exploring the approximations of the accumulated density functions of the central chi-
square and non-central chi-square distributions, we arrive at new approximations 
of false alarm probability, detection probability and constant threshold for the energy 
detector. New expressions were also presented to find the minimum total error rate. The 
proposed approximations are closer to the original equations if compared to the approx-
imation of the central limit theorem (CLT) already used in the literature. Unlike the CLT 
approach, which can be used for a large number of N, the presented approaches can also 
be used for a moderate number of samples. We show that the design with the new con-
stant threshold expressions is more accurate in terms of measured false alarm and detec-
tion probabilities for different SNR values. The throughput of the cognitive network 
is enhanced when these novel expressions are implemented. The design based on the 
novel constant thresholds expressions supports greater noise variations, thus present-
ing greater stability in the detection of measured energy. The mathematical expressions 
obtained in this work can be applied in other fields of science besides spectrum sensing 
based on energy detection in cognitive radio.

Table 1  Comparison table of the simulation results for throughput

SNR (dB) �
CFAR−CLT

�
CFAR−F

�
CFAR−W

�
CDR−CLT

�
CDR−AA

�
CDR−S

− 15 5.7671 5.7584 5.7744 0.8360 0.9226 0.8639
− 9 5.4798 5.4853 5.5095 1.6500 1.8551 1.7816
− 7 5.2436 5.2518 5.2770 2.5044 2.7597 2.6821
− 4 4.8262 4.8145 4.8271 4.6065 4.6993 4.6425

0 4.6745 4.6741 4.6741 5.3040 5.3040 5.3039

3 4.6741 4.6741 4.6741 5.2929 5.2929 5.2929
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The equations presented cause a relatively impact on computational cost when energy 
detection is calculated; however, as the threshold is not calculated repeatedly the SU 
device does not experience others effects. As the equations presented are simple to 
implement, they can be used in all cognitive radio devices that already use the energy 
detector with an algorithm based on the CLT approach. The constant design threshold 
equations presented can be used as an alternative to the CLT approach for cases that 
require large amounts of samples ( ̂γ << 0 dB ) and especially for cases that require a 
quantity moderate samples ( ̂γ ≈ 0 dB ) as a network of sensors and communications in 
a finite length block regime. With the calculation of the minimization of the total error 
rate, very accurate results were obtained in the search for the detection threshold and 
the number of samples. Possibilities for future work are: the use of the approach pre-
sented in this work for environments with low SNR and the development of expressions 
for channels with fading based on the approaches used in this work. The continuous 
study of efficient techniques for the use of the spectrum opens space for new practical 
models of cognitive radio to be implemented in new generations of wireless communica-
tion systems.
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