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1  Introduction
With the rapid development of microelectronics technology, signal processing technol-
ogy, wireless communication technology, and computer networks, wireless sensor net-
works have emerged. Wireless sensor network (WSN) is a multi-hop self-organizing 
network system formed by wireless communication. The sensor node cooperatively 
senses, collects, and processes information of the perceived object in the network cover-
age area and sends it to the observer [1, 2]. Wireless sensor networks are widely used in 
many important fields such as forest fire detection, animal tracking, military area mon-
itoring, early earthquake detection, and border monitoring due to their low cost, low 
power consumption and multi-function [3–7]. But as the size of the network increases, 
it becomes increasingly difficult and unrealistic to periodically replace batteries for all 
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nodes, and limited battery energy will eventually lead to limited network life. In order 
to solve the problem of limited life in wireless sensor networks, many scholars at home 
and abroad have conducted a lot of research, and the solutions can be divided into three 
categories: node energy saving, natural energy collection, and wireless charging. The 
energy-saving method mainly reduces the energy loss per unit time by compressing 
the transmitted data packets, clustering the network, and selecting the dynamic cluster 
head. The natural energy harvesting method requires the use of an energy converter on 
the node through which it can harvest energy (such as solar energy, wind energy) from 
the natural environment to extend its life. However, obtaining energy from the natural 
environment will bring uncertainty in the energy source (such as day and night, strong 
winds, and weak winds), and the energy conversion efficiency is not high. The wireless 
charging method refers to providing the network with a wireless charging source (such 
as a static charging station, a mobile charging car, etc.), the charging source travels in 
the network according to the charging trajectory, and charges the nodes in the network 
during the driving process. Comparing the energy harvesting and wireless charging 
technologies of the natural environment, although both charging methods can ensure 
that the sensor nodes work persistently, the wireless charging method has better perfor-
mance in terms of the stability of the charging source and the predictability of the energy 
obtained by the node. So the academic community proposed the Wireless Rechargeable 
Sensor Network (WRSN) [8, 9]. In the WRSN, the sensor node energy comes from the 
charger node instead of the capacity-limited battery. The nodes in the wireless charging 
sensor network rely on wireless energy transmission technology to obtain energy. The 
transmitter of wireless energy transmission system converts electric energy into electro-
magnetic wave for transmission, and the receiver receives electromagnetic wave energy 
and converts it into electric energy. The change of energy source increases the reliability, 
flexibility and scalability of sensor networks. However, a key problem in WRSN is the 
deployment of wireless chargers. Wireless chargers are very expensive, and their deploy-
ment takes a lot of time and cost. How to deploy wireless chargers effectively and mini-
mize the charging cost of networks is an urgent problem to be solved.

For node deployment, Li et al. [10] proposed to jointly deploy the minimum num-
ber of charger nodes and sinks in the rechargeable sensor network, by dividing it into 
two sub-problems and converting each sub-problem into a maximum flow problem. 
Aiming at the sub-problems of charge node placement and aggregation sink deploy-
ment, they separately designed an algorithm of greedy with guaranteed lnR/ξ in the 
worst case. In addition, they design an iterative algorithm to solve the original prob-
lem, which alternately solves two sub-problems to obtain near optimal function. But 
the location of the charger has not been determined, so Arivudainambi et  al. [11] 
have proposed the Daubechies wavelet algorithm to determine the best location of 
the wireless charger, the purpose is to determine the optimal position of each charger 
and reducing the number of chargers required for charging. And for the deployment 
of sensor node locations, Du et al. [12] proposed and studied the joint favorable sen-
sors location: node activation and WET(wireless energy transfer) scheduling, and 
they decomposed the primeval issue into an algorithm and proved that the algorithm 
can achieve the best solution under mild conditions.
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The above research is aimed at the single-objective optimization problem of node 
deployment. In this article, we study the conversion of wireless charger deployment 
into a multi-objective optimization problem, we study the problem of deploying charger 
nodes in wireless rechargeable sensor networks. The goal is to maximize the received 
power of sensor nodes and minimize the number of charger nodes to improve the over-
all performance of the network. In order to achieve this goal, we first proposed a wireless 
charging system model to maximize its charging utility, and then proposed an improved 
cuckoo search algorithm to optimize the target problem and find the optimal solution 
set that satisfies the conditions, so as to optimize the deployment of charger nodes. 
Finally, simulation experiments have also verified the effectiveness of the algorithm. The 
main contributions of this article are as follows: 

1.	 We first proposed a network model that maximizes the sensor node received power 
and minimizes the number of charger nodes. By maximizing the sensor node 
received power and minimizing the number of charger nodes, the overall charging 
efficiency of the network is improved.

2.	 This paper presents a new algorithm: improved cuckoo search (ICS); the algorithm 
redefines its step factor on the traditional cuckoo search algorithm, and then uses the 
mutation factor to change the nesting position of the host bird, thereby updating the 
bird’s nest position to generate new populations.

3.	 The proposed model is optimized by the improved cuckoo search (ICS). Experiments 
show that the algorithm is superior to other algorithms in terms of charging effi-
ciency.

The organization structure of this paper is as follows: The related work is explained in 
Sect. 2. Section 3 introduces the system model and the improved cuckoo algorithm pro-
posed in this paper to optimize the charger node. The simulation experiment results and 
analysis are described in Sect. 4. Section 5 summarizes the paper.

2 � Related work
At present, researchers have proposed a lot of deployment strategies for charger nodes. 
Zhu et al. [13] considered sensor node energy harvesting to deploy nodes, and achieved 
optimal target coverage through heuristic algorithms. Yang et al. [14] proposed the min-
imum energy collection node position model of energy neutral coverage and connec-
tion. Under the premise of approximation algorithm, the target node is monitored by 
different energy harvesting rates of sensor nodes, thus achieving target coverage. Li et al. 
[15] used the concept of wireless charger to charge the sensor. The main purpose was to 
deploy a minimum number of wireless chargers to charge all the sensors. Then a greedy 
cone coverage algorithm and an adaptive coverage algorithm were proposed to make the 
charger deployed at the most. Good grid points to cover the sensor, experimental results 
showed that the greedy cone coverage algorithm was better than the adaptive cone 
coverage algorithm. Chen et al. [16] used the particle swarm optimization (PSO) algo-
rithm to alleviate the problem of charger deployment. First, the charger was randomly 
deployed, and then the charging position and charging direction were changed by PSO 
to determine the optimal solution. In the case of a certain number of directional wireless 
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chargers and candidate locations, Yu et al. [17] determined the placement position and 
direction angle of each charger according to the connection constraints of the wireless 
charger to maximize the overall charging utility. In addition, there are also studies that 
consider the charging characteristics of chargers or devices [18, 19].

This paper proposes to maximize the received power of the sensor node and mini-
mize the number of charger nodes, and has developed a multi-objective optimiza-
tion problem to achieve this goal. Group intelligent optimization algorithm [20] is an 
effective method to solve multi-objective optimization problems. The particle swarm 
optimization algorithm PSO based on bird foraging behavior [21] is used to solve 
the multi-objective optimization problem, however, its performance is significantly 
affected by the initial value of the parameter [22]. The Invasive Weed Optimization 
(IWO) algorithm is proposed in Ref. [23]. IWO is inspired by the phenomenon that 
is common in agriculture, the colonization of invasive weeds, and is easy to imple-
ment. However, the performance of IWO is also affected by the choice of parameters. 
The Group Wolf Optimization algorithm (GWO) [24] is inspired by the hunting of 
prey in the wolves in nature, which simulates the social level of the wolf, thus achiev-
ing a higher convergence rate. However, GWO’s global search capabilities are weak. 
The bat algorithm (BA) [25] is based on the echo localization behavior of bats and 
generates new solutions through random flight, thereby improving the ability of local 
search. However, due to the lack of mutation mechanism of BA individuals, the accu-
racy of BA is low in some applications. Reference [26] proposed a new algorithm 
adaptive Levy flower pollination algorithm (ALFPA), which combines the Levy fight 
mechanism and the flower pollination algorithm of CS. The convergence speed of the 
algorithm is improved by introducing additional components. In order to improve the 
overall performance of the network, some efficient algorithms are also used in it. Guo 
et  al. [27] proposed a heuristic algorithm based on the greedy algorithm to deploy 
static chargers to minimize the charging time of sensor nodes. In reference [28], a 
method based on the improved max–min ant system is proposed to optimize the 
energy constraints of mobile wireless chargers (MWCS), aiming to minimize the total 
energy consumption in the charging cycle and the equalization strategy under the 
limited energy constraints of MWCS. Chien et al. [29] proposed a layered algorithm 
based on simulated annealing algorithm to deploy indoor sensor nodes to control fac-
tory production, improve production quality, and optimize the wireless rechargeable 
sensor network. In Ref. [30], Chen et al. proposed a delay fault-tolerant mobile charg-
ing scheduling scheme (DMCSS). Under the condition of limited capacity of mobile 
charger, an efficient next charging node selection algorithm was designed to maxi-
mize charging efficiency and prevent premature node failure, so as to optimize the 
charging trajectory and improve the charging efficiency. Tomar et  al. [31] proposed 
a charging strategy based on a gravitational search algorithm, which used a mobile 
charger to charge sensor nodes to solve the problem of node starvation, thereby 
improving network performance.Wireless rechargeable sensor networks also have 
many practical applications, such as medical health [32], gesture recognition [33–35] 
and so on. From the above analysis, we can see that the previous work used a single 
meta-heuristic method to solve the problem. Compared with the previous methods, 
this paper considers that the cuckoo search algorithm has weak local search ability 
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and lacks mutation mechanism. Therefore, it is necessary to redefine the step size 
control factor, and then use the mutation factor to change the nesting position of the 
host bird, it not only maintains the diversity of population, but also expands the sam-
pling space, prevents the loss of the best individual, and improves the convergence 
speed and robustness of the algorithm. In this paper, the charger deployment problem 
is abstracted as a multi-objective optimization problem that maximizes sensor node 
reception power and minimizes the number of charger nodes. ICS is used to find the 
optimal solutions to maximize the receiving power of the sensor node and minimize 
the number of charger nodes, the simulation results show that the effectiveness of the 
algorithm is superior to other comparison algorithms in accuracy and convergence 
speed.

3 � System model
3.1 � Problem description

In a wireless rechargeable sensor network, it is assumed that there are S chargeable 
sensors distributed in a two-dimensional area, and the positions of the sensors are 
known. There are M omnidirectional wireless chargers to be arranged, each of which 
can be placed anywhere in the area and can be oriented arbitrarily. Assuming that the 
charging area of each charger covers a subset of the sensors, adjacent chargers can 
cover a common sensor, which means that a sensor may be simultaneously covered by 
multiple chargers for charging, as shown in Figure.1.

3.2 � System model

As can be seen from Fig.  1, the wireless rechargeable sensor network is com-
posed of sensor node set S = {S1, S2, . . . , SN } and wireless charger node set 
C = {C1,C2, . . . ,CK } . The location of the sensor node is known, the wireless charger 
can be moved to any location, but it cannot be moved after deployment. The wireless 
charger is powered by solar energy, the energy is not limited, and any sensor node can 
be charged.

Fig. 1  Deployment of wireless rechargeable sensor nodes
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The charging model we use is related to the distance between the sensor and the 
charger. According to this model [36], µ is defined as the charging efficiency.

Among them, d is the distance between the sensor node and the charger node, Gs is the 
source antenna gain, Gr is the receiving antenna gain, Lp is the polarization loss, � is the 
wavelength, η is the rectification efficiency, and β is the adjustment model parameter for 
short-distance propagation. In formula (1) except d, all others are constants, so it is sim-
plified to

Here, α represents other parameters in formula (1), including Gs , Gr , Lp , � , η . Therefore, 
the received power of each sensor node Si is

In Eq.  (3), P0 is the source power of the charger node and µn is the power of the nth 
charger node. Then, in order to achieve the goal of improving the received power of the 
sensor node, the minimum power of the sensor node is maximized.

Here, Pij is the charging power of the ith charger node to the jth sensor node. i ∈ [0,K ] , 
j ∈ [0,N ] . For ease of understanding, formula (4) can be normalized, namely

In Eq. (5), Pworst indicates that the charging efficiency is at the upper limit of the charging 
range and the range ratio is within [0,1]. The maximum number of sensor node coverage 
is achieved with a minimum of charger nodes, and to accomplish this goal, the number 
of charger nodes deployed is critical. Suppose Fmax is the total number of charger nodes 
and Fred is the amount of redundancy of the charger node, then

3.3 � Improved cuckoo search algorithm

3.3.1 � Basic principles of cuckoo search algorithm

Cuckoo Search (CS) [29], proposed by Professor Yang in 2009, is a heuristic swarm intelli-
gence algorithm. This algorithm mainly simulates the behavior of cuckoos to find bird nests 
and place eggs, combined with Lévy The bird’s nest position is updated in flight to complete 
the update of each generation. If the updated position is better than the current position, 
the bird’s nest position is updated, otherwise the current position is retained. The cuckoo’s 
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path and location update formula for searching the bird’s nest by Lévy flight mode is as 
follows:

In Eq. (7), x(t)i  and x(t+1)
i  represent the bird’s nest positions of the tth and (t + 1)th gen-

erations respectively, α represents the step size control factor, ⊕ is a point-to-point mul-
tiplication, Lévy(� ) random search path, and the relationship with time t follows the Lévy 
distribution, namely:

Among them, the size of α is related to the search domain of the problem. When α is 
large, the algorithm’s walk length will be relatively large, so that the large-scale search 
domain can be explored more effectively. Usually α is taken as o(1). In order to make the 
algorithm have faster convergence ability, the difference between different solutions can 
be introduced to make the algorithm have a certain variable step size ability, and then α 
can be expressed as Eq. (9):

Here α0 is a constant, generally 0.01. Studies have shown that the use of Lévy flight 
search mechanism in intelligent algorithms can expand the search range and increase 
population diversity. In order to facilitate calculation, the literature [37] uses the follow-
ing formula to calculate the Lévy random number:

Among them, µ and v follow the standard normal distribution, β is a constant, the value 
is [1,2], the value of ϕ is as follows:

Combined with formulas (7)–(11), the new solutions generated during Lévy ’s flight are 
as follows:

Among them, xbest represents the current optimal solution. After the location update, 
use the random number r ∈ [0, 1] to compare with Pa ( Pa is the probability that the host 
bird finds alien eggs, and the value is [0,1]). If r > Pa , x(t+1)

i  uses a preference random 
walk to generate the same number of new solutions. Preference random walks are shown 
in Eq. (13):
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In the formula, r is the compression factor, which is a uniformly distributed random 
number in the interval [0,1], x(t)j  and x(t)k  represent the two random solutions of the tth 
generation.

3.3.2 � Improved cuckoo search algorithm

Aiming at the problem that the cuckoo search algorithm solves multi-objective complex 
problems, local optimal solutions and low accuracy are prone to appear. This paper pro-
poses an improved cuckoo search algorithm (ICS). Based on the original algorithm, this 
algorithm updates the cuckoo search area by redefining its step control factor, then

In formula (15), the new solution is generated by it, and the moving step of the solution 
is composed of two parts: One is the generated random number r, and the other is the 
vector difference operation x(t)j − x

(t)
k  . However, there is a problem in updating the solu-

tion in this way. The generation of the new solution is random, and the updating of the 
solution has no directionality. Therefore, the mutation factor θ is introduced in the local 
search, which makes the directionality of the solution more random and enhances the 
diversity of the descendant population [38]. Namely

where θ is the variation factor and θ ∈ N (0, 1) is a random vector subject to a normal 
distribution. The working flowchart of the improved cuckoo search algorithm is shown 
in Fig. 2.

3.3.3 � Multi‑objective optimization

The optimal solution selection and ranking method based on Pareto dominance: select 
a bird’s nest xi in the bird’s nest group and compare it with the remaining bird’s nest in 
turn, and divide the population into two parts according to the relationship between the 
remaining bird’s nest in the bird’s nest group and xi . The bird’s nest not related to xi , part 
B is the bird’s nest dominated by xi . If xi is not dominated by any bird’s nest, store xi in 
an external set that holds the Pareto solution set. Then repeat the above process for the 
bird nest in part A until the bird nest in part A is emptied. The adaptive weighted fitness 
allocation is used to solve the objective function values of each nest in the target space, 
and the weight values of each objective function are obtained by comparison.

Then the fitness value of the nest is

The Pareto solution set can be distinguished by the fitness value. In the Pareto solution 
set of the external set, two solutions are randomly selected to compare the fitness values, 

(14)α =
|x

(t)
i − x

(t)
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(15)x
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i = x

(t)
i + θ

(

x
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(t)
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)
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j
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max
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max
2 − F2(xi))
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and then the better solution is selected as pbesti(t) or gbesti(t) . If the current nest does 
not satisfy the constraint, the nest is deleted and a new nest is randomly generated to 
increase the diversity of the progeny population.

3.3.4 � Algorithm implementation

The charger deployment problem in this paper is divided into two sub-problems: 
maximizing the received power of the sensor nodes and minimizing the number of 
charger nodes, and then searching for multiple targets by optimizing these two sub-
problems based on the improved cuckoo search algorithm. The optimal solution set 
makes it better to approach the Pareto frontier. The algorithm is as follows:

Fig. 2  Workflow of improved cuckoo search algorithm
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According to  Algorithm 1, the coordinates of the sensor node and the charger node are 
initialized, the optimal solution is searched through iteration, and then a local new solu-
tion is generated by Lévy flight around the optimal solution, and then the new solution is 
generated by updating the position of the bird’s nest. If the new solution does not satisfy 
the condition, the search is iterated again, and this process strengthens the local search. By 
constantly moving the position of the charger node, the received power of the sensor node 
is calculated, so as to minimize the number of charger nodes, such as Algorithm 2.

In the ICS algorithm, in order to facilitate calculation, the size of the bird nest and the 
merge set are set to M, the number of targets for multi-objective optimization is N, and the 
dimension is D. According to the flow of the algorithm, the analysis of the time complex-
ity of the main steps of the ICS algorithm is as follows. In the first step, the initialization 
complexity is O(MD); in the second step, the effective solution is selected from the bird’s 
nest to enter the merged set, and its complexity is O(MN 2) . Secondly, when performing 
maintenance strategies, it is necessary to calculate the degree of convergence, the degree of 
distribution, and the auxiliary judgment index respectively. Its time complexity is O(NM2) , 
and the complexity of multi-index ranking is O(MlogM) . In the third step, the position of 
the bird’s nest Update. In summary, the maximum time complexity of the algorithm in this 
paper is O(MN 2).
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4 � Experimental results and analysis
4.1 � Parameter settings

This section verifies the performance of the proposed algorithm through simulation 
experiments. Specifically, the multi-objective particle swarm optimization algorithm 
(MOPSO) [39], the cuckoo search algorithm (CS) [37] and the improved cuckoo 
search algorithm algorithm proposed in this paper are compared. The changes of the 
received power of the sensor nodes, the number of charger nodes, the power of each 
sensor node and the optimal solution set distribution in the given plane area of these 
three algorithms are studied. As shown in Table  1, the basic parameter settings of 
the simulation experiment are given [18].

Among them, the number of charger nodes is set up to 40. On the basis of 40 
charger nodes, the number of charger nodes is optimized by ICS to minimize the 
number of charger nodes.

4.2 � Experimental results and analysis

The cuckoo search algorithm, multi-objective particle swarm optimization algo-
rithm and the improved cuckoo search algorithm proposed in this paper compare the 
received power of sensor nodes. It can be seen from Fig. 3 that after 100 iterations, 
ICS is always better than CS and MOPSO. Maximize the received power of the sensor 
node to find the optimal solution that satisfies the condition. The comparison results 
show that the ICS is 30.4% higher than that of CS and 25% higher than MOPSO. 
Therefore, the improved cuckoo search algorithm with better global and local search 

Table 1  Basic parameter setting

Parameter Defaults

Geographic range 100m× 100m

Number of sensor nodes 100

Number of charger nodes 40

Parameters in the charging model:α 100

Parameters in the charging model:β 40

Source power of the charger node 1 W
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ability is introduced into the sensor node receiving power. It can effectively reduce 
the error of the receiving power of the sensor node, and accelerate the solution speed 
of finding the optimal solution problem. It is an intelligent algorithm with high preci-
sion and fast speed.

Within the specified sensing domain, sensor nodes are randomly distributed and 
charged by deploying charger nodes, reducing the number of charger nodes to reduce 
costs. In this paper, the ICS algorithm is used to deploy the charger node. It can be 
seen from Fig.  4 that after 90 iterations, the number of charger nodes obtained by 
using ICS gradually approaches an optimal value, and the number of charger nodes 
requested by MOPSO and CS is constantly changing,but did not approach a certain 
value, and MOPSO and CS seek the number of charger nodes is still changing con-
tinuously and does not approach a certain value. Experimental data shows that ICS is 
53.3% lower than CS and 30.3% lower than MOPSO, so the number of charger nodes 
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is reduced. ICS is looking for the optimal number of charger nodes than MOPSO and 
CS, therefore, ICS minimizes the number of charger nodes.

Sensor nodes are effectively charged and have a certain amount of energy to better col-
laborate and perceive each other data information. In this paper, the received power of 
the sensor node is an optimization goal. Distribute 100 sensor nodes in the sensing field, 
so that each other can better transfer data between each other, and collect the received 
power of each sensor node through the ICS algorithm. As shown in Fig. 5, it can be seen 
that the distribution of 100 sensor nodes makes The received power distribution is more 
uniform and concentrated, which is more helpful for the subsequent experiments, and it 
is easier to achieve the maximum power of the sensor node.

In this paper, the deployment of wireless chargers is transformed into a multi-objective 
optimization problem: maximizing the received power of sensor nodes and minimiz-
ing the number of chargers, finding the best fitness value to meet the above conditions 
through ICS, constantly moving and updating the location of chargers, determining the 
best location and number of chargers, so as to achieve the goal of minimizing the num-
ber of chargers. Figure 6 is a schematic diagram of the charger node constantly updating 
its location in the deployment diagram.

Fig. 6  Charger node deployment
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Fig. 7  Pareto solution sets with different iteration time
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Figure 7 shows that ICS is used to solve the received power of sensor nodes and the 
number of charger nodes, which makes them better approach the optimal solution. Fig-
ure (a) is the Pareto front obtained after 100 iterations, the trend is gentle, but the distri-
bution is not particularly uniform. Figure (b) is the front obtained after 200 iterations. It 
can be seen that the non inferior solution set of the maximum received power of sensor 
nodes and the minimum number of charger nodes is gradually close to the Pareto front, 
and the solution distribution is concentrated and uniform. Therefore, ICS algorithm can 
converge to the optimal solution more effectively and accurately.

From Fig.  8, the fitness value obtained after multiple iterations shows that although 
ICS has outliers, the data distribution is relatively concentrated and uniform, and the 
convergence is relatively stable. This makes the solution set obtained through ICS closer 
to Pareto cutting edge. In comparison, the data distribution in MOPSO is more scat-
tered and uneven, because the convergence speed is slower than ICS in the iterative pro-
cess, and the data in CS has more discrete points, and the solution in the data set does 
not approach the fitness. This is because the CS algorithm converges slowly in the later 
iterations and easily falls into the local optimal solution.

Observe the situation where ICS, MOPSO and CS approach the optimal solution 
through the Pareto front, as shown in Fig. 9. After many iterations, the multi-objective 
problem is solved by the ICS algorithm. The solution distribution obtained by ICS is rel-
atively uniform, and the convergence speed is fast and approaches Pareto frontier earlier. 
In comparison, the solution distribution obtained by MOPSO and CS is more discrete 
and the convergence speed is slower. After the experimental comparison, it shows that 
the convergence speed of ICS is 45% higher than that of CS and 21.4% higher than that of 
MOPSO. Therefore, ICS can converge more effectively and accurately to the better solu-
tion than MOPSO and CS.

5 � Conclusion
The main purpose of this work is to transform the deployment of wireless chargers into 
a multi-objective optimization problem. By maximizing the received power of sensor 
nodes and minimizing the number of charger nodes, the optimal deployment of wireless 
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chargers can be achieved, so as to improve the charging utility of the whole network. In 
this paper, an improved cuckoo search algorithm is used to find the optimal solution set 
of the multi-objective problem, so as to realize the multi-objective optimization. In addi-
tion, the correctness and effectiveness of the proposed model and algorithm are verified. 
Experimental results show that the proposed algorithm (ICS) is better than other algo-
rithms in accuracy and convergence speed, and has been improved to a certain extent. 
In the deployment process of the charger node, we assume that its energy is provided by 
the outside world, so the energy consumed by the charger node itself is not considered. 
However, in practical applications, the wireless charger itself will consume energy, and 
will be affected by environmental restrictions. Therefore, in the next study, we will con-
sider the energy loss of the charger node in the charging process.

Abbreviations
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