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1  Introduction
Wireless sensor network (WSN) is a multi-hop self-organizing system formed by wire-
less sensor nodes communicating with each other and connects the logic world with 
physical world, which have been considered as one of the most potential and influen-
tial technologies. However, due to the short communication distance of sensor nodes, 
limited information processing capabilities and the inability of a single node to provide 
all information, sensor nodes can only be deployed in an overlapping manner to obtain 
complete information about the object within the monitoring range. But this will lead 
to a series of problems such as high circuit complexity, high data redundancy and high 
node energy consumption. To effectively solve the above problems, this paper studies 
rough set theory and evidence theory, which can be used for data analysis and provide 
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strong support data fusion technology in the real world of imprecise research [1–6] and 
proposed other two reductions based on the positive reduction. The propose of three 
reductions will provide novel insights and different angles to information processing in 
wireless communication and transmission.

The basic structure of rough set theory is an approximation space consisting of a uni-
verse of discourse, in which lower and upper approximations are defined to approximate 
a undefinable set by using equivalence relations [7–9]. Research on rough set mainly 
focuses on attribute reduction [10] to fuse information on sensor nodes. From the per-
spective of granular computing, three extensions of rough set model have been proposed 
in terms of the characters of data, respectively, multi-granulation rough set based on 
multi-scale, multi-level and multi-angle [11–20]. A general concept of multi-granulation 
rough set based on multi-scale describes that an attribute of an object can only take 
one value in a single-scale information system where the object information is reflected 
at a fixed scale. We call such a single-scale information system as the classic Pawlak’s 
information system. However, in practical, an object could take on as many different 
hierarchical values under the same attribute with respect to different scales. And, there 
do exist special relationships among these hierarchical levels. One example is that the 
examination results of English for students can be recorded as natural numbers between 
0 and 100, and it can also be graded as “Excellent,” “Good,” “Medium,” “Bad,” “Unaccep-
table.” Sometimes, if needed, it might be graded into two values, “Passed” and “Failed”. A 
hierarchy of such obtained information granules can be organized to a system which is 
called multi-scale information system.

The evidence theory represents the uncertainty through the belief and plausibility 
function derived by the mass function which the core concept is belief structure and 
evidence structure [21–23]. Recently, the combination of evidence theory and rough set 
model become one of the research hotspots. As introduced in Yao et al. [24], the ade-
quate condition for belief structure exactly exists in the classic rough set. On the above 
basis, this study was extended to covering rough set by Chen et al. [25, 26], who success-
fully employ the belief function and the plausibility function to describe the upper and 
lower approximations of the covering rough set, which means the numerical features of 
the rough set can be characterized by evidence theory. In particular, from the perspec-
tive of information fusion, Lin et al. [27] explore the relationship between evidence the-
ory and classical multi-granulation rough sets, which shows that, in general, the classic 
optimistic multi-granulation rough set does not have its corresponding belief structure.

By introducing belief structure, this paper firstly studies the evidential characteristics 
of multi-granulation rough set based on multi-scale. On this basis, the positive region 
reduction, belief reduction and plausibility reduction are put forward in incomplete 
multi-granulation ordered information system and then analyze the consistency in the 
same level and transitivity in different levels, which can reduce data redundancy and cir-
cuit complexity and save node limited resources through data fusion.

2 � Method
This study puts forward the positive region reduction, belief reduction and plausibility 
reduction in terms of reducing data redundancy of WSN and proposes an algorithm 
to reduce the time complexity of attribute reduction. This section firstly introduces the 
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basic preliminaries of WSN information processing, multi-granulation rough set and 
belief structure. On this basis, the above three reductions are proposed and will be con-
ducted in Sect. 3.

2.1 � Preliminaries

2.1.1 � WSN information processing

WSN is mainly composed of nodes, sensor network and users, which the core task of 
nodes is data perceiving and processing [28–30]. According to a certain standard, 
n nodes can form m clusters and the cluster header is selected in each cluster, which 
can also represent this cluster at a higher level. Meanwhile, the same mechanism is 
also applied between cluster headers to form a hierarchical structure [1]. In the above 
model, the real world is regarded as an information system according to the realistic data 
observed and measured by WSN. Every single node is considered as an object from the 
world, and the environment is descripted by a group of attributions which also called 
observation data. The attribute set can be divided into condition attributes and decision 
attributes for practical requirements, which are the input and output of the real world, 
respectively [1, 2, 30].

This hierarchical routing structure focuses on data which makes the node only interact 
with their neighbors within a certain range through localized principle, as Fig. 1 shown. 
And the cluster header will perform data fusion in the cluster so that the sensor node 
only automatically obtains and transmits effective information. This is also the key to 
WSN information fusion. In this case, rough set theory particularly suitable for intel-
ligent information fusion at the global level while data from different cluster head-
ers will be aggregate in the sink node, which means that the multi-granulation rough 
set based on multi-scale can fuse data in the cluster, which ensure that a small amount 
of effective information is transmitted between the cluster header and sink node with 
respect to effectively balance information processing, energy consumption and system 
performance.

Fig. 1  The hierarchical structure of WSN
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2.1.2 � Multi‑granulation rough set based on multi‑scale

Definition 1  [18] Let U = {x1, x2, . . . , xn} be a nonempty finite set of objects called the 
universe of discourse, ATk =

{

ak1, a
k
2, . . . , a

k
m

}

 be a set of attributions and aj be the 

attribute of multi-granulation. For each object in U, the attribute aj can take different 
values on the different levels of granulations. If f is the attribute value surjective function 
of different levels (that is, for every k representing the number of levels with a value of 
positive integer, there exists x ∈ U  such that f (x) = k ) and V k is the domain of the 
attribute ak , then the quaternary MGIS = (U ,ATk , f k ,V k) is called a multi-granulation 
information system.

From the above definition, the multi-scale information system will degenerate into the 
classic Pawlak information system when the number of granular levels is k = 1 . For con-
venience of description, the following simplifies the multi-granulation information sys-
tem based on multi-scale as a multi-granulation information system.

Definition 2  [18] Let MGIS = (U ,ATk , f k ,V k) be a multi-granulation information 
system which arbitrary attribute aj has I levels of granulations. We further define the 
attribute of aj on the k-th level of granulations akj : U → V k

j  represents a surjective func-
tion and V k

j  is the domain of the k-th scale attribute akj  (that is, for any 1 ≤ k ≤ I , there 
exists x ∈ U  such that akj (x) = ∗ , where (∗) means variable quantity). And the surjective 
function gk ,k+1

j : V k
j → V k+1

j  (if there exists k + 1 ) is called the granular transformation 
function with variable quantity (∗) as defined as follows:

On the basis of Definition 2, clearly, the value of an object between different levels of 
granulations is not arbitrary and depended on the value of the lower level in a multi-
granulation information system, which means the value of ak+1

j (x) is determined by 
akj (x).

Definition 3  [18] Let MGIS = (U ,ATk , f k ,V k) be a multi-granulation information 
system which arbitrary attribute aj has I levels of granulations. For any 1 ≤ k ≤ I , the 
multi-granulation information system MGOIS can be called multi-granulation ordered 
information system if the attribute value range of any levels of granulations is all partial 
ordering.

And MGOIS∗≥ , a multi-granulation ordered information system with variable values (∗) 
and null values, is collectively referred to as an incomplete multi-granulation ordered 
information system.

Definition 4  [18] Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-gran-
ulation information system which has I levels of granulations. For any 1 ≤ k ≤ I , if 
the attribute set Ak ⊆ ATk and two arbitrary elements x, y ∈ U  , then there exists 
R∗≥

ATk =
{

(x, y) ∈ U ×U | ∀ak ∈ ATk , (f (x, ak) ≤ f (y, ak)) ∨ (f (x, ak) = ∗) ∨ (f (y, ak) = ∗)
}

 

ak+1
j (x) =

{

∗, if akj = ∗

gk ,k+1

j (akj (x)), if a
k
j �= ∗
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can be called an incomplete multi-granulation ordered information system dominance 
relationship.

On the above basis, if the pair (x, y) ∈ R∗≥

ATk , then [X]∗≥
ATk means that y is finer than x or x 

is coarser than y. The relationship R∗≥

ATk can be considered as a kind of surjection from U 
to P(U) where P(U) is a power set. U/R =

{

y ∈ P(U) | x ∈ U
}

 is a covering of universe 
of discourse.

Definition 5  [18] Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For every X ⊆ Uand any 
1 ≤ k ≤ I , the lower and upper approximations of X in the k-th level of granulations are 
defined as R∗≥

ATk (X) =
{

x ∈ U | [x]∗≥
ATk ⊆ U

}

 and R∗≥

ATk (X) =
{

x ∈ U | [x]∗≥
ATk ∩ X �= ∅

}

 , 

respectively.

From Definition 5, the relationship between the lower and upper approximations in the 
same levels of granulations has been clearly proved. R∗≥

ATk (X) and R∗≥

ATk (X) satisfy the fol-

lowing properties, which will be the theoretical foundation for the further discussions in 
this paper.

Proposition 1  [18] Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-
granulation ordered information system which has I levels of granulations. For any 
1 ≤ k ≤ I and two elements X ,Y ⊆ U , we denote the complement of X in U as ∼ U , i.e., 
∼ U = U − X = {x ∈ U | x /∈ X} , then,

Theorem  1  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granula-
tion ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I 
and every x ∈ U  , denote attribute subset Ak ⊆ ATk then [x]∗≥

Ak ⊆ [x]∗≥
Ak+1 , where 

1 ≤ k ≤ I − 1.

(1)R∗≥

ATk (X) =∼ R∗≥

ATk (∼ X)

(2)R∗≥

ATk (X) =∼ R∗≥

ATk (∼ X)

(3)R∗≥

ATk (∅) = ∅ , R∗≥

ATk (∅) = ∅

(4)R∗≥

ATk (U) = U , R∗≥

ATk (U) = U

(5)R∗≥

ATk (X) ⊆ U ⊆ R∗≥

ATk (X)

(6)R∗≥

ATk (X ∩ Y ) = R∗≥

ATk (X) ∩ R∗≥

ATk (Y )

(7)R∗≥

ATk (X ∪ Y ) = R∗≥

ATk (X) ∪ R∗≥

ATk (Y )
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Proof  On the basis of granular transformation function from Definition 2, it is easy to 
see that for any akj  , there exists gk ,k+1

j (akj (y)) ≥ gk ,k+1

j (akj (x)) such that 
{

y ∈ U | ∀akj ∈ Ak , gk ,k+1

j (akj (y)) ≥ gk ,k+1

j (akj (x))
}

 . Thus, we have [x]∗≥
Ak ⊆ [x]∗≥

AK+1.

Theorem 1 represents the relationship of the attribute set AT in different levels of granu-
lations, i.e., R∗≥

ATk+1 is subdivided by the relationship R∗≥

ATk defined on the attribute set AT, 
and thus obtains the relationship between the upper and lower approximations in differ-
ent levels of granulations. � □

Proposition 2  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I and 
every x ∈ U  , denote attribute subset Ak ⊆ ATk , then, 

(1)	 R∗≥

ATk+1(X) ⊆ R∗≥

ATk (X) where 1 ≤ k ≤ I − 1

(2)	 R∗≥

ATk (X) ⊆ R∗≥

ATk+1(X) where 1 ≤ k ≤ I − 1

Proof 

(1)	 If for every x ∈ U , there exists x ∈ R∗≥

ATk+1(X) such that [x]∗≥
ATk+1 ⊆ X . With theo-

rem  1, if [x]∗≥
ATk ⊆ X , then x ∈ R∗≥

ATk (X) . Thus, we have proved that 

R∗≥

ATk+1(X) ⊆ R∗≥

ATk (X).

(2)	 If for every x ∈ U , there exists x ∈ R∗≥

ATk+1(X) such that [x]∗≥
ATk ∩ X �= ∅ . With 

theorem  1, if [x]∗≥
ATk+1 ∩ X �= ∅ , then x ∈ R∗≥

ATk+1(X) . Thus, we have proved that 
R∗≥

ATk (X) ⊆ R∗≥

ATk+1(X).

From Proposition 2, clearly, the lower approximation in the (k + 1)-th level of granu-
lations of X further subdivides the same in the k-th and the upper approximation in 
the (k + 1)-th level of granulation of X further subdivides the same in the k-th. More-
over, we have the corresponding hierarchical sequence of approximations as follows.

In the following, employ Example 1 to illustrate 
R∗≥

AT 1(X) ⊆ R∗≥

AT 2(X) ⊆ · · · ⊆ R∗≥

ATk (X) ⊆ R∗≥

ATk+1(X) for understanding the above eqs 
more conveniently. Example 1 will provide a table of the quantity of rape pests detected 
by WSN. For facilitating reduction, in the first level of granulation, the quantity will be 
regarded as 90 when it is between 80 and 100 or 70 when it is between 60 and 80, and 
it can deduce the rest from this. However, missing values will exist due to perception 
errors and access limitations in WSN to a certain extent, and unclear pictures or impre-
cise targets will be regarded as missing values. � □

(8)R∗≥

ATk+1(X) ⊆ R∗≥

ATk (X) ⊆ · · · ⊆ R∗≥

AT 2(X) ⊆ R∗≥

AT 1(X)

(9)R∗≥

AT 1(X) ⊆ R∗≥

AT 2(X) ⊆ · · · ⊆ R∗≥

ATk (X) ⊆ R∗≥

ATk+1(X)
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Example 1  Table  1 is an incomplete multi-granulation ordered information system 
table of Rape pests detected by WSN in a certain period of time, where granularity I = 3 , 
U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} and ATk =

{

ak1, a
k
2, a

k
3, a

k
4

}

 . 

Xi(i = 1, 2, . . . , 12) represents different clusters which stand for Cabbage butterfly, 
Aphids, Cabbage bug and Cricket, respectively. And ATk is the attribute set where 
k = 1, 2, 3 , which is the different levels of granulations. And ∗ is the missing value. From 
a multi-granular information system structure, we obtain the hierarchical sequence of 
attributes in different levels of granulations as follows. 

(1)	 The sequence of the value in the first level of granulation of the quantity of pests is 
{1 < 2 < . . . < 100}.

(2)	 The sequence of the value in the second level of granulation of the grade of the 
quantity is 

{

r < f < m < l < a
}

 where r, f, m, l and a represent rarely, few medium, 
lot and abundance, respectively.

(3)	 The sequence of the value in the third level of granulation of the grade of risk is 
{S < F} where S and F represent Seconds and Firsts, respectively.

For the above levels of granulations, the system is decomposed into three decision 
tables which are described as Tables 2, 3, 4, respectively.

From Table 2, we can derive that the value of the first level of granulation is as follows.

(10)[x1]
∗≥

AT 1 = [x8]
∗≥

AT 1 = [x10]
∗≥

AT 1 = {x1, x8, x10}

(11)[x2]
∗≥

AT 1 = {x1, x2, x8, x10}

(12)[x3]
∗≥

AT 1 = [x7]
∗≥

AT 1 = [x12]
∗≥

AT 1 = {U}

Table 1  A multi-granulation incomplete ordered information system with three levels of 
granulations

U a1
1 a1

2 a1
3 a2

1 a2
2 a2

3 a3
1 a3

2 a3
3 a4

1 a4
2 a4

3

x1 90 a F 90 a F ∗ ∗ ∗ 90 a F

x2 70 l F 90 a F 70 l F 90 a F

x3 ∗ ∗ ∗ 30 f S 10 r S 30 f S

x4 50 m F 50 m F ∗ ∗ ∗ 50 m F

x5 30 f S 50 m F 30 f S 30 f S

x6 70 l F 70 l F 70 l F 70 l F

x7 10 r S 30 f S 10 r S 30 f S

x8 ∗ ∗ ∗ 90 a F 90 a F 90 a F

x9 30 f S 50 m F 50 m F 50 m F

x10 90 a F ∗ ∗ ∗ 90 a F 90 a F

x11 50 m F 70 l F 50 m F 70 l F

x12 10 r S 10 r S 10 r S ∗ ∗ ∗
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Table 2  The incomplete ordered information table with the first level of granulations

U a1
1 a2

1 a3
1 a4

1

x1 90 90 ∗ 90

x2 70 90 70 90

x3 ∗ 30 10 30

x4 50 50 ∗ 50

x5 30 50 30 30

x6 70 70 70 70

x7 10 30 10 30

x8 ∗ 90 90 90

x9 30 50 50 50

x10 90 ∗ 90 90

x11 50 70 50 70

x12 10 10 10 ∗

Table 3  The incomplete ordered information table with the second level of granulations

U a1
2 a2

2 a3
2 a4

2

x1 a a ∗ a

x2 l a l a

x3 ∗ f r f

x4 m m ∗ m

x5 f m f f

x6 l l l l

x7 r f r f

x8 ∗ a a a

x9 f m m m

x10 a ∗ a a

x11 m l m l

x12 r r r ∗

Table 4  The incomplete ordered information table with the third level of granulations

U a1
3 a2

3 a3
3 a4

3

x1 F F ∗ F

x2 F F F F

x3 ∗ S S S

x4 S F ∗ F

x5 S F S S

x6 F F F F

x7 S S S S

x8 ∗ F F F

x9 S F F F

x10 F ∗ F F

x11 F F F F

x12 S S S ∗
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Suppose X = {x1, x6, x8, x10, x11} , then the reductions of the lower and upper approxi-
mation are R∗≥

AT 1(X) = {x1, x8, x10} and R∗≥

AT 1(X) = {U} , respectively.

From Table  3, we can derive that the value of the second level of granulation is as 
follows.

Suppose X = {x1, x6, x8, x10, x11} , then the reductions of the lower and upper approxi-
mation are R∗≥

AT 2(X) = {x1, x8, x10} and R∗≥

AT 2(X) = {U} , respectively. And for every 

x ∈ U  , we can obtain [x]∗≥
AT 1 ⊆ [x]∗≥

AT 2.
From Table  4, we can obtain that the value of the third level of granulations is as 

follows.

(13)[x4]
∗≥

AT 1 = {x1, x2, x4, x6, x8, x10, x11}

(14)[x5]
∗≥

AT 1 = {x1, x2, x4, x5, x6, x8, x9, x10, x11}

(15)[x6]
∗≥

AT 1 = {x1, x2, x6, x8, x10, x11}

(16)[x9]
∗≥

AT 1 = {x1, x2, x4, x6, x8, x9, x10, x11}

(17)[x11]
∗≥

AT 1 = {x1, x2, x6, x8, x10, x11}

(18)[x1]
∗≥

AT 2 = [x8]
∗≥

AT 2 = [x10]
∗≥

AT 2 = {x1, x8, x10}

(19)[x2]
∗≥

AT 2 = {x1, x2, x8, x10}

(20)[x3]
∗≥

AT 2 = [x7]
∗≥

AT 2 = [x12]
∗≥

AT 2 = {U}

(21)[x4]
∗≥

AT 2 = {x1, x2, x4, x6, x8, x10, x11}

(22)[x5]
∗≥

AT 2 = {x1, x2, x4, x5, x6, x8, x9, x10, x11}

(23)[x6]
∗≥

AT 2 = {x1, x2, x6, x8, x10, x11}

(24)[x9]
∗≥

AT 2 = {x1, x2, x4, x6, x8, x9, x10, x11}

(25)[x11]
∗≥

AT 2 = {x1, x2, x6, x8, x10, x11}

(26)
[x1]

∗≥

AT 3 = [x2]
∗≥

AT 3 = [x4]
∗≥

AT 3 = [x6]
∗≥

AT 3 = [x11]
∗≥

AT 3 = {x1, x2, x4, x6, x8, x10, x11}

(27)[x3]
∗≥

AT 3 = [x7]
∗≥

AT 3 = [x12]
∗≥

AT 3 = {U}
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Suppose X = {x1, x6, x8, x10, x11} , then the reduction of the lower and upper approxima-
tion are R∗≥

AT 3(X) = ∅ and R∗≥

AT 3(X) = {U} , respectively. And for every x ∈ U  , we can 

obtain [x]∗≥
AT 2 ⊆ [x]∗≥

AT 3.
Example 1 illustrates that it is not arbitrary for the value of the same attribute of the 

same object in different levels of granulations and proves that the value of the higher 
level of granulations is determined by the lower, i.e., the a from the attribute a1 of x1 in 
the second level of granulations is determined by 90 from the value of the first level.

2.1.3 � Evidence structure

Definition 6  [20–22] Let � be a finite and nonempty set which is called the frame of 
discernment, where A is the arbitrary subset of � . If there exists a mapping function 
m : 2� → [0, 1] that satisfies m(∅) = 0 and 

∑

X⊆U m(X) = 1 , then we define that the 
function m is the basic probability assignment function or the mass function on 2�.

The degree of evidence exactly to A is indicated by m(A) . If there exists m(A) > 0 , then 
we suppose that A is called the focal element of m and a family of all focal elements are 
viewed as the core. A pair of (F, m) is called a belief structure on the core. And we can 
obtain the other pair of the belief and plausibility functions can be derived as in terms of 
the mass function as Definition 7.

Definition 7  [20–22] Let � be a finite and nonempty set which is called the frame 
of discernment, where A is the subset of � and m is the basic probability assignment 
function of the frame of discernment � . The belief function is a mapping Bel(X) that 
satisfies Bel(X) =

∑

A⊆U m(A) and the plausibility is a mapping Pl(X) that satisfies 
Pl(X) =

∑

A∩X �=∅
m(A) .

The Belief function Bel(X) represents the true degree of trust for X, while the plausibility 
function Pl(X) indicates that it is no doubt with trust is not true for X. These two func-
tions are based on the same belief structure that are connected by the dual property, i.e., 
Bel(X) = 1− Pl(∼ X) , where ∼ X is the complement of X. Also, the belief function can 
be defined by semi-additive measure as Definition 8.

Definition 8  [20–22] For the arbitrary subset 2� of the frame of discernment, a map-
ping function Bel : 2� → [0, 1] is belief function if it satisfies the following conditions. 

(1)	 Bel(∅) = 0

(2)	 Bel(�) = 1

(3)	 Bel(
⋃m

i=1 Xi) ≥
∑

ϕ �=J (1,2,...,m)(−1)|U+1|Bel(
⋂

i∈J Xi)

(28)[x5]
∗≥

AT 3 = {x1, x2, x4, x5, x6, x8, x9, x10, x11}

(29)[x8]
∗≥

AT 3 = [x9]
∗≥

AT 3 = [x10]
∗≥

AT 3 = {x1, x2, x4, x6, x8, x9, x10, x11}
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Theorem  2  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I , denote 

the subset Ak ⊆ ATk . For every X ⊆ U , then, Bel∗≥
Ak (X) =

|R∗≥

Ak (X)|

|U |
 and 

Pl∗≥
Ak (X) =

|R∗≥

Ak (X)|

|U |
 are the belief and plausibility function of the k-th level of granula-

tions, respectively, and the corresponding mass function is 

mAk (X) =











|

�

x ∈ U |[x]∗≥
ATk = X

�

|

|U |
0, where x ∈ U

.

Proof  According to Definition 6, we can derive that mAk (X) is called mass function 
and then only need to demonstrate that Bel∗≥

Ak  satisfies three conditions of Definition 8. 
From the basic Definition 7, we take Bel∗≥

Ak (∅) = 0 and Bel∗≥
Ak (U) = 1 , respectively. Next, 

prove the condition (3) of Definition 8. Considering a collection {x1, x2, . . . , xn} ⊆ U  , 
then we have

Hence, Bel∗≥
Ak (X) is a belief function. And Pl∗≥

Ak (X) is also a plausibility function due to 
the duality of the belief and plausibility functions.

With Theorem 3, there exactly exists the corresponding belief structure of multi-granu-
lation rough set and the consistency of belief structure in different levels of granulations 
from Theorem 2 can be derived as follows.�  □

Proposition 3  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I , denote 
the subset Ak ⊆ ATk . For x ⊆ U  , Bel∗≥

Ak (X) and Pl∗≥
Ak (X) are the belief and plausibility 

functions, respectively, and P(X) = |X |
|U |

 . By the above analysis, we have the properties as 
follows. 

(1)	 Bel∗≥
AI (X) ≤ Bel∗≥

AI−1(X) ≤ . . . ≤ Bel∗≥
A1 (X) ≤ P(X)

(2)	 P(X) ≤ Pl∗≥
A1 (X) ≤ Pl∗≥

A2 (X) ≤ . . . ≤ Pl∗≥
AI (X)

|R∗≥

Ak (X1 ∪ X2 ∪ . . . ∪ Xn)|

|U |
≥

|R∗≥

Ak (X1) ∪ R∗≥

Ak (X2) ∪ . . . ∪ R∗≥

Ak (Xn)|

|U |

=
∑

i

|R∗≥

Ak (Xi)|

|U |
−

∑

i<j

|R∗≥

Ak (Xi) ∩ R∗≥

Ak (Xj)|

|U |
+ . . .

+ (−1)n+1
|R∗≥

Ak (X1) ∩ R∗≥

Ak (X2) ∩ . . .R∗≥

Ak (Xn)|

|U |

=
∑

i

|R∗≥

Ak (Xi)|

|U |
−

∑

i<j

|R∗≥

Ak (Xi ∩ Xj)|

|U |
+ . . .

+ (−1)n+1
|R∗≥

Ak (X1) ∩ R∗≥

Ak (X2) ∩ . . .R∗≥

Ak (Xn)|

|U |
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2.2 � Reduction in incomplete multi‑granulation ordered information system

First, the positive region reduction, belief reduction and plausibility reduction are put 
forward in incomplete multi-granulation ordered information system.

Definition 9  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I , denote 
the subset Ak ⊆ ATk , and the positive region, belief and plausibility reduction are devel-
oped in the k-th level of granulations of information system as follows. 

(1)	 If there exists U/R∗≥

Ak = U/R∗≥

Ak  , then assume that Ak is a consistent set. Further-
more, if any true subset of Ak is not a consistent set, then Ak can be defined as the 
positive region reduction.

(2)	 If there exists Bel∗≥
Ak (X) = Bel∗≥

ATk (X) , where for every X ∈ U/R∗≥

Ak  , then assume 
that Ak is a belief consistent set. Furthermore, if any true subset of Ak is not a belief 
consistent set, then Ak can be defined as belief reduction.

(3)	 If there exists Pl∗≥
Ak (X) = Pl∗≥

ATk (X) , where for every X ∈ U/R∗≥

Ak  , then assume that 
Ak is a plausibility consistent set. Furthermore, if any true subset of Ak is not a 
plausibility consistent set, then Ak can be defined as plausibility reduction.

Based on Definition 9, belief reduction and plausibility reduction are the minimal 
attribute set to keep the degree of belief and plausibility. Next, we analyze the consist-
ency of three ways of reduction in the same level of granulations.
Theorem  3  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I , denote 
the subset Ak ⊆ ATk , and we have some properties in the k-th level of granulations of 
information system as follows. 

(1)	 If Ak is the consistency set if and only if it is the belief consistency set.
(2)	 If Ak is the positive region reduction if and only if it is the belief reduction.
(3)	 If Ak is the consistency set if and only if it is the plausibility consistency set.
(4)	 If Ak is the positive region reduction if and only if it is the plausibility reduction.

Proof 

(1)	 Suppose that Ak is the consistency set in the k-th level of granulations of information 

system. Then, we have U/R∗≥

Ak = U/R∗≥

Ak  . Clearly, Ak is also the belief consistency set 

in the same level with Definition 9. If Ak is the belief reduction in the k-th level of 

granulations. Then, we have Bel∗≥
Ak (X) = Bel∗≥

ATk (X),X ∈ U/R∗≥

Ak  (i). According to 

Eqs.(i), one obtains Bel
∗≥

Ak ([X]
∗≥

ATk ) = Bel∗≥
ATk ([X]

∗≥

ATk ) (ii), According to Eqs.(ii), one 

obtains |R
∗≥

Ak
([X]

∗≥

ATk
)|

|U |
=

|R
∗≥

ATk
([X]

∗≥

ATk
)|

|U |
 (iii). According to the conjunction of Theorem 2 



Page 13 of 22Long et al. J Wireless Com Network         (2021) 2021:86 	

and Eqs(iii), we can obtain R∗≥

Ak ([X]
∗≥

ATk ) = R∗≥

ATk ([X]
∗≥

ATk ) . By the definition of the 

lower approximation from Definition 7 and Ak ⊆ ATk,we can get the following rela-
tionship: 

{

y|[y]∗≥
Ak ⊆ [X]∗≥

ATk

}

=

{

y|[y]∗≥
ATk ⊆ [X]∗≥

ATk

}

↔ [X]∗≥
Ak ⊆ [X]∗≥

ATk , x ∈ U . 

Since [X]∗≥
ATk ⊆ [X]∗≥

Ak  , thus [X]∗≥
ATk = [X]∗≥

Ak  . Consequently, Ak is the consistency set 
in the k-th level of granulations of information system.

(2)	 Similar to the proof of (1), it can be proved.
(3)	 Suppose that Ak is the consistency set in the k-th level of granulations of infor-

mation system. Then, we have U/R∗≥

Ak = U/R∗≥

Ak  . Clearly, Ak is also the plausibility 
consistency set in the same level with Definition 9.

(4)	 Similar to the proof of (3), it can be proved. As demonstrated above, we obtain the 
consistency of several reduction in the same level, which means the positive region 
reduction is equivalent to belief reduction. And it is also proved that the positive 
region reduction and belief reduction are adequate condition for plausibility reduc-
tion. Next, analyze the transitivity of the above three reduction in different levels.

� □
Theorem  4  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system which has I levels of granulations. For any 1 ≤ k ≤ I , denote 
the subset Ak ⊆ ATk and we have some properties as follows. 

(1)	 For any x ∈ U , we can obtain [X]∗≥
Ak = [X]∗≥

Ak+1 , where Ak is the positive region 
reduction in the k-th level of granulations of information system. Then, we define 
that Ak+1 is the positive region reduction in the k-th level of granulations.

(2)	 Reversely, if for x ∈ U ,we can obtain [X]∗≥
Ak = [X]∗≥

Ak+1 , where Ak+1 is the positive 
region reduction in the (k + 1)-th level of granulations of information system. Then, 
we define that Ak is the positive region reduction in the (k + 1)-th level of granula-
tions.

(3)	 Conversely, if for x ∈ U , we can obtain  [X]∗≥
Ak = [X]∗≥

Ak+1 , where Ak+1 is not the posi-
tive region reduction in the (k + 1)-th level of granulations of information system. 
Then, we define that Ak is not the positive region reduction in the k-th level of granu-
lations.

Proof 

(1)	 If Ak is the positive region reduction in the k-th level of granulations of information 
system, then we get [X]∗≥

Ak = [X]∗≥
ATk , where ∀x ∈ U . By [X]∗≥

Ak ⊆ [X]∗≥
ATk , we can 

obtain [X]∗≥
Ak+1 ⊆ [X]∗≥

ATk . And then, [X]∗≥
Ak+1 = [X]∗≥

ATk can be verified. Hence, we 
get the result that Ak+1 is the positive region reduction in the k-th level of granula-
tions.

(2)	 Similar to the proof of (1), it can be proved.
(3)	 If Ak+1 is not the positive region reduction in the (k + 1)-th level of granulations, 

then we get [X]∗≥
ATk+1 ⊂ [X]∗≥

Ak+1.
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By [X]∗≥
ATk ⊆ [X]∗≥

ATk+1 , we can obtain [X]∗≥
ATk ⊂ [X]∗≥

ATk+1.
And then, by [X]∗≥

Ak+1 = [X]∗≥
Ak  , [X]∗≥

ATk ⊂ [X]∗≥
Ak  can be verified.

Hence, we can get the result that Ak is not the positive region reduction in the k-th level 
of granulations.

It is demonstrated in Theorem 4 that, when the condition [X]∗≥
Ak = [X]∗≥

Ak+1 where for 
every x ∈ U  is satisfied, reducibility has bidirectional transitivity between different levels 
of granulations and nonreducibility has only unidirectional transitivity between different 
levels of granulations, i.e., if the higher level of granulations has nonreducibility, then the 
lower level has irreducibility, too. Whereas it is impossible to judge whether the higher 
level can be reduced if the lower level has irreducibility. On the above analysis, the fol-
lowing inference can be put forward. 

(1)	 Suppose that Ai is the positive region reduction in the i-th level of granulations and 
for every x ∈ U ,we have [X]∗≥

Ak = [X]∗≥
Ak+m,where m > 0,k +m ≤ I and for every I, 

there exists k ≤ i ≤ k +m . Then, Ak,Ak+1,. . .,Ak+m are the positive region reduc-
tions in the k-th, (k + 1)-th,. . . , (k +m)-th levels of granulations of information 
system, respectively. Specially, when i = 1 , incomplete multi-granulation ordered 
information system completely can be positively reduced.

(2)	 Conversely, suppose that Ai is not the positive region reduction in the i-th level 
of granulations and for every x ∈ U , we have [X]∗≥

Ak = [X]∗≥
Ak+m , where m > 0 , 

k +m ≤ I and for every I, there exists k ≤ i ≤ k +m . Then, Ak,Ak+1,. . .,Ak+m are 
not the positive region reductions in the k-th, (k + 1)-th,. . .,(k +m)-th levels of gran-
ulations of information system, respectively. Specially, when i = 1 , incomplete multi-
granulation ordered information system completely can’t be positive region reduced.

Proof 

(1)	 First, prove that Ak is the positive region reduction in the i-th level of granulations. 
If Ai is the positive region reduction in the i-th level of granulations of information 
system, then we get [X]∗≥

Ai ⊆ [X]∗≥
ATi , where ∀x ∈ U . For k ≤ i ≤ k +m ≤ I and 

[X]∗≥
Ak = [X]∗≥

Ak+m , [X]∗≥
Ak = [X]∗≥

Ak+m = [X]∗≥
Ai  can be obtained. By [X]∗≥

Ai ⊆ [X]∗≥
ATi , 

we can obtain [X]∗≥
Ak ⊆ [X]∗≥

ATi . And then, [X]∗≥
Ak = [X]∗≥

ATi can be verified. Thus, we 
get that Ak is the positive region reduction in the i-th level of granulations. Second, 
similar to proof of (1), we can derive that Ai is the positive region reduction in the 
k-th level of granulations,Ai is the positive region reduction in the (k +m)-th level 
of granulations and Ak+m is the positive region reduction in the i-th level of granu-
lations Hence, we can get the result that Ak,Ak+1,. . .,Ak+m are the positive region 
reductions in the k-th, (k + 1)-th,. . .,(k +m)-th levels of granulations of informa-
tion system, respectively.

(2)	 First, prove that Ak is not the positive region reduction in the k-th level of granula-
tions.
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If Ai is the positive region reduction in the i-th level of granulations of information sys-
tem, then we get [X]∗≥

ATi = [X]∗≥
Ai  , where ∀x ∈ U .

For k ≤ i ≤ k +m ≤ I and [X]∗≥
Ak = [X]∗≥

Ak+m , [X]∗≥
Ak = [X]∗≥

Ak+m = [X]∗≥
Ai  can be obtained.

By [X]∗≥
ATk ⊆ [X]∗≥

ATi , we can obtain [X]∗≥
Ak ⊂ [X]∗≥

ATi.

And then, [X]∗≥
ATk ⊂ [X]∗≥

Ak  can be verified.

Thus, we can get that Ak is not the positive region reduction in the k-th level of 
granulations.

Second, similar to proof of (1), we can derive that Ak+m is not the positive region reduc-
tion in the (k +m)-th level of granulations.

Hence, we can get the result that Ak,Ak+1,. . .,Ak+m are not the positive region reduc-
tions in the k-th, (k + 1)-th,. . .,(k +m)-th levels of granulations of information system, 
respectively.

In order to describe the relationship among the reductions above conveniently, given 
the relationship figures as follows, clearly, Fig. 2 is the consistency of several reductions 
in the same level of granulations. In this representation, each of nodes represents a kind 
of reduction and the unidirectional arrows are granted as a reduction of the end point 
from the starting point, i.e., the positive region reduction A must be the plausibility 
reduction at the mean time. The bidirectional arrows mean the equivalent of the ends of 
the arrow. Figure 3 represents the transitivity of several reductions in the different levels 
of granulations. When [X]∗≥

Ak ⊂ [X]∗≥
Ak+1 are satisfied, we can get that A is also the positive 

region reduction of the k-th and (k + 1)-th levels of granulations.

3 � Results and discussion
In this section, we will simulate numerically the relationship of three reductions of an 
incomplete multi-granulation ordered information system based on belief structure that 
is defined in Sect. 3 and give the notions of the significance to explain whether the cor-
responding attribute is dispensable or not. Based on this fact, we proposed an algorithm 
to find out reductions of an incomplete multi-granulation ordered information system.

Fig. 2  The consistency of several reductions in the same levels of granulations
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3.1 � Algorithm design

Definition 10  Let MGOIS∗≥ = (U ,ATk , f k ,V k) be an incomplete multi-granulation 
ordered information system. If ATk =

{

ak1, a
k
2, . . . , a

k
m

}

 , then for every attribute 

aki ∈ ATk , we define the significance degree of the attribute ATk as follows.

sig1(a
k
i ,AT

k) > 0 explains that the attribute aki  is not dispensable for ATk and aki  should 
be included in the positive region reduction. If sig1(aki ,AT

k) ≤ 0 , it shows the attribute 
aki  is dispensable for ATk and aki  should not be included in positive region reduction. 
sig2(a

k
i ,AT

k) > 0 explains that the belief function of the attribute ak
AT−

{

aki

} is equal to 

ATk , which means aki  should be included in the belief reduction. If sig2(aki ,AT
k) ≤ 0 , it 

shows the belief function of the attribute ak
AT−

{

aki

} is not equal to ATk , and aki  should 

not be included in belief reduction. sig3(aki ,AT
k) > 0 explains that the plausibility func-

tion of the attribute ak
AT−

{

aki

} is equal to ATk and aki  should be included in the plausibil-

ity reduction. If sig3(aki ,AT
k) ≤ 0 , it shows the plausibility function of the attribute 

ak
AT−

{

aki

} is equal to ATk , and aki  should not be included in the plausibility reduction.

(30)sig1(a
k
i ,AT

k) =
U

RATk

−
U

R
ATk−

{

aki

}

(31)sig2(a
k
i ,AT

k) = BelATk − Bel
ATk−

{

aki

}

(32)sig3(a
k
i ,AT

k) = PlATk − Pl
ATk−

{

aki

}

Fig. 3  The transitivity of several reductions between k and k+1 levels of granulations
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The specific steps of the reduction will be given in the following. Since that it is same for 
reduction steps in different levels of granulations, just given the reduction process of a 
certain level of granulations as Algorithm 1 shows.

Algorithm 1  Reduction in incomplete multi-granulation ordered information system 
based on belief structure

Input: incomplete information system IS∗≥ = (U ,AT , f ,V );

Output: let the positive region reduction be Red, belief reduction be RedBel , plausibility 
reduction be RedPl.

Step 1: let Red = ∅ , RedBel = ∅,RedPl = ∅ and AT ′ = AT ;

Step 2: according to Definition 9, calculate the positive region consistent set U/RAT , 
belief consistent set BelAT and plausibility consistent set PlAT of the attribute AT;

Step 3: let ai ∈ AT  , according to Definition 9, calculate the positive region consistent set 
U/RAT−{ai} , belief consistent set BelAT−{ai} and plausibility consistent set PlAT−{ai} of the 
attribute AT − {ai};

Step 4: Let sigj(ai,AT ) be the significance and relative of the attribute ai where1 ≤ |j| ≤ 3 , 
sig1(ai,AT ) = U/RATk − U/RAT−{ai} , sig2(ai,AT ) = BelAT − BelAT−{ai} and 
sig3(ai,AT ) = PlAT − PlAT−{ai};

Step 5: If sig1(ai,AT ) > 0 , then suppose the attribute ai is important, and add it into the 
positive region reduction set, and obtain ai ∈ Red , then go to Step 8, else go to Step 8 
directly;

Step 6: If sig2(ai,AT ) > 0 , then suppose the attribute ai is important, and add it into the 
belief reduction set, and obtain ai ∈ RedBel , then go to Step 8, else go to Step 8 directly;

Step 7: If sig3(ai,AT ) > 0 , then suppose the attribute ai is important, and add it into 
the plausibility reduction set, and obtain ai ∈ RedPl , then go to Step 8, else go to Step 8 
directly;

Step 8: Let AT ′ = AT ′ − {ai} , if AT ′ = ∅ , then return step 8, else let ai = aj , and return 
Step 3, where i  = j,;

Step 9: output the positive region reduction Red, belief reduction RedBel and plausibility 
reduction RedPl as reduction.

Suppose that the size of U is n and the number of attributions is m, then the time com-
plexity of Algorithm 1 is O(m ∗ n) . Table 5 and Fig. 4 both show the comparison of time 
complexity among different rough set measures, like covering rough set [25], traditional 
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rough set [7] and multi-granulation rough set [18], illustrating that the calculating time 
can be reduced largely. In Fig.  4, suppose m = 30 and n = 0, 500, 1000, . . . , 10000 . For 
clearly observing, the final result of our idea is divided by 1000, MGRS is divided by 
10000, and the rest methods are divided by 100000. This figure shows the great supe-
riority of MGRS based on belief structure with low time complexity clearly and intui-
tively. And the following analysis of Example 1, which is analyzed briefly in Sect. 3.2, is 
employed to illustrate our idea.

3.2 � Algorithm implementation

Example 1.1. It is an incomplete multi-granulation ordered information system table of 
Rape pests detected by WSN in a certain period of time, where granularity I = 3 , 
U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} and ATk =

{

ak1, a
k
2, a

k
3, a

k
4

}

 . 

Xi(i = 1, 2, . . . , 12) represents different clusters which stand for Cabbage butterfly, 
Aphids, Cabbage bug and Cricket, respectively. And ATk is the attribute set where 
k = 1, 2, 3 , which is the different levels of granulations. Since that, it is same for reduc-
tion steps in different levels of granulations, just given the reduction process of the first 
level of granulations as Algorithm 1 shows. 

(1)	 Let Red = ∅ , RedBel = ∅ , RedPl = ∅ and AT ′ = AT ;
(2)	 According to Definition 9, calculate the positive region consistent set U/RAT 1 , 

belief consistent set BelAT 1 and plausibility consistent set PlAT 1 of the attribute 
AT 1 . 

U/RAT 1 =

{

a11, a
1
2, a

1
3, a

1
4

}

,BelAT 1 =

{

a11, a
1
2, a

1
3, a

1
4

}

,PlAT 1 =

{

a11, a
1
2, a

1
3, a

1
4

}

Table 5  The comparison of time complexity of different rough set measures

Measure MGRS based on belief structure MGRS Covering rough set Traditional rough set

Time complexity O(m ∗ n) O(n2) O(m2 ∗ n2) O(m ∗ n2)

Fig. 4  The comparison of time complexity of different rough set measures with quantitative analysis
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(3)	 Calculate the positive region consistent set U/RAT 1 = U/RAT 1−
{

a1
1

} , belief consist-

ent set BelAT 1−
{

a1
1

} and plausibility consistent set PlAT 1−
{

a1
1

} of the attribute 

AT 1 −
{

a11
}

 . And we can get [x]∗≥
AT 1−

{

a1
1

} from Table 2 as follows. 

 Thus, U/RAT 1−
{

a1
1

} =
{

a11, a
1
2, a

1
3, a

1
4

}

 . For every X ∈ U/R∗≥

ATk , suppose 

X = {x1, x6, x8, x10, x11} , and the reduction of the lower and upper approximation 
of AT 1 −

{

a11
}

 are R∗≥

AT 1−
{

a1
1

}(X) = {x8, x10} and R∗≥

AT 1−
{

a1
1

}(X) = {U} , respec-

tively. Additionally, the reduction of the lower and upper approximation of 
R∗≥

AT 1(X) = {x1, x8, x10} and R∗≥

AT 1(X) = {U} , respectively. Hence, 

BelAT 1−
{

a1
1

}
∗ ≥(X) =

|R∗≥

AT 1−
{

a1
1

}(X)|

|U |
=

2

12
�= Bel∗≥

AT 1(X)   , 

Pl∗≥
AT 1−

{

a1
1

}(X) =
|R∗≥

AT 1−
{

a1
1

}(X)|

|U |
= 1 = Pl∗≥

AT 1(X) . Consequently, 

BelAT 1 =
{

a11, a
1
2, a

1
3, a

1
4

}

 , PlAT 1 =
{

a12, a
1
3, a

1
4

}

.
(4)	 Thus, we get sig1(a

1
1,AT

1) = U/RAT 1 −U/RAT 1−
{

a1
1

} = {∅} = 0 , 

sig2(a
1
1,AT

1) = BelAT 1 − BelAT 1−
{

a1
1

} = {∅} = 0 and 

sig3(a
1
1,AT

1) = PlAT 1 − PlAT 1−
{

a1
1

} =
{

a11
}

> 0 . Then, add the attribute a1 into 

plausibility reduction RedPl.
(5)	 Similarly, Bel∗≥

AT 1−
{

a1
2

}(X) = 3/12 , Pl∗
AT 1−

{

a1
2

}≥(X) = 1 , 

sig1(a
1
2,AT

1) = U/RAT 1 −U/RAT 1−
{

a1
2

} =
{

a12
}

> 0   , 

sig2(a
1
2,AT

1) = BelAT 1 − BelAT 1−
{

a1
2

} =
{

a12
}

> 0 and 

sig3(a
1
2,AT

1) = PlAT 1 − PlAT 1−
{

a1
2

} =
{

a12
}

> 0 , then add a2 into Red, RedBel , 

RedPl . Bel∗≥
AT 1−

{

a1
3

}(X) = 1/12 , Pl∗≥
AT 1−

{

a1
3

}(X) = 1 , 

sig1(a
1
3,AT

1) = U/RAT 1 −U/RAT 1−
{

a1
3

} = {∅} = 0   , 

(33)[x1]
∗≥

AT 1−
{

a1
1

} = [x2]
∗≥

AT 1−
{

a1
1

} = {x1, x2, x8, x10}

(34)[x3]
∗≥

AT 1−
{

a1
1

} = [x7]
∗≥

AT 1−
{

a1
1

} = [x12]
∗≥

AT 1−
{

a1
1

} = {U}

(35)[x4]
∗≥

AT 1−
{

a1
1

} = [x9]
∗≥

AT 1−
{

a1
1

} = {x1, x2, x4, x6, x8, x9, x10, x11}

(36)[x5]
∗≥

AT 1−
{

a1
1

} = {x1, x2, x4, x5, x6, x8, x9, x10, x11}

(37)[x6]
∗≥

AT 1−
{

a1
1

} = {x1, x2, x6, x8, x10}

(38)[x8]
∗≥

AT 1−
{

a1
1

} = [x10]
∗≥

AT 1−
{

a1
1

} = {x1, x8, x10}

(39)[x11]
∗≥

AT 1−
{

a1
1

} = {x1, x2, x6, x8, x10, x11}
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sig2(a
1
3,AT

1) = BelAT 1 − BelAT 1−
{

a1
3

} = {∅} = 0 and 

sig3(a
1
3,AT

1) = PlAT 1 − PlAT 1−
{

a1
3

} =
{

a13
}

> 0 , then add a3 into RedPl . 

Bel∗≥
AT 1−

{

a1
4

}(X) = 3/12 , Pl∗≥
AT 1−

{

a1
4

}(X) = 1 , 
sig1(a

1
4,AT

1) = U/RAT 1 − U/RAT 1−
{

a1
4

} =
{

a14
}

> 0

,sig2(a14,AT
1) = BelAT 1 − BelAT 1−

{

a1
4

} =
{

a14
}

> 0 and 

sig3(a
1
4,AT

1) = PlAT 1 − PlAT 1−
{

a1
4

} =
{

a14
}

> 0 , then add a4 into Red, RedBel , 

RedPl.

From the analysis of Table 1 from Example 1, we can obtain that A1 =
{

a12, a
1
4

}

 is the 
reduction of AT 1 in the first level of granulations and A2 =

{

a22, a
2
4

}

 is the reduc-
tion of AT 2 in the second level of granulations where for every x ∈ U  , there exists 
[X]∗≥

A1 = [X]∗≥
A2  . However, A3 =

{

a32, a
3
4

}

 is not the reduction of AT 3 in the third level 
of granulations. This result does prove the idea that the positive and belief reduction 
are equivalent, and these two reductions are unnecessary and sufficient condition for 
plausibility reduction in the same level, and if cover structure order of different levels are 
the same the corresponding equivalent positive region reduction. In this example, data 
redundancy is reduced by half by attribute reduction based on belief structure, which 
largely improves the information processing capability of sensor nodes.

4 � Conclusion
Considering the issue with respect to the high data redundancy and high cost of infor-
mation collection in wireless sensor nodes, this paper proposes a data fusion method 
based on belief structure to reduce attribution in multi-granulation rough set. In this 
paper, the relationship between multi-granulation rough set based on multi-scale and 
evidence theory is explored to analyze that the former has its corresponding belief struc-
ture when certain conditions are satisfied. Then, by introducing evidence structure, the 
positive region, belief and plausibility reduction are put forward and analyze the consist-
ency in the same level and transitivity in the different levels by means of information 
system. Meanwhile, the algorithm proposed in this paper to perform three reductions 
reduces the time complexity largely, improving the computing efficiency. In essence, this 
paper not only successfully solves the problem of sensor node data fusion, but also pro-
vides new ideas and methods for the research in incomplete multi-granulation ordered 
rough set theory.

However, one of the drawbacks of the proposed algorithm is that it requires attrib-
ute discretization and it will lose efficacy when the reducible attributes are few. And the 
future work will concentrate on the synthesis of multi-granulation ordered information 
system evidence under the belief space with respect to data fusion in wireless sensor 
networks.
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