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1  Introduction
For the next generation mobile communication system (5G) which aims at achiev-
ing more than 10 times spectrum efficiency compared with the current communica-
tion system (4G) [1], spectrum efficiency is a critical performance index. Since radios 
must either transmit or receive on the same channel, but not simultaneously, in previ-
ous wireless communication systems, the spectrum is not utilized sufficiently. Fortu-
nately, an emerging technique, Co-frequency and Co-time full-duplex (CCFD) [2, 3], is 
able to address this issue. CCFD enables radios to transmit and receive signals on the 
same channel simultaneously and thus, theoretically, can double the spectrum efficiency. 
CCFD technique claims to be the most potential duplex scheme for the 5G network. 
But, there is a challenge which lies in the application of CCFD technique, i.e., mitigating 
the local self-interference (SI) [2, 3]. Since the transmit and receive antenna work on the 
same frequency band, traditional interference cancellation techniques are invalid. As [4] 
shown, blind source separation (BSS) [5] has a big advantage in addressing this issue.

The problem of blind source separation has been widely researched [6, 7] since it is 
able to estimate original signals from their observed sensors signals without knowing 
both the mixing process and the sources. Separation of complex-valued signals is a fre-
quently arising problem, such as performing BSS in baseband for communication signals 
or in frequency domain for time domain convolutive signals [8]. Many BSS algorithms 
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estimate the original signals by some priori information, such as non-Gaussianity [9], 
sparseness [10], boundedness [11]. Although these methods have been proved useful in 
many applications, it is also worth noticing that the separation accuracy and the conver-
gence of these algorithms have reached to saturation so it is hard to be further improved. 
Therefore, other prior information should be considered in the contrast function or the 
algorithm, such as linear predictability [12], linear autocorrelation [13] or temporal pre-
dictability [14], etc.

From a practical point of view, the sources are usually temporal dependent in many 
realistic applications. Is it possible to improve the separation accuracy by exploiting the 
temporal dependency? It is quite an interesting topic. Right now, several studies have 
been published based on that idea. Specifically, [15, 16] exploited the contributions of 
temporal dependency of source signals by using an autoregressive model to represent 
sources and using joint matrix diagonalization to achieve BSS. An AR-MOG model is 
employed in [17] to describe the temporal dependency of source signals, in which the 
temporal dependency is represented by autoregressive structure, but the probability dis-
tribution of the innovation is not Gaussian but mixture of Gaussian. By this way, the 
temporal and statistics information of sources are fully taken into consideration [18, 19] 
constructed contrast function based on generalized autocorrelations (linear or nonlinear 
autocorrelations). Although the above methods successfully applied BSS and achieved 
good performance, they are all proposed for real-valued signals. There is a very small 
amount of open research on BSS methods using temporal dependency of complex value 
signals [13]. However, their performance is similar with the methods using only inde-
pendency and other methods [20].

In this paper, a widely linear complex autoregressive process of order one [21] is 
employed to represent the temporal structure of complex sources. Using some temporal 
information like in [17], we formulate contrast function by a convex combination of gen-
eralized autocorrelations and the statistics of the innovation. By doing this, we hope lead 
to a new complex BSS algorithm with higher separation accuracy compared with other 
methods using only the independency. The proposed contrast function is optimized by 
gradient method. As the simulation results shown, the proposed algorithm converges 
fast and performs a better separation performance than the comparing algorithms.

This paper is organized as follows. First, the BSS problem is formulated in Sect. 2. We 
then introduce the new contrast function based on the generalized autocorrelations of 
source signals and derive a gradient-based algorithm in Sect. 3. The performance of the 
algorithm is demonstrated with simulations in Sect. 4. Conclusions are drawn in Sect. 5.

2 � Methods/experimental

3 � Problem formulation
Considering there be N sensors and N independent sources, the instantaneous linear 
mixtures of these sources are observed at the sensors:

where s(t) = [s1(t), s2(t), . . . , sN (t)]
T (superscript T denotes transpose) is a vector of 

unknown zero mean and unit-variance source signals, x(t) = [x1(t), x2(t), . . . , xN (t)]
T is 

(1)x(t) = As(t)
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the observation vector, and A is the unknown N × N  mixing matrix. We impose another 
assumption on the source signals that the source signals have specific temporal struc-
tures-linear or nonlinear autocorrelations.

4 � The proposed algorithm
In general, pre-processing operations of observed signals are needed before performing BSS 
algorithm. Two common pre-processing operations are removing mean and whitening. The 
whitening matrix Q can be obtained using the eigenvalue decomposition of covariance matrix 
Rx = E

[

x(t)x(t)H
]

 (superscript H denotes conjugate transpose, E[•] denotes expectation).

where D and V are the eigenvalue matrix and the eigenvector matrix of the covariance 
matrix Rx . The observations are whitened by Q,

Then, Rz = E
[

z(t)z(t)H
]

= QARs(QA)H , due to Rs = I , Rz = I , and QA is a unitary 
matrix which imposes unitary constraint on the demixing matrix W . The sources can be 
estimated by

where y(t) = [y1(t), y2(t), . . . , yN (t)]
T is the estimation of s(t).

We use widely linear complex autoregressive process of order one to describe complex-
valued signals [21]

where νn(t) denotes the innovation of the signal sn(t) , b1 and b2 are the complex autoregres-
sive coefficients, τ is a delay in time, s∗n(t − τ) designates the complex conjugate of sn(t − τ ) . 
For simplicity, the time index t is omitted in the following, i.e., sn(t) = sn , sn(t − τ ) = snτ.

Then, we define a contrast function considering both the temporal characteristics of the 
signals and the probability distribution of the innovations.

where ε is a balance factor between 0 and 1, wH
n  is the nth row vector of demixing matrix 

W and |wn|
2 = 1 , τ is a delay in time, G is a differentiable function which measures the 

generalized autocorrelation degree of the source signal, F is also a differentiable func-
tion which is associated with the probability distribution of the innovations. Finding the 
extrema of a contrast is a well-defined problem only if the function is real. So we let our 
contrast functions operate on absolute values rather than complex values. Examples of 
choices are G1(u) = u , G2(u) = u2 , G3(u) = log [cosh (u)] , F(u) = log [cosh (u)].

Now, we begin to derive the complex gradient algorithm for complex signals under the 
model (1). The problem given in (6) can be written as the following Lagrangian function:

(2)Q = D− 1
2VH

(3)z(t) = Qx(t)

(4)y(t) = Wz(t)

(5)sn(t) = b1sn(t − τ )+ b2s
∗
n(t − τ )+ νn(t)

(6)
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where the Lagrangian multiplier � is a real number. The complex gradient of the contrast 
function J with respect to wn can be obtained as

where ϕ = wH
n z − b1w

H
n zτ − b2

(

wH
n zτ

)∗ , the function g and f are the derivations of G 
and F, respectively. Thus, the complex gradient-based update rule of wn can be written as

where µ > 0 is the real-valued step-size.
The complex autoregressive coefficients [b1, b2] in the algorithm can be estimated simply 

by a least-squares method as [22]

where B =

[

b1 b2
b∗2 b∗1

]

 , Cτ = E

{

[

yn
y∗n

][

ynτ
y∗nτ

]H
}

 , Cτ = E

{

[

ynτ
y∗nτ

][

ynτ
y∗nτ

]H
}

.

5 � Results and discussion
The proposed algorithm is compared with three competitive complex ICA algorithms: com-
plex FastICA [23], EBM [24] and EASI [20]. FastICA is a Newton-based ICA algorithm which 
converges fast. EBM is a conjugate gradient-based algorithm. EASI is a relative gradient-based 
algorithm. In general, Newton method converges faster than conjugate gradient and relative 
gradient methods, and relative gradient method converges slowest. The performance index is 
defined as (12) which means the average inter-symbol-interference of the estimation sources.

where U = WQA is the combined separation-whitening-mixing matrix, and Ukl is the 
(k , l) th entry of U.

Figure 1 shows the constellation figures of two original 8PSK signals, their mixtures 
and the estimations using the proposed algorithm employing the function G1(u) = u , 
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Fig. 1  Simulation result of the proposed algorithm for mixtures of two 8PSK signals, time delay τ = 1
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� = 0.3 . In this simulation, the two 8PSK are with the following parameters: symbol rate 
Rs = 198 kBps and raised cosine filter which has 0.35 roll-off factor, sampling frequency 
is 16Rs . The mixing matrix is randomly generated as

From Fig. 1, we can see that the source signals are properly estimated. As most complex 
BSS algorithms, there are with some ambiguities including amplitude, order, and phase 
ambiguities. The combined separation-whitening-mixing matrix is estimated as

In order to illustrating the influence of time delay τ to the proposed algorithm, the 
separation performance of the proposed algorithm with different time delay τ is simu-
lated. As shown in Fig. 2, the PI values obtained by the proposed algorithm using func-
tion G1(u) is minimum at τ = 8 , the PI value obtained by using G3(u) increases with the 
increase of time delay τ and the PI curve with employing G2(u) is relative flat compared 
with that by using the other two nonlinear functions. This simulation result indicates 
that the separation performance of the proposed algorithm relies heavily on the selec-
tions of function G(u) and time delay τ . In the rest simulations, we set τ = 1.

Figure 3a shows the convergence speed of different algorithms. The sources are two 
8PSK signals with the same parameters as previous and the mixing matrix is randomly 
generated. It is clear that the convergence speed of EASI is slower than other algorithm 
since EASI is a relative gradient-based algorithm. FastICA and EBM have a similar con-
vergence speed and the convergence value of FastICA is lower than EBM, which means 
the residual inter-symbol-interference of EBM is higher than FastICA. For the proposed 
algorithm, we can see that its convergence speed is similar with FastICA and EBM. In 

(13)A =
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− 0.4565+ 0.1023i − 0.6240− 0.3897i
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addition, it can also be seen that the convergence speed and convergence values of the 
proposed algorithm using the three different function G(u) are similar, and the conver-
gence values of the proposed algorithm are lower than the two comparing algorithms.

Figure 3b shows the averaged PI values for the separation of two 8PSK sources with 
different sample size. The mixing matrix is randomly generated in every individual 
experiment. From Fig. 3b, we observe that with the increase of sample size, the PI values 
decrease. The proposed algorithm using the function G1(u) is the best, and the proposed 
algorithm with the three functions show a similar performance when the sample size is 
bigger than 1600. FastICA and EBM show a similar performance. The performance of 
EASI is similar with EBM when sample size is bigger than 1600, and performs even bet-
ter than FastICA and EBM when sample size is smaller than 1600. However, as shown in 
Fig. 3a, the convergence speed of EASI is so slow that it would not be the first choice to 
perform sources separation.
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Figure  4 shows the impact of � on the separation performance of the proposed 
algorithm. From Fig.  4, we can see that there exists a balance between the innova-
tions and autocorrelations, i.e., no matter which part is dominant, the separation 
performance will deteriorate. When � = 0 , i.e., only the innovations are in considera-
tion, the PI values are so high which means the sources are not estimated properly. 
When 0 < � < 0.2 , the PI values decrease with the increase of � , that is to say, the 
separation performance is improved with the increase of � . Then, the PI line are flat in 
0.2 < � ≤ 0.7 . When 0.7 < � ≤ 1 , the PI values increase with the increase of � , that is 
to say, the separation performance deteriorates with the increase of �.

6 � Conclusion
In this paper, we address the complex blind source separation problem by using the 
temporal characteristics of the sources. A gradient-based algorithm is proposed which 
takes into account not only the time-structure characteristics of the signal but also 
the statistical properties of the signal. In the simulations, we perform the proposed 
algorithm on the mixtures of two 8PSK signals. The simulation results show that 
although the convergence speed of the proposed algorithm is similar with complex 
FastICA and EBM algorithms, its convergence value is smaller than the comparing 
algorithms, which means the averaged signal-to-interference ratio of the estimated 
signals is higher than the comparison algorithms. In addition, by reasonably selecting 
the value of balance factor � , the algorithm can achieve better performance.
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