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1  Introduction
The fault of power equipment is usually dynamic and random. In order to ensure the 
normal operation of power equipment, it is necessary to detect the power equipment 
quickly and accurately. At the same time, the fault of power equipment must be pre-
dicted correctly and reasonably according to the detected information. Only this method 
can solve the existing hidden danger in time, avoid the continuous deterioration of 
power equipment status and reduce the accident rate. The characteristics of online mon-
itoring are continuous monitoring and detection in operation, analysis and judgment 
of device status. In practical engineering, the application of state maintenance needs 
online monitoring. The appearance of state detection and diagnosis technology of power 
equipment is to adapt to the above development trend. By detecting the operation of 
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power equipment and analyzing the abnormal information of each equipment, we can 
obtain power as soon as possible [1]. At the same time, the potential equipment failure 
is predicted.

With the advent of the Internet of things era [2], power equipment is gradually con-
nected to the network, and its intelligent fault detection function provides greater help 
for the power industry. The traditional power equipment fault information collection 
system has the problems of poor efficiency, slow fault information collection speed and 
incorrect information collection, which is difficult to cope with the network era of power 
equipment scale expansion [3]. For power companies, the collection system in the past 
is very wasteful, and the maintenance of hardware and software systems is also very dif-
ficult. If the fault information cannot be collected effectively and quickly, it will have a 
serious impact on the operation of the power group.

In the research of power equipment fault information acquisition system, Maximov S 
proposed a new method of power system equipment average life assessment based on 
two-parameter Weibull distribution. The method is suitable for complete and correct 
fault data. He uses the classical maximum likelihood estimation (MLE) to determine the 
distribution parameters. However, he proposed an estimation method based on asymp-
totic expansion, which overcomes the shortcomings of numerical or graphical tech-
niques based on maximum likelihood estimation. By analyzing two right censored life 
datasets of three types of power equipment with different sample sizes, he proves that 
his method has higher accuracy than other estimators. His method is not stable [4]. Qiu 
J in order to analyze the fault trend of power equipment more accurately, he improved 
the nonparametric regression method based on hierarchical proportional hazard model 
(PHM) [5] and established a failure rate model suitable for general power equipment. 
His model can maximize the use of equipment life cycle data as covariates, including 
power equipment manufacturers, in the hierarchical health status of equipment in the 
process; it is conducive to quantitative processing and classification of life cycle data. 
He uses more inspection events over a full cycle to predict potential risks and assess 
the health of the equipment. Then, he uses hierarchical nonparametric PHM method 
to establish a multi-type recurrent event specific failure model for interval censored 
competitive risk problems. Finally, a transformer is taken as an example to illustrate the 
modeling process. The accuracy of his method is not high [6]. Nozadian M H B studied 
the reliability and mean time to failure (MTTF) of semiconductor switches in series and 
in parallel under different failure rates. According to the different values of the reliability 
of series parallel structures in case of failure, he comprehensively compares the reliability 
of series parallel structures under different failure rates. According to the fault type and 
switch structure, the switch reliability of redundant structure is higher than that of other 
structures. His method lacks argument and persuasion [7]. The fault data of impregnated 
paper under DC pulsating voltage was studied experimentally by Li J. He obtained the 
fault data of the oil impregnated paper specimen through the constant pressure stress 
test and estimated the statistical distribution of the fault data using Weibull distribution. 
He used the exponential function (EF) and inverse power function to analyze the fault 
data of oil paper specimens obtained under pulsed DC voltage and DC and AC voltage 
alone. The performance of his method is evaluated by the fault data obtained from con-
stant stress tests under different voltages [8]. His method is not practical [9].
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This study first introduces the overall structure of the system and also describes the 
construction of fault information collection system based on the Internet of things, 
including the classification of power equipment status information, information acqui-
sition methods and the establishment of induction layer. This study also describes the 
data acquisition requirements analysis and the life cycle management of power equip-
ment based on Internet of things technology. This study describes the formula of relative 
evaluation standard. In this study, two electric power companies in our city are taken as 
the experimental objects, and different fault information collection is carried out respec-
tively. Through the experimental results, the operation health status of power equipment 
is predicted and analyzed, the fault information collection status of the Internet of things 
is analyzed, and the accuracy and efficiency of the information acquisition system are 
analyzed [10].

2 � Power equipment fault information acquisition system and Internet 
of things technology

2.1 � Overall system architecture

In terms of architecture, the bottom layer of the system is composed of multiple hard-
ware terminals. The hardware terminal is used to complete the information exchange 
between the system and the external environment. The upper layer of the system is the 
software system [11]. The software system can analyze information and data from the 
lowest level and save data. The core module has general problems, and the testability and 
maintainability of the system are relatively low [12, 13].

The system is very complex, including many modules, and the communication and 
data transmission between modules are more complex. All commercial processing 
functions of the system must be completed in the communication mode implementa-
tion class [14]. This includes the management of communication tasks, the sending and 
receiving of communication data, and the analysis of communication protocols. When 
multitasking is executed simultaneously, the upstream and downstream communication 
management of multiple devices is performed at the same time: The array is used as a 
method to handle the simultaneous execution of multiple tasks in the communication 
processing class and to record the current status of the devices in the system. Because of 
the internal integration of the system, the ability of the system to adapt to the changes of 
the external environment is relatively weak. After the communication mode is changed, 
the communication between modules needs to be reestablished. All program architec-
tures need to be reused [15, 16].

Access server is the core of the whole system [17]. It is the communication center and 
business of the system to realize the integration and communication with all compo-
nents, communication with hardware terminal, data processing and analysis, database 
storage and display driver. As shown in Fig. 1, the data acquisition flowchart.

As can be seen from Fig.  1, the system software adopts a distributed multi-layer 
structure including demonstration layer (client), including operator and commercial 
processing layer and commercial processing layer. Business dialogue between the 
implementation of the agreement. The external interface is the core business process-
ing part of the whole system, the application service layer is the technical support of 
the business service layer, and the data layer is responsible for the centralized storage 
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of the whole system data, and responsible for data optimization, data mining and 
other management [18, 19].

Data collection is to collect the current power consumption information of users 
in the practical application layer [20]. Data storage means that the data are collected 
and sent to the data storage platform. Data processing is the processing of stored 
data. Data display is to display the final data to users through the system interface. It 
realizes the process from collection, visualization to monitoring data source. At pre-
sent, there are many problems in data collection, such as various data sources, large 
amounts of data, rapid changes, ensuring data reliability and how to face duplicate 
data [21].

2.2 � Construction of fault information collection system based on Internet of things

The perceptual layer is similar to human senses and has the functions of recogniz-
ing, obtaining information and collecting necessary data information. In the existing 
Internet technology, two-dimensional code tag and reader, wireless RFID technology 
and reader, monitoring technology, global positioning system, various sensors, M2M 
terminal are more mature. First of all, the sensing layer obtains the data informa-
tion of the tested equipment through various sensors and surveillance cameras, uses 
Bluetooth, RFID, two-dimensional code and other technologies for short-distance 
communication and inputs the local information processing device. The important 
problems that need to be solved in the sensing layer are the list of data to be collected, 
the improvement of detection technology and the short-range wireless transmission 
communication.

(1)	Classification of state information of power equipment

All kinds of information of substation equipment, such as sound, light, electricity 
and image, can reflect the whole life cycle status of the equipment from all aspects, 

Start

Data
acquisition Data storage

Data
processing

Data
display

End
Fig. 1  Flowchart of data acquisition
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so the status information of substation equipment must contain a variety of data. 
According to the test data, observation records and other production processes of 
power system operators, it can be divided into three types: application information, 
operation information and maintenance test information [22, 23].

1.	 Information before commissioning

	 The information before operation is usually collected by the technical department 
of the operation and maintenance management department of the power company. 
The infrastructure and materials departments adjust and collect the units before they 
start up and transfer them to the production department after operation. In the pro-
duction management system, the technical account of substation equipment and the 
drawings of expansion project are collected by the application management depart-
ment. The related module is a production management system designed to save this 
information. Factory test report, handover test report, installation acceptance record 
and other information can be used. As the initial value of the equipment status infor-
mation, the information management module of the production management system 
of the application layer is input from the maintenance department [24].

2.	 Operation information
	 Application information mainly includes equipment inspection, maintenance, fault 

trigger, defect record, fixed real-time detection and mobile real-time detection data, 
as well as information related to harsh working conditions. In the running state of 
the equipment, through the inspection of the management personnel and the daily 
maintenance of the overhaul personnel, the corresponding status information of the 
equipment can be obtained through records, which is collected, especially input into 
the production management system of the application layer according to the plan. 
Mobile real-time detection and fixed real-time detection and other test data will be 
collected through the Internet of things system and input into the information man-
agement system.

3.	 Maintenance test information

Maintenance test information mainly includes periodic test report, diagnostic test 
report, special inspection record, defect removal record and maintenance report. Main-
tenance test unit is responsible for the collection, classification and input of production 
management information system. If the machine is returned to the factory for mainte-
nance, it is necessary to obtain the repair report and relevant information from the man-
ufacturer and input it [25, 26].

(2)	Access to information

Patrol inspection of various types of voltage levels of substation equipment in power 
system, technical specifications of test items, servicing period, servicing items, etc., 
according to the legal provisions, the network system which mainly combines state pro-
tection objects with mobile real-time detection can form a collection method.

1.	 Inspection
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According to the operation status of substation equipment, the management 
department shall carry out daily inspection and various equipment inspection. 
The inspection content is determined by the characteristics of the equipment and 
the characteristics to be collected. With the inspection characteristics of various 
equipment, it is convenient for daily management. The characteristics of the daily 
inspection also need to develop a cycle. In addition to daily inspection, other spe-
cial inspections can be carried out according to the technical documents of different 
equipment. In addition to daily inspection, special inspection and inspection should 
be carried out at specific time and weather such as typhoon season inspection, strong 
wind and cold weather inspection. All types of inspections require electronic docu-
mentation for recording and input into the application layer [27, 28].

2.	 Experiment

The power failure test of various equipment is an important information source 
of machine status information, which can be divided into regular examination and 
diagnostic examination. Type tests carried out at regular intervals. Adjust the cycle 
according to the status and maintenance judgment of the machine obtained by the 
application layer. Diagnostic tests are only carried out when the equipment is abnor-
mal or suspected to be abnormal [29].

3. Fixed live detection (online monitoring)
Stable real-time detection refers to the method of continuous or regular detection 

by using sensors set in or near the equipment body during normal operation of sub-
station [30].

(3)	Establishment of induction layer

Sensor layer information can be divided into professional patrol, mobile site detec-
tion and fixed site detection. Professional patrol is patrolled by operation and main-
tenance personnel and reported to handheld terminal and uploaded to PMS. The 
mobile real-time detection data will be transmitted to the handheld device through 
the portable detection device through Bluetooth. The fixed real-time detection can be 
directly uploaded through the online monitoring module of substation and transmis-
sion equipment.

2.3 � Data acquisition demand analysis

The main function of the system is to realize the complete collection of power con-
sumption data of all customers, including real-time collection of voltage, current, 
power and other data. The collection of users is classified as follows. The purpose 
of power consumption information collection system is to enable all users to collect 
power consumption information in real time. Users here include large, medium and 
small special transformer users, low-voltage single-phase users, three-phase users 
and public distribution transformer evaluation [31, 32].
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Data collection can be divided into automatic collection and manual collection. Dur-
ing the collection task, the main data collected by the terminal are: voltage data, current 
data, meter reading data, load data and other related data.

The collected data mainly include the following contents: basic information includes 
current instrument data, total effective power, total invalid power, current / day freeze; 
maximum demand: the maximum demand of effective/invalid power, generation time 
and current value; current and voltage value: current curve data, voltage curve data and 
load curve data; and power data: data curve of measurement point, effective power and 
invalid power [33, 34].

1.	 Automatic acquisition task

	 Constitute an automatic collection task, according to the data collection table to read 
data, curve data, statistical data and other related records in a specific period.

2.	 Collection quality analysis
	 By comparing the daily collection tasks, analyze the success rate of collection, and 

judge whether the automatic data collection is normal.
3.	 Data call test
	 Data calls can obtain specific interrupt or remote graph data by manually obtaining 

data collection.

2.4 � On line monitoring technology of circuit breaker category

1.	 Mechanical part monitoring.

Monitoring includes switching time, coil waveform, contact travel and speed, and 
vibration waveform. The grid which can collect the displacement signal is set in the 
operation part of the circuit breaker. The speed displacement is converted into electrical 
signal through the relative movement of the grid and the circuit breaker, and the dis-
placement, speed and time of the circuit breaker action are obtained through data pro-
cessing. Then the displacement and opening and closing velocity can be calculated.

2.	 Control part monitoring.

Monitor the action time of the auxiliary contact and the action state of the control 
unit.

3.	 Electrical monitoring.

The switch action of circuit breaker is usually realized by electromagnet. When the 
control current flows through the coil of the electromagnet, the electromagnet will send 
out electromagnetic force and lead the core into the circuit device. The current flow-
ing in the switch coil contains a lot of transmission information that can be detected. 
Usually, the current monitoring sensor uses Hall sensor, which synchronizes the relative 
time of fault with the current waveform to judge the fault symptoms.
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2.5 � Life cycle management of power equipment based on Internet of things technology

1.	 In the initial stage of construction, the construction cost of power equipment 
increases, but as an ancillary equipment, the Internet of things technology needs 
certain material support, so the initial construction cost will inevitably increase. 
However, under the premise of large-scale publicity and application of digital substa-
tion and intelligent substation, this cost is covered by the cost of some construction 
machinery, which has no significant impact on the initial cost [35].

2.	 Greatly improve the operation level and service life of the power supply device. In 
this article, from the point of view of the Internet of things to monitor and maintain 
the state of power machines, the role of Internet technology on things is explained. 
The core is to improve the operation level of the machine and shorten the mainte-
nance time of power failure [36].

3.	 Reduce machine maintenance costs and labor costs. With the improvement of auto-
mation level, the proportion of labor cost in power system is bound to be smaller, but 
now the labor cost of individuals in society is increasing every year, and the power 
system is very dangerous, which cannot be ignored. The cost is very serious. Through 
the development of Internet technology, online condition monitoring and reason-
able state maintenance plan, labor consumption and working environment reliability 
are greatly reduced. On the other hand, the reduction of the maintenance cost of 
the machine is also related to the improvement of the reliability and quality of the 
power supply. In this way, the power industry has brought benefits, and social and 
economic benefits have also increased.

2.6 � Relative evaluation criteria

When the measured value of the monitoring parameter exceeds the specified thresh-
old range or the specified limit value, the action state of the unit will change, and the 
abnormality may occur. In case of abnormal conditions, the machine does not neces-
sarily fail. In addition, due to the change of the operation conditions of the unit, the 
monitored parameter values may change. On the contrary, when the monitoring data 
are within the normal action threshold, the unit also has abnormal state. Therefore, 
other evaluation criteria can be imported. Relative evaluation criteria. Relative evalu-
ation benchmark refers to that for the same monitoring quantity of the same unit, the 
normal value in a certain period is taken as the reference value or health value, and 
the working condition of the unit is evaluated and analyzed by comparing the actual 
value with the reference value.

1.	 Determination of evaluation benchmark value

According to the statistical theory, if the sample condition is large, the average value 
of the sample can be regarded as the theoretical average value. Therefore, in the case 
of large accumulation of unit data, the average value of characteristic quantity can be 
solved as the benchmark value of soundness evaluation
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2.	 Determination of evaluation and early warning interval
The structure of turbine unit is more complex, and the random error of reference value 

is composed of many factors such as variation and random interference. However, ran-
dom errors usually have the characteristics of statistical distribution and generally follow 
the normal distribution. Therefore, the combination of the leyit criteria can lead to the 
evaluation of warning thresholds

Y is the damage explanation value of the absorbed.
σ is the standard deviation.

For each characteristic quantity of the unit, its reference value and early warning area 
can be constructed into a health sample by operating performance data. During normal 
operation of the device, it can be seen from the statistical rule that the probability of the 
measured point data within the normal sample interval is 99.73%. When the unit meas-
urement point data exceeds the healthy area of the sample, the probability of abnormal 
machine is 99.73%. Therefore, from the perspective of statistical theory, this method can 
be used to construct the health baseline and early warning area of equipment.

2.7 � Principal component analysis

Principal component analysis (PCA), also known as principal component analysis (PCA) 
or principal component analysis (PCA), is a very popular statistical data analysis method 
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to find as few orthogonal vectors as possible to represent the data information charac-
teristics of multivariate data.

PCA tries to regroup the original variables into a new group of independent compre-
hensive variables. At the same time, according to the actual needs, a few less compre-
hensive variables can be taken out to replace the original variables, and the combination 
can reflect the information of the original variables as much as possible. It is a com-
mon method to deal with dimension reduction mathematically. The general method is to 
transform the linear orthogonal transformation into uncorrelated new orthogonal vari-
ables, and use the variance of each group to distinguish. That is, the larger the variance 
of Y1 (the first selected linear combination), the more information Y1 contains. If Y1 is 
the largest variance of all linear combinations, then Y1 is the first principal component.

The operation steps of PCA are as follows.

1.	 Get the raw data.
2.	 Subtract the mean. For PCA to work well, first calculate the average value of each 

dimension, and then subtract the mean value of each dimension from each sample to 
get a difference, thus a new dataset can be obtained.

3.	 The covariance matrix is calculated. Covariance operation is performed on the data-
set obtained in the second step.

4.	 The eigenvalues and eigenvectors are calculated. The covariance matrix obtained in 
the third step. It must be a square matrix, so the eigenvalues and eigenvectors of the 
matrix can be obtained by using the knowledge of linear algebra.

5.	 Select several main components to construct the new space. In fact, the feature vec-
tor corresponding to the maximum eigenvalue is printed as the principal component 
of the dataset, which contains a large amount of information.

6.	 Reconstruct the data.

3 � Experimental design of power equipment information acquisition system 
of IOT

3.1 � Experimental data

In this study, two power companies in our city are selected as the experimental research 
objects, and the data collected by the power equipment fault information collection 
system of the two companies before are compared. Then, one of them is taken as the 
experimental group, and the traditional fault information collection system of power 
equipment is replaced by the intelligent system of Internet of things. After one year’s 
use, the data collection amount, accuracy and speed of the two companies are analyzed.

3.2 � Experimental steps

First of all, the design framework of fault information collection system based on the 
overall structure sets the experimental parameters to provide data for the experiment. 
Select the company, let the company’s employees upload power equipment fault infor-
mation at the same time, record the information collection speed in the system, and 
perform data analysis. The former design of fault information collection for power 
equipment is compared with the system, and the experimental results are obtained. 
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According to the above experimental contents and results, the experimental conclusion 
is drawn.

3.3 � Experimental background and materials

State selection: After obtaining the relevant data of power grid equipment status through 
various monitoring methods, the data are further analyzed and processed to generate a 
model that can directly reflect the working state of the corresponding power grid equip-
ment, and then the power grid equipment needs to generate the corresponding model 
data. Combine historical data, such as inspection and maintenance records, to produce a 
scientific and reasonable system to evaluate the status of grid equipment and reasonable 
combination. Results of the evaluation system can guide the maintenance of power grid 
equipment accurately and timely.

According to the status data of online detection, operation status, abnormality, test 
results and maintenance status of transmission network equipment, the health status of 
the equipment is scored. The score range is 0–100. Full score means that all information 
data of the equipment are compared with the initial value when the factory leaves the 
factory. If the attention value is near or far away, the grid equipment is in good condi-
tion, and the working conditions are not good, so it is not necessary to repair. A score of 
0 means that the grid device must be repaired immediately, and the score of other condi-
tions of the equipment is between 0 and 100.

3.4 � Power calculation of power equipment

In ship DC power system, the output angular speed of diesel engine is only connected 
with the rotor of rectifier generator coaxially, that is to say, it provides prime power and 
only receives electromagnetic torque of rectifier generator, that is, it only cares about 
the speed and torque of diesel engine. Therefore, the internal characteristics of the die-
sel engine are ignored and simplified, and a diesel engine model with certain accuracy 
suitable for marine DC power system is constructed. In diesel engine, the mathematical 
relationship between effective power, output torque and average effective pressure and 
speed is as follows:
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where Ne is the effective power of the diesel engine: n is the speed of the diesel engine; τ 
is the stroke coefficient; pe is the average effective pressure; Vl is the working volume of the 
cylinder; M1 is the output torque of the diesel engine: K1 = Vl

/

30τ ;K2 = 0.955K1.
If the set of all variables is X, the set of evidence variables is E, and the set of query vari-

ables is Q:

Its expression is as follows:

K is the average node degree in the network.

Using the new degree distribution as in Eq. (2), we can get time (3) and (4):

Combined with the zero-boundary state criterion of network collapse, we can get:

Let K0 = K 2
0 /K0 be calculated from the degree distribution in the initial network:

It can be derived from formula (6):
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Putting PK0 = CK−�

0 = (�− 1)M�−1K−�

0  into the above formula, we can get:

3.5 � Equipment scoring method

State selection: After obtaining the relevant data of power grid equipment status through 
various monitoring methods, the data are further analyzed and processed to generate a 
model that can directly reflect the working state of the corresponding power grid equip-
ment, and then the power grid equipment needs to generate the corresponding model 
data. Combine historical data, such as inspection and maintenance records, to produce a 
scientific and reasonable system to evaluate the status of grid equipment and reasonable 
combination. Results of the evaluation system can guide the maintenance of power grid 
equipment accurately and timely.

According to the status data of online detection, operation status, abnormality, test 
results and maintenance status of transmission network equipment, the health status of the 
equipment is scored. The score range is 0–100. Full score means that all information data of 
the equipment are compared with the initial value when the factory leaves the factory. If the 
attention value is near or far away, the grid equipment is in good condition, and the work-
ing conditions are not good, so it is not necessary to repair. A score of 0 means that the grid 
device must be repaired immediately and the score of other conditions of the equipment is 
between 0 and 100.

4 � Collection and analysis of power equipment fault information in Internet 
of things system

4.1 � Test results and analysis

By programming the algorithm, the traditional robust optimization model considering 
wind power integration is solved when the confidence interval of wind power output is 
66.3%, 86.6%, 95.4% and 99.74%. Table 1 shows the unit operating costs under four condi-
tions. Table 2 shows the unit optimal scheduling table at 66.3% confidence level.

From Tables 1 and 2, it can be seen that with the increase of confidence level of wind 
power output confidence interval, the unit operation cost is on the rise, and the economy 
of unit combination scheme becomes worse. With the improvement of confidence level 
of wind power output confidence interval, the number of start-up units of traditional 
robust unit commitment model increases, the robustness of unit commitment scheme is 
enhanced, and the ability to cope with wind power fluctuations is improved.

With the change of the confidence interval of wind power output, the economy 
and robustness of the unit commitment scheme based on the traditional robust unit 
commitment model show a trend of ebb and flow. When the economy is good, the 

(24)K0 =

∫ KMAX

M
K 2
0 (�− 1)M�−1K−�

0 DK0

/

∫ KMAX

M
K0(�− 1)M�−1K−�

0 DK0

Table 1  Unit operation under different confidence levels under traditional model

Confidence level 66.3% 86.6% 95.4% 99.74%

Unit operation cost 539,330 542,990 547,760 555,650
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robustness of unit commitment scheme becomes worse, and the ability to deal with 
wind power fluctuation is weakened; when the robustness is good, the economy 
becomes worse. Therefore, there must be an optimal wind power output confidence 
interval, which makes the robustness and economy of the proposed unit commit-
ment scheme reach the best compromise. However, the traditional robust unit com-
mitment model considering wind power integration usually relies on experience or 
subjective intention to select the confidence interval of wind power output, which 
is lack of theoretical basis and the rationality of the proposed unit commitment 
scheme is also deficient.

4.2 � Main fault analysis of electric equipment engine

The generator is usually composed of end cover, stator, rotor, brush device, lead-
out box, bearing and other components. The stator is composed of frame, main coil, 
commutation core, commutation coil, compensation winding, connecting wire and 
lead wire. The rotor is composed of rotor core, rotor winding, commutator, fan and 
shaft. The stator and rotor are connected and assembled by bearing and end cover, 
forming the main functional parts of the generator. As shown in Table 3, the main 
fault types of power equipment.

Table 2  Unit optimal scheduling table at 66.3% confidence level

N 1–24 h

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

6 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

7 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3  Types of generator faults

Fault type Fault category

Electrical failure Stator winding short circuit

Broken stator wire

Stator hydro junction failure

Mechanical failure Rotor unbalance

Air gap eccentricity

Shafting misalignment

Cooling system failure Leakage of stator winding

Local blockage of ventilation duct



Page 15 of 22Wang and Li ﻿J Wireless Com Network         (2021) 2021:65 	

4.2.1 � Fault diagnosis parameter information

1.	 On line monitoring information: vibration monitoring

In this method, the vibration sensor is used to monitor the vibration of the motor 
bearing or frame. Because the vibration frequency of different faults is different, the 
vibration frequency can be compared with the known fault frequency to find the fault 
location and fault nature. The limitation of vibration monitoring is: For motors, the 
installation position of sensors is very few; on the other hand, the vibration frequency 
is very easy to be interfered by the outside, and the vibration intensity range is wide. 
In the complex external environment, there are many influencing factors, so it is diffi-
cult to accurately judge the corresponding fault; in addition, the fault type and vibra-
tion frequency are many to many It is difficult to distinguish the relationship.

2.	 Electrical test information

Discharge monitoring includes end discharge, internal discharge of motor insula-
tion and slot discharge. When the discharge monitoring exceeds the warning value, 
the equipment maintenance shall be carried out. The axial magnetic flux leakage and 
shaft voltage monitoring will cause the increase of axial magnetic flux leakage flux 
and shaft voltage in case of fault, so the fault can be judged. Temperature monitoring 
is to detect the temperature of stator, bearing and other parts by temperature sensor 
to identify the fault. Due to the limitation of the position and number of sensors, it 
is difficult to reflect the actual heating position of the fault, so it is difficult to realize 
fault location.

4.3 � Prediction and analysis of operation health status of power equipment

In the experiment, the x-direction vibration data of the guide bearing group are 
selected. However, due to the high sampling frequency of the measuring points, a part 
of the data is intercepted in order to verify the model method. In the experiment, 
2500 groups of data were selected and grouped according to 10 data. The average 
value of each dataset was taken as the new measurement point data, and a total of 250 
groups of data were calculated. Figure 2 shows the time sequence display of measure-
ment point data after recombination.

A total of 250 groups of data were divided into two parts. The first group of 200 
groups of data was used as training data, the last 20 groups of data were used as vali-
dation data, and ARIMA model was used as control model. Figure 3 shows the results 
of forecasting data using ARIMA model and hybrid prediction model proposed in 
this section.

Figures  2 and 3 show that ARIMA prediction results are better than ARIMA-based 
hybrid and SVR prediction models. According to the combination forecast, the residual 
error is small, which indicates that the prediction result of the model is excellent. There-
fore, the equipment is predicted by the model parameters related to vibration and then 
analyzed by asking the pendulum area, so as to achieve the goal of evaluating the indi-
rect health status of the equipment.
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4.4 � Analysis of power equipment fault information collection in the Internet of things

All kinds of user data acquisition are shown in Table 4.
As shown in Table 4, as long as it is a local company, based on the acquisition, appli-

cation and maintenance research, optimize the parent station strategy, improve the 
diversification of communication channels and network modes, gradually convert the 
old equipment and upgrade the communication module, and basic file management, 
fault collection, correct location, closed-loop processing and other solutions. At present, 
the company’s success rate of collecting low-voltage users has reached more than 99%, 
especially the collection success rate of public transformers has reached 99.5%, and the 
recovery success rate of remote control power supply has reached more than 90%. The 

Fig. 2  Sample data of measuring points after grouping

Fig. 3  Model prediction results

Table 4  Data collection of various users

Category Households (ten 
thousand)

Acquisition success 
rate (%)

Application 
ratio (%)

Low voltage data acquisition 2084  > 99 98

Public transformer data acquisition 37.65  > 99.5 98

Data acquisition of special transformer 19.84  > 99.5 98
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automatic collection of more than 20 million sets of electric energy meters has been 
realized, and the labor force of 50,000 people has been saved; the instructions for power 
outage and power restoration of 14,424,100 times have been issued normally. The acqui-
sition success rate is shown in Fig. 4. Application ratio is shown in Fig. 5.

4.5 � Accuracy analysis of power equipment fault information acquisition system of Internet 

of things

Firstly, the construction of bidirectional cyclic neural network structure based on LSTM 
is realized by tensorflow. The initial network parameters are randomly given by tensor-
flow according to the set loss function and network optimization algorithm, and the 
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learning rate R / = 0.05 is set. The following experimental process is used for the experi-
ment. The model is basically stable after 8000 repetitions. The relationship between the 
accuracy of test set data and verification set data and the number of iterations is shown 
in Fig. 6.

As shown in Fig. 4, if the number of iterations increases, the accuracy of both veri-
fication and test sets will be stable at about 96%. The accuracy of verification group is 
slightly higher than that of test group. The surf IOT system works efficiently.

In order to further verify the accuracy of the fault information collection system, SVM 
is selected as control models in the experiment. The purpose of the three algorithms is 
to achieve the accuracy of four kinds of labels, that is, four kinds of analysis results: high 
risk, low risk, inefficiency, destruction, recall rate and F1. The experimental classification 
results such as scores are shown in Table 5.

The experimental results in Table 5 show that the bidirectional current neural network 
based on this white paper has higher accuracy than SVM and KNN models, which veri-
fies the applicability of the current neural network structure in the field of fault diag-
nosis. When dealing with sequence fault data, the processing ability of deep learning 
network structure is better than that of traditional shallow network structure.

Fig. 6  The relationship between the accuracy of the system and the number of iterations

Table 5  Experimental classification results

Algorithm Classification Accuracy (%) Recall (%) F1 value (%)

KNN High-risk 78.2 81.6 75.7

Low risk 64.8 63.6

Invalid 79.0 82.7

Crack 78.6 82.9

SVM High risk 86.6 87.8 86.3

Low risk 89.2 88.6

Invalid 86.8 90.4

Crack 79.8 80.5

IOT approach High-risk 98.0 97.3 96.4

Low risk 94.9 96.6

Invalid 97.9 95.2

Crack 95.4 92.8
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4.6 � Efficiency analysis of power fault information acquisition system of Internet of things

The efficiency of the former fault information collection system is compared with that of 
the object-based Internet environment. The comparison results are shown in Fig. 7.

As can be seen from Fig. 7, the power equipment fault information collection system 
based on the Internet of things improves the judgment performance of fault informa-
tion and the efficiency of fault information collection. With the increase of time, the effi-
ciency of fault information collection is different from that in the past, which can be 
close to 99%. Compared with the system, this design is more reasonable and valuable.

Compared with the previous system, it can collect fault information faster and ensure 
the correctness of information collection. The power equipment fault information col-
lection system based on the Internet of things has efficient information collection effi-
ciency and high-speed information collection speed, which can realize multiple fault 
information collection and processing, and lay a solid foundation for the future informa-
tion collection system design.

5 � Conclusion
This research is based on the equipment fault information collection system of the Inter-
net of things and mainly studies the fault information collection method based on the 
Internet of things technology. Equipment fault data are generally time series data. In the 
analysis of equipment failure, the data before and after fault and before and after fault 
are analyzed. The abnormal state of equipment is associated with the data before and 
after the fault. Therefore, by analyzing the characteristics of the fault data and the equip-
ment before and after the fault, a bidirectional recurrent neural network model based on 
LSTM is constructed. This is more accurate than the previous machine learning diagno-
sis method.

With the advent of the Internet of things era, power equipment is gradually connected 
to the network, and its intelligent fault detection function provides greater help for the 
power industry. The traditional power equipment fault information collection system 
has the problems of poor efficiency, slow fault information collection speed and incor-
rect information collection, which is difficult to cope with the network era of power 
equipment scale expansion. For power companies, the traditional collection system is 
not only a waste of money, but also difficult to achieve hardware and software system 

Fig. 7  Efficiency comparison of two acquisition systems
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maintenance. The method designed in this paper can not only improve the efficiency 
and speed of collection, but also can compare and collect fault information. The overall 
operation state of the power unit is improved accurately.

Power companies can reduce the economic losses of enterprises through real-time 
data collection, accurate analysis, online monitoring of abnormal problems, active learn-
ing, processing equipment failure, detection of electricity theft and other abnormal 
conditions. The application of the system not only improves the application ability and 
profitability of users, but also improves the intelligent management and high-quality ser-
vice level of power companies. It is an important means to catch up with the construc-
tion of intelligent grid. In order to ensure the effectiveness of information collection, the 
control strength of the collection system can be adjusted when the hardware system is 
designed by circuit reset module. Compared with the previous system design, it can be 
analyzed that the system designed in this investigation has good fault information col-
lection function and information collection, to provide strong support for the expansion 
of China’s power industry.

Due to the limitation of time, only the generator is selected to realize the fault diag-
nosis function, and the fault monitoring and early warning of other equipment such as 
transformer, capacitive equipment, lightning arrester, power cable and so on can be fur-
ther designed and implemented, and a comprehensive fault monitoring and early warn-
ing system can be further completed. Different devices are suitable for different diagnosis 
algorithms. Further research and test should be carried out on the diagnosis algorithms. 
In addition, the functions of the system should be further improved according to the 
actual situation. The equipment monitoring module should be further improved. In 
addition to browsing the parameter information and inputting data, the next goal should 
be to realize the automatic data collection and uploading to the server.
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