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1  Introduction
Intelligent factory automation is one of the typical applications envisioned in ultra-
reliable and low-latency communications (URLLC) scenarios in the fifth generation 
(5G) and the coming sixth generation (6G) communications [1, 2]. In future smart fac-
tories, machines and sensors are seamlessly connected with each other through wire-
less links to conduct production tasks corporately. During the manufacturing process, 
a great number of operations of the machines and robots require complex control algo-
rithms and intense data computation, such as traveling across zones to identify and pick 
up the objects and controlling the robotic arms to assemble components within a pre-
cise position alignment [3]. The limited built-in computing resources are not sufficient 
for the stringent latency requirements, so the tasks have to be offloaded to servers for 
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processing [4]. Conventionally, the large volume of data generated at the local devices is 
uploaded to the cloud computing servers [5]. However, since the cloud computing serv-
ers are usually deployed remotely, the large roundtrip transmission latency as well as 
the possible network congestion makes it hard to meet the stringent end-to-end delay 
requirements of the actuators and control units in the IIoT system. To overcome these 
difficulties, edge computing has emerged, where the servers are placed at the edge of the 
network to achieve a much lower transmission and processing latency [6].

There has been literature focusing on improving the service efficiency of the edge 
computing systems [7–11]. The authors in [7] adopt the Markov decision process (MDP) 
to minimize the average delay of a mobile edge computing system by deciding whether 
to compute locally or offload the tasks to the edge server. In [8], the authors define a 
delay-based Lyapunov function instead of the queue length-based one and minimize 
the average delay by optimizing resource scheduling under the Lyapunov optimization 
framework. Three-tier multi-server mobile computing networks are investigated in [9], 
where a cooperative task offloading strategy is proposed based on the Alternating Direc-
tion Method of Multipliers (ADMM). In [10], an adaptive learning-based task offload-
ing algorithm is proposed to minimize the average delay for vehicle edge computing 
systems. Most relatively, [11] integrates the fog computing to the cloud-based indus-
trial Internet of Things (IIoT), where the task offloading, transmission and computing 
resource allocation schemes are jointly optimized to reduce the service response latency 
in the unreliable communication environment.

The aforementioned works have only focused on the average delay performance, 
neglecting the worst-case performance of the edge computing system. However, in the 
IIoT systems, the probability of an intense delay jitter usually matters much more than 
the average delay, since when the delay exceeds a certain threshold, severe accidents may 
incur such as the deadlock of the manufacture process, the damage to the machines and 
even casualties. Therefore, in such scenarios, not only the average delay performance, 
but also the potential hazard, i.e., the risk behind the tail distribution of the delay, should 
be carefully investigated. There have been some preliminary works to deal with the 
embedded risks in the edge computing systems [12–14]. In [12], the tail distribution of 
the task queue under a probability constraint imposed on the excess value is character-
ized by the extreme value theory [15], and an offloading strategy is designed to minimize 
the energy consumption. The authors of [13] also apply the extreme value theory to the 
edge computing systems, in order to investigate the extreme event of queue length vio-
lation in the computation phase. Besides, in [14], the authors focus on a vehicular edge 
computing network where vehicles either fetch images from cameras or acquire synthe-
sized images from an edge computing server. A risk-sensitive learning [16]-based task 
fetching and offloading strategy is proposed to minimize the risk behind the end-to-end 
delay.

Different from the works mentioned above, we introduce the risk management the-
ory [17], widely used in the field of finance, to the edge computing system in consider-
ation of the uncertainty of the wireless channels. Value at risk (VaR) and Conditional 
Value at Risk (CVaR) are the two widely used tools to characterize risks. While VaR 
takes the Gaussian distribution as assumption and lacks convexity and sub-additivity, 
which makes it inapplicable in many cases, CVaR is a coherent risk measure of any 
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type of probability distribution and is much easier to handle in practice. Therefore, 
CVaR is employed in this work to model the risk of the task completion delay in the 
considered edge computing-assisted IIoT system. We aim to minimize both the aver-
age delay and the CVaR by jointly designing the offloading and computing resource 
allocation strategy. The main contributions of this work are summarized as follows:

•	 We focus on the hazard incurred by the intense delay jitter in the edge computing-
assisted IIoT scenario and introduce the risk management theory to the design of 
the offloading and computation resource allocation strategy.

•	 A cascade queueing model is constructed to describe the end-to-end delay prop-
erty of the system. Due to the uncertainty of the wireless channel, the transmis-
sion time follows a general distribution, which makes the queueing model hard 
to analyze. By exploring the queueing theory and the risk management theory, we 
provide an upper bound for both the average end-to-end delay and the CVaR.

•	 A low-complexity risk-sensitive task offloading strategy is proposed, where both 
the average performance and the risk with respect to the end-to-end delay are 
optimized simultaneously. The computation complexity of each procedure of the 
proposed algorithm is analyzed in details. Simulations under the practical wireless 
environment in the automated factory validate the effectiveness of the proposed 
strategy in controlling the risk behind the intense delay jitter.

The remainder of this paper is organized as follows. We introduce the system model 
and analyze both the average delay and the CVaR in Sect. 2. In Sect. 3, we formulate 
the offloading and computation resource allocation problem and propose a low-com-
plexity heuristic algorithm. In Sect. 4, the numerical results are reported with discus-
sions. Finally, Sect. 5 concludes the paper.

2 � System model
2.1 � Edge computing system

As shown in Fig. 1, we consider an edge computing-assisted IIoT system that consists 
of a set of M = {1, 2, . . . ,M} IIoT devices and a set of N = {1, 2, . . . ,N } edge comput-
ing servers (ECS). Each IIoT device i ∈ M randomly generates tasks of identical size 
of di bits, and we assume the task arrival process follows the Poisson distribution with 
average arrival rate �i . We denote by ωi the computation intensity of the task of device 
i [18], i.e., the number of CPU cycles required to process per bit data. Then, the total 
CPU cycles needed for a task of device i, denoted by ci , can be calculated as ci = ωidi.

Owing to the insufficiency of computation capability, the IIoT devices offload their 
tasks to the ECSs through wireless links. Each ECS j ∈ N  is equipped with a CPU 
of Nj cores, which can work simultaneously and independently. We assume that the 
tasks of a device can only be offloaded to one ECS, while each core only processes 
the tasks from the same device, which means an ECS can receive tasks from multiple 
devices as long as the number of devices it serves does not exceed the number of the 
CPU cores [12]. Let XM×N =

[

xij
]

 as the offloading matrix, where xij , i ∈ M, j ∈ N is 
defined as follows:
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Under this definition, we can redescribe the offloading scheme in the considered system 
mathematically as 

∑N
j=1 xij = 1 and 

∑M
i=1 xij ≤ Nj for ∀i ∈ M, ∀j ∈ N.

Due to the massive deployment of devices in the complex industrial environment, it is 
impractical to obtain the instantaneous channel state information (CSI) accurately and 
timely. Therefore, in this work, we design a task offloading strategy based on statistics of 
the wireless links, i.e., the distribution of the channel gain. We assume blocking-fading 
channels such that the channel gain remains unchanged during the execution of one task 
and varies independently between two executions following an identical distribution, 
which is known a priori. Denote by gij the channel gain from device i to ECS j, the trans-
mission rate can be expressed as follows:

where B is the bandwidth, N0 is the noise power, pi is the transmit power of device i and 
�ij is the path loss from device i to ECS j. Without loss of generality, we assume that the 
noise power at each ECS is identical, and each IIoT device has an orthogonal channel 
with the same bandwidth B.

2.2 � Queueing model

In the considered edge computing-assisted IIoT system, there are two kinds of queues: 
the queue at each device and the queue at each ECS, as depicted in Fig. 2. Without loss 
of generality, we assume that device i offloads its tasks to ECS j, and denote by QD

ij  the 
queue formed at the device i. The arrival process of QD

ij  follows the Poisson process, and 
the departure process is dependent on the transmission delay denoted by tDij  , which is 
given by

(1)xij =
{

1 , device i offloads its tasks to ECS j,
0 , otherwise.

(2)Rij = B log2

(

1+
gijpi

N0�ij

)

,

IIoT device

Transmission
queue

Server computation queue

ECS

Fig. 1  System model
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Therefore, QD
i  follows the M/G/1 model.

As for an ECS, tasks from each device connected to it form an independent queue. 
Denote by QS

ij the queue of tasks offloaded from device i to ECS j, then the arrival pro-
cess of QS

ij is the same as the departure process of QD
ij  . We denote by the fij the computa-

tion frequency allocated to device i by ECS j, then the computation delay denoted by 
tSij , i.e., the time required to complete a task of device i, is calculated as tSij = ci/fij . As a 
result, the service time of a task follows a deterministic distribution and thus QS

ij follows 
the G/D/1 model.

Based on the queueing analysis, when device i offloads its tasks to ECS j, the total delay 
denoted by tij is given by

where WD
ij  and WS

ij  are the queueing delay at the device i and the ECS j, respectively. 
We will analyze both the average performance and the CVaR of the total delay in the 
following.

2.3 � Average delay

According to (4), the average delay can be calculated as follows

As for the queueing delay at device i, we denote by µij the service rate of QD
ij  , which can 

be calculated as the reciprocal of the average transmission time, i.e.,

where the expectation is taken over the probability distribution of the channel gain. 
According to [19], the average queueing delay at device i can be expressed as follows

where ρij = �i/µij.
To analyze the queueing delay in the G/D/1 queueing model of QS

ij , we first give the fol-
lowing lemma [20].

(3)tDij =
di

Rij
=

di

B log2 (1+
gijpi
N0�ij

)
.

(4)tij = WD
ij + tDij +WS

ij + tSij ,

(5)E[tij] = E[WD
ij ] + E[tDij ] + E[WS

ij ] + E[tSij ].

(6)µij =
1

E[tDij ]
=

di

E[Rij]
,

(7)E[WD
ij ] =

�i

2µ2
ij(1− ρij)

,

the queue at device i the queue at ECS j

tasks of device i wireless channel task computing

Fig. 2  Queueing model
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Lemma 1  In the G/G/1 queueing model, let � , µ and W be the arrival rate, service rate 
and queueing delay, respectively, then an upper bound of the average queueing delay is 
given by

where ρ = �/µ , σ 2
a  is the variance of the inter-arrival time, and σ 2

b  is the variance of the 
service time.

According to Lemma 1, we obtain the following theorem characterizing the upper 
bound of the average queueing delay at a ECS.

Theorem  1  When device i offloads its tasks to ECS j, an upper bound of the average 
queueing delay at ECS j is given by

where �Sij is the arrival rate of QS
ij , ρ

S
ij = �

S
ij/µij is the traffic intensity and σ S

ij

2 is the vari-
ance of the arrival interval of tasks offloaded from device i to ECS j.

1 � Proof
G/D/1 model can be seen as a special case of G/G/1 model with the service time follow-
ing a deterministic distribution, the variance of which is zero. By substituting � = �

S
ij , 

σ 2
a = σ S

ij

2 , σ 2
b = 0 and ρ = ρS

ij into (8), we get (9) and Theorem 1 is proved. � �

Note that, due to the cascaded structure between QD
ij  and QS

ij , the arrival rate �Sij of 
QS
ij is equal to the departure rate of QD

ij  , which can be evaluated from the analysis of 
the inter-departure time in [21]. Similarly, the variance of the inter-arrival time of QS

ij , 
i.e., σ S

ij

2 , can be derived from the variance of the inter-departure time of QD
ij  as in [22].

Finally, combining (5), (6) and (9), the upper bound of the average total delay can be 
obtained in the following corollary.

Corollary 1  When device i offloads its tasks to ECS j, an upper bound of the average 
total delay E[tij] is given by

Since each IIoT device offloads its tasks to only one ECS, for each device i the task 
completion time denoted by ti can be expressed as ti =

∑N
j=1 xijtij , and correspond-

ingly an upper bound of the average total delay of device i based on (10) is given by

(8)E[W ] ≤
�(σ 2

a + σ 2
b )

2(1− ρ)
,

(9)E[WS
ij ] ≤

�
S
ijσ

S
ij

2

2(1− ρS
ij)

,

(10)E[tij] ≤
�i

2µ2
ij(1− ρij)

+
1

µij
+

�
S
ijσ

S
ij

2

2(1− ρS
ij)

+
ci

fij
.
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where

2.4 � Risk metric for delay

Risk in the considered edge computing-assisted system is mainly reflected in the high 
latency happened with low probability. Specifically, we introduce CVaR as a measure of 
risk to characterize the tail distribution of the delay. Before we formally define CVaR, we 
first give the definition of VaR [23].

Definition 1  For a random variable X and a confidence level α ∈ (0, 1) , the α-VaR of 
X is the α-percentile of the distribution of X, which can be expressed mathematically as 
follows

The CVaR measures the expected loss in the right tail given a particular threshold has 
been crossed and can also be considered as the average of potential loss that exceed the 
VaR. The definition of CVaR is given as follows [24].

Definition 2  For a random variable X and a confidence level α ∈ (0, 1) , the α-CVaR of 
X is given by

To characterize the CVaR of the total delay, we first analyze the CVaR of each part of 
the total delay in (4). Recall that the service process of the queue at the device follows 
general distribution, so it is quite difficult to directly characterize the probability distri-
bution of the waiting time. However, in the considered IIoT scenario, it is reasonable to 
take the heavy traffic assumption. According to [25], the cumulative distribution func-
tion (CDF) of WD

ij  can be approximated as

where Vij is the variance of the service time of QD
ij  , i.e., the transmission time of a task. 

Based on (15), the CVaR of WD
ij  can be evaluated in the following theorem.

Theorem 2  For a confidence level α ∈ (0, 1) , the α-CVaR of WD
ij  can be expressed as

(11)E[ti] =
N
∑

j=1

xijE[tij] ≤ E[ti]∗,

(12)E[ti]∗ =
N
�

j=1

xij





�i

2µ2
ij(1− ρij)

+
1

µij
+

�
S
ijσ

S
ij

2

2(1− ρS
ij)

+
ci

fij



.

(13)VaRα(X) = inf
γ

{γ : P(X > γ ) ≤ α}.

(14)
CVaRα(X) = E[X |X > VaRα(X)]

=
1

1− α

∫ 1

α

VaRθ (X)dθ .

(15)F(WD
ij ) ≈ 1− exp

[

−
2(1− ρij)

�iVij
WD

ij

]

,
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1 � Proof
According to the definition of VaR in Definition 1, we can obtain that

By substituting (17) to (14), the CVaR of WD
ij  can be calculated as follows.

� �

As for the transmission delay tDij  , we define a auxiliary function

where (x)+ = max (0, x) and the expectation is taken over the distribution of the channel 
gain. According to [26], the CVaR of tDij  can finally be calculated as

Now we turn to the queue at the ECS. Similar to (15), the CDF of WS
ij  can be approxi-

mated as

and thus the CVaR of the queueing delay at the ECS can be evaluated in the following 
theorem.

Theorem 3  For a confidence level α ∈ (0, 1) , the α-CVaR of WS
ij  can be expressed as

The proof of Theorem 3 is similar to Theorem 2 and is omitted here for brevity.

(16)CVaRα(W
D
ij ) =

�iVij

2(1− ρij)
[1− ln (1− α)].

(17)
VaRα(W

D
ij ) = inf

γ

{

γ : e
−

2(1−ρij )

�iVij
γ
≤ α

}

=
−�iVij

2(1− ρij)
ln (1− α).

(18)
CVaRα(W

D
ij ) =

1

1− α

∫ 1

α

−�iVij

2(1− ρij)
ln (1− θ)dθ

=
�iVij

2(1− ρij)
[1− ln (1− α)].

(19)φα(t
D
ij , γ ) := γ +

1

1+ α
E[(tDij − γ )

+],

(20)

CVaRα(t
D
ij ) = min

γ∈R
φα(t

D
ij , γ )

= min
γ∈R

{

γ +
1

1+ α
E[(tDij − γ )

+]
}

(21)F(WD
ij ) ≈ 1− exp



−
2(1− ρS

ij)

�
S
ijσ

S
ij

2
WS

ij



,

(22)CVaRα(W
S
ij ) =

�
S
ijσ

S
ij

2

2(1− ρS
ij)

[1− ln (1− α)].
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Since we assume constant computing capability at the ECS, the CVaR of the service 
time of QS

ij is at the same value as itself, i.e.,

With the CVaR of each part of the delay involved in the task offloading, we provide an 
upper bound of the CVaR of the total delay in the following theorem based on the con-
vexity and sub-additivity [27].

Theorem 4  For a confidence level α ∈ (0, 1) , an upper bound of the α-CVaR of ti is given 
by

where

1 � Proof
According to the convexity, the α-CVaR of ti satisfies the following Jensen inequality:

Furthermore, based on (4) and the sub-additivity of the CVaR, we have the following 
inequality:

By combining (26) and (27), Theorem 4 is proved. � �

3 � Problem formulation and solution
3.1 � Problem formulation

In the design of the edge computing-assisted IIoT system, not only the average latency 
but also risk behind the intense delay jitter should be carefully considered. Taking into 
account both the average delay performance and the risk, we set the objective of the 
task offloading problem as the weighted sum of the average delay and the CVaR, i.e., the 
mean-risk sum. We have shown that obtaining an explicit expression of both the two 
terms is often cumbersome, especially for the complex wireless environment in the auto-
mated factories. Therefore, the two upper bounds of the average total delay and the cor-
responding CVaR derived in the previous section are adopted instead. Furthermore, in 
the considered mission critical IIoT scenario, the performance of the whole system is 
usually determined by the device with the worst performance. As a result, we aim to 

(23)CVaRα(t
S
ij ) =

ci

fij
.

(24)CVaRα(ti) ≤ CVaRα(ti)
∗,

(25)

CVaRα(ti)
∗ =

N
∑

j=1

xij

[

CVaRα(W
D
ij )+ CVaRα(t

D
ij )+ CVaRα(W

S
ij )+ CVaRα(t

S
ij )

]

.

(26)CVaRα(ti) = CVaRα(

N
∑

j=1

xijtij) ≤
N
∑

j=1

xijCVaRα(tij).

(27)CVaRα(tij) ≤ CVaRα(W
D
ij )+ CVaRα(t

D
ij )+ CVaRα(W

S
ij )+ CVaRα(t

S
ij ).
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minimize the maximum mean-risk sum among all the devices, which can be described 
as the following optimization problem:

 where f = [fij], i ∈ M, j ∈ N  is the computation frequency allocation matrix, β ∈ (0, 1) 
is the weight of the CVaR, also called the risk-sensitive parameter, and Fj is the overall 
computation frequency of ECS j. Constraint (28b) is used to guarantee that the tasks 
generated by the device can only be offloaded to one ECS. Constraint (28c) and (28d) 
indicate that the number of devices served by a ECS should not exceed the number of its 
CPU cores, and the sum of the computation frequency allocated to these devices should 
not exceed its overall computation frequency. Substituting (12), (18), (20), (22) and (23) 
to (28), we find that the optimization problem is a non-convex mixed integer nonlinear 
problem (MINLP), which is NP-hard [28]. To reduce the computation overhead, we pro-
pose a heuristic algorithm, which will be described in details in the following subsection.

3.2 � Problem solving

Recall that the CVaR of the queueing delay at the device in (20) is in the form of an 
minimization problem. Since the optimization variable γ in (20) is independent of the 
optimization variables X and f  in (28), we can solve (20) first and substitute its optimal 
solution to (28) for the subsequent problem solving.

To solve (20), we introduce an auxiliary variable zij = (tDij − γ )+ , and problem (20) can 
be transformed to the following problem

(28)min
X,f

max
i∈M

E[ti]∗ + βCVaRα(ti)
∗

(28a)s.t. xij ∈ {0, 1},∀i ∈ M,∀j ∈ N ,

(28b)
N
∑

j=1

xij = 1, ∀i ∈ M,

(28c)
M
∑

i=1

xij ≤ Nj , ∀j ∈ N ,

(28d)
M
∑

i=1

fij ≤ Fj , ∀j ∈ N ,

(29)min
γ∈R,zij

γ +
1

1+ α
E[zij]

(29a)s.t. zij ≥ tDij − γ ,

(29b)zij ≥ 0.
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 Problem (29) is a stochastic optimization problem with the expectation taken over the 
channel gain gij . To approximate the expectation, we sample the probability distribution 
of gij [26], and a transformed problem is obtained as follows:

where zkij , k ∈ K = {1, 2, . . . ,K } are the samples of zij . Problem (30) is a linear opti-
mization problem, and the optimal solution of which, denoted by Uij , can be 
obtained from the interior point method (IPM) [29]. There are K + 1 variables 
and 2K constraints in problem (30), so we can solve it at the time complexity of 
O(((3K + 1)(K + 1)2 + (3K + 1)1.5(K + 1))δ) , where δ is the number of decoded bits 
[30].

With all the derived average and CVaR terms, problem (28) can be reformulated as the 
following optimization problem:

 It is obvious that the objective function of problem (31) contains the term xij/fij , and 
thus, problem (31) is still a non-convex MINLP. In order to reduce the computational 
complexity, we decompose the original problem into two subproblems.

First, we consider the following problem:

 where

 It is worthwhile to mention that problem (32) is a convex MINLP, which can gener-
ally be solved via an outer approximation algorithm or an extended cutting plane algo-
rithm [31]. More specifically, problem (32) is in the form of a bottleneck generalized 

(30)min
γ∈R,zij

γ +
1

1+ α

1

K

K
∑

k=1

zkij

(30a)s.t. zkij ≥ tDij − γ ,∀k ∈ K,

(30b)zkij ≥ 0, ∀k ∈ K,

(31)

min
X,f

max
i∈M

N
∑

j=1

xij

{[

�i

2µ2
ij(1− ρij)

+
1

µij
+

�
S
ijσ

S
ij

2

2(1− ρS
ij)

+
ci

fij

]

+ β

[

[
�
S
ijσ

S
ij

2

2(1− ρS
ij)

+
�iVij

2(1− ρij)

]

[1− ln (1− α)] +Uij +
ci

fij

]}

(31a)s.t. (28a), (28b), (28c), (28d).

(32)min
X

max
i∈M

N
∑

j=1

xijVij

(32a)s.t. (28a), (28b), (28c).

(33)Vij =
�i

2µ2
ij(1− ρij)

+
1

µij
+ β

[

�iVij

2(1− ρij)
[1− ln (1− α)] +Uij

]

.
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assignment problem [32], which can be solved through the algorithm proposed in [33] 
at the time complexity of O(MN logN + θ(NM + N 2)) , where θ is the number of bits 
required to encode maxi,j Vij.

After solving the optimal offloading matrix for problem (32) denoted by 
X∗ = [x∗ij], i ∈ M, j ∈ N  , we substitute X∗ to (28), and the second subproblem can be 
formulated as follows:

 Problem (34) is a non-convex optimization problem. To transform it to a convex prob-
lem, we introduce an auxiliary variable G = [1/fij], i ∈ M, j ∈ N  , and an optimization 
problem equivalent to (34) is given by

 The right side of inequality (35a) is used to maintain the stability of the queue at the 
ECS. Although problem (35) is a convex optimization problem, the objective function 
is in the form of the pointwise maximum of M mean-risk sums. To handle this, we opti-
mize the epigraph of problem (35) and obtain the equivalent problem as follows:

(34)

min
f

max
i∈M

N
∑

j=1

x∗ij

{[

�i

2µ2
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1

µij
+

�
S
ijσ

S
ij

2
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ij)

+
ci

fij

]

+

β

[

[
�
S
ijσ

S
ij

2

2(1− ρS
ij)

+
�iVij

2(1− ρij)

]

[1− ln (1− α)] +Uij +
ci

fij

]}

(34a)s.t. (28d).

(35)

min
G

max
i∈M

N
∑

j=1

x∗ij

{[
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2µ2
ij(1− ρij)

+
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µij
+

�
S
ijσ

S
ij
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ij)

+ ciGij

]

+
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[
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S
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+
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2(1− ρij)
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[1− ln (1− α)] +Uij + ciGij
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(35a)s.t.
1

Fj
≤ Gij ≤

1

x∗ij�
S
ijci

, ∀i ∈ M, ∀j ∈ N ,

(35b)
M
∑

i=1

x∗ij
Gij

≤ Fj , ∀j ∈ N .

(36)min
G,T
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≤ T , ∀i ∈ M,
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Problem (36) is a convex nonlinear optimization problem, which can be solved 
by various algorithms such as IPM. Constraint (36a), (35a) and (35b) consists of M, 
∑M

i=1

∑N
j=1 x

∗
ij and N individual constraints, respectively. As a result, problem (36) has 

L � M + N +
∑M

i=1

∑N
j=1 x

∗
ij constraints in all. According to [34], we can find an ǫ-opti-

mal solution to problem (36) in O(κ
√
L ln Lµ0

ǫ
) Newton iterations through the logarith-

mic barrier method [35], where κ is the self-concordance factor, µ0 is the initial barrier 
value and ǫ is the accuracy parameter. Till now, both the offloading matrix X and the 
frequency allocation matrix f  have been solved.

4 � Results and discussion
In this section, we evaluate the proposed strategy through the numerical results. We 
consider a typical use case in the edge computing-assisted IIoT system, i.e., the video-
operated remote control use case, with a typical latency requirement of 10-100 ms and 
payload size of 15-150 kbytes [36]. In the simulation, we consider 8 IIoT devices offload 
their tasks to 2 ECSs. Without loss of generality, we set the data size to 0.5 Mbits, i.e., 
62.5 kbytes, and the task computation intensity to 15 cycles/bit for each task of each 
device. Each ECS is equipped with a four-core CPU. The task arrival rate of each device, 
i.e., the parameter of the Poisson process, is set to be uniformly distributed in (10, 30). 
The bandwidth of each wireless channel is 10 MHz, and the transmission power, noise 
power at the receiver and the path loss are all set to be identical for each device at 30 
dBm, 10−9 W and 70 dB, respectively. To characterize the fading channel in the practical 
automated factory, we set the channel distribution as a mixture of Rayleigh and log-nor-
mal distribution, which has been confirmed by the measurements in the real industrial 
environment [37]. The parameter of the Rayleigh distribution is set to be uniformly dis-
tributed in (0.5, 1) for each IIoT-ECS pair, and correspondingly, the two parameters of 
the log-normal distribution are set to be uniformly distributed in (1, 2) and (0, 4), respec-
tively. Finally, we set the confidence level to α = 0.99.

Our proposed strategy considers both the queueing effect and the risk behind the total 
delay and thus is denoted by queueing-based and risk-sensitive (Q-R) strategy in the fol-
lowing simulations. To evaluate the performance of the Q-R, we compare it with the 
following five strategies: (i) the queueing-based and risk-sensitive optimal (Q-R-Opt) 
strategy, i.e., the globally optimal solution to problem (28); (ii) the queueing-based and 
non-risk-sensitive (Q-NR) strategy, which considers the queueing effect but only opti-
mizes the average delay performance, i.e., the weight of the CVaR is set to β = 0 ; (iii) 
the queueing-based and non-risk-sensitive optimal (Q-NR-Opt) strategy, i.e., the glob-
ally optimal solution that corresponds to the Q-NR case; (iv) the non-queueing-based 
and risk-sensitive (NQ-R) strategy, which takes into account both the average delay and 
the CVaR, but does not consider the queueing effect; (v) the non-queueing-based and 
non-risk-sensitive (NQ-NR), which considers neither the queueing effect nor the risk. 
In the following simulations, we set the weight of the CVaR to β = 2 for risk-sensitive 
strategies.

We first investigate the complementary cumulative distribution function (CCDF) 
of the total delay under the six offloading strategies, since the CVaR captures the 

(36b)(35a), (35b).



Page 14 of 18Hao et al. J Wireless Com Network         (2021) 2021:39 

tail information of the delay distribution. As presented in Fig. 3, for the probability 
of ultra-high delay, the curves of Q-R, Q-R-Opt and NQ-R are all lower than their 
corresponding non-risk-sensitive strategies. This implies that by adding the CVaR 
to the optimization objective, the risk of high delay can be greatly reduced. On the 
other hand, we can see that for any value of the total delay, the CCDF under NQ-R 
and NQ-NR is greater than that under Q-R, Q-R-Opt, Q-NR and Q-NR-Opt, which 
means the non-queueing strategies are more likely to arise a higher delay. This is rea-
sonable, since the non-queueing strategies neglect the queueing effect in the strategy 
design, which leads to a higher queueing delay. Furthermore, the curve of Q-R is close 
to that of Q-R-Opt and has nearly the same trend, which indicates that the proposed 
algorithm achieves near-optimal performance with a great reduction in computation 
complexity.

In Figs. 4 and 5, we compare how the delay performance evolves with the computa-
tion frequency of the ECS under the six strategies. Specifically, Fig. 4 investigates rela-
tionship between the average delay and the computation frequency, and Fig. 5 focuses 
on the 99th percentile of the total delay. It can be seen that with the increasing com-
putation frequency, the average total delay and the 99th percentile decreases for all 
the six strategies. The reason is that the higher the computation frequency, the more 
computation resources allocated to the IIoT devices and thus the lower the computa-
tion delay. Furthermore, note that the delay does not descend much when computa-
tion frequency is relatively high. This is because for high computation frequency, both 
the computation delay and the queueing delay at the ECS are relatively low, and thus, 
the total delay is mainly dependent on the queueing delay at the devices. We can also 
see that the queueing strategies outperform the corresponding non-queueing strate-
gies for both the average performance and the 99th percentile, which verifies the sig-
nificance of the queueing analysis again. More importantly, the two figures verify the 
near-optimality of the proposed algorithm and jointly indicate that the risk-sensitive 
strategies achieve nearly the same average total delay as the non-risk-sensitive ones, 
but greatly reduce the 99th percentile of the total delay by incorporating the risk to 
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the design of offloading strategy. In other words, the intense delay jitter can be effec-
tively controlled under the risk-sensitive strategies only at the price of very little deg-
radation on the average performance.

Finally, we investigate the effect of the task size on both the average delay and the 99th 
percentile under the Q-R and Q-NR strategies. As shown in Fig. 6, the 99th percentile is 
higher than the average total delay for both strategies, since the former characterize the 
worst-case delay. With the increase of the task size, both the average delay and the 99th 
percentile increase under both strategies. This is due to the fact that a larger task size 
leads to the higher transmission and computation delay. Furthermore, the 99th percen-
tile of Q-R is always lower than that of Q-NR, while the two curves of the average delay 
almost coincide with each other. Note that the average delay under the Q-NR strategy is 
the lower bound of that under the Q-R. This implies that Q-R achieves nearly the same 
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average performance as the Q-NR while simultaneously improving the worst-case per-
formance with respect to the total delay.

5 � Conclusions
In this work, we introduce the risk management theory to design of the edge computing-
assisted IIoT system. We explore the queueing theory and the properties of the CVaR to 
capture the tail distribution of the end-to-end delay, and provide two upper bounds of 
the average total delay and the CVaR. A joint task offloading and computation resource 
allocation problem is formulated to simultaneously minimize the average total delay and 
the risk. Since the problem is a non-convex MINLP, we decompose it into two subprob-
lems and design a two-stage heuristic algorithm. The computation complexity of each 
procedure of the proposed algorithm has been analyzed. Finally, simulations are per-
formed under the practical channel model in the automated factories, and the results 
verify that the proposed strategy can effectively control the risk of intense delay jitter 
while guaranteeing the average delay performance.
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