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1  Introduction
Unmanned aerial vehicle (UAV)-assisted communication has been widely applied to 
various domains, e.g., aerial inspection, precision agriculture, traffic control, and after-
disaster rescue [2]. Compared to terrestrial cellular systems, UAV-assisted systems (1) 
provide on-the-fly communication, which expands the coverage of ground wireless 
devices, and (2) have higher probability to experience Line-of-Sight (LoS) transmission, 
which improves channel quality. In addition, the advances of UAVs’ manufacturing tech-
nologies reduce the deployment cost of UAV networks and popularize their commercial 
and civilian usages [3].
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However, one of the most critical issues of UAV-assisted networks is the limited 
on-board energy, which may shorten the UAVs’ endurance and lead to service failure. 
Therefore, minimizing the UAV’s energy consumption is of great importance. In [4], the 
authors proposed a joint power allocation and trajectory design algorithm to maximize 
UAV’s propulsion energy efficiency. With the consideration of both communication 
energy and propulsion energy of UAV, the authors in [5] and [6] proposed energy-effi-
cient communication schemes via user scheduling and sub-channel allocation, respec-
tively. We note that the works in [4–6] focused on the access link in UAV-assisted 
networks, where the UAV serves as an aerial base station (BS) that carries all the ground 
users’ (GUs’) requested data. In practice, due to limited storage capacity, the GU’s 
requested data may be not available in the UAV’s cache. When the BS in the GU’s ser-
vice area is overloaded or damaged, the UAV serves as an intermediate node to acquire 
requested data from a remote auxiliary base station (ABS) through a backhaul link and 
deliver data to the GUs via access links [7]. Compared to the direct terrestrial commu-
nication between the GU and the ABS, UAV undergoes better channel conditions but 
with limited energy supply. Thus, it is necessary to consider energy-saving problems for 
backhaul-access UAV networks. In [8], an energy efficiency maximization problem was 
investigated via power allocation and trajectory design, where the UAV performs as a 
relay between ABS and GUs. The authors in [9] proposed a joint trajectory design and 
spectrum allocation algorithm to minimize UAV’s propulsion energy while satisfying the 
backhaul constraint, meaning that the transmitted data of the access link must be less 
than that of the backhaul link.

The user scheduling schemes in [8, 9] are based on time division multiple access 
(TDMA) or frequency division multiple access (FDMA) with a single-antenna UAV. 
However, spatial division multiple access (SDMA) mode with multiple-antenna tech-
niques and precoding design is able to improve network capacity, thereby reducing the 
tasks’ completion time and total energy consumption. In [10], a non-orthogonal multiple 
access-based user scheduling and power allocation algorithm was proposed to minimize 
UAV’s transmission energy with the backhaul constraint. In [11], the authors designed a 
game theory-based precoding scheme for multi-antenna UAV-assisted cluster networks. 
To maximize the UAV’s propulsion energy efficiency, the authors in [12] proposed a 
power allocation scheme for multi-antenna UAV-enabled relay systems. However, the 
energy consumption of the backhaul link is studied to a limited extent in the above 
works [10–12], which is a large proportion of the total energy consumption and could 
be optimized by backhaul power control [13]. This motivates us to investigate an energy 
minimization problem, including both backhaul and access energy, in multiple-antenna 
UAV-assisted networks.

Optimization-based solutions, e.g., successive convex approximation [5] or Lagrangian 
dual method [6], might not be able to make time-efficient decisions. First, the SDMA-
based transmission mode enables the UAV to serve more than one GU simultaneously, 
resulting in exponential growth of decision variables as well as the complexity [1]. More-
over, diversified energy models in UAV systems may lead to non-convexity in problem 
formulation, which makes the problem difficult to be solved optimally.

Deep reinforcement learning (DRL) learns the optimal policy from the interac-
tion between environment and actions, instead of directly solving the optimization 
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problem. DRL combines artificial neural networks with a reinforcement learning 
architecture to improve learning efficiency and solution quality. Different from deep 
neural networks (DNNs), DRL is not necessary to prepare a large amount of data in 
advance for offline training. To maximize the energy efficiency, the authors in [14] 
and [15] applied deep Q network (DQN) to make decisions for resource block alloca-
tion and flight path planning, respectively. DQN needs to establish a Q-table contain-
ing all the possible actions before executing the algorithm so that it is usually for the 
decision tasks with discrete action space and a small number of decision variables 
[16].

Actor-critic-based DRL (AC-DRL) can tackle both discrete and continuous action 
space. For the problem with continuous variables, e.g., power control, AC-DRL adopts 
a stochastic policy to select an action by probability. In [17], an energy-efficient UAV’s 
direction control policy was proposed based on AC-DRL. To minimize UAV’s energy 
consumption, in [18], the authors applied an AC-based deep deterministic policy gra-
dient algorithm for UAV’s velocity and direction control. In [17, 18], multiple decision 
variables in the problem modelings may lead to huge action space and slow conver-
gence (more than 1000 learning episodes). It is noted that the solution proposed in 
[17, 18] can be applied to only unconstrained problems. However, for general UAV-
assisted networks, the optimization problems have constraints [4–9, 11–13]. There-
fore, directly applying AC-DRL may not lead to a high-quality and feasible solution.

In this paper, we propose two tailored AC-DRL-based schemes: AC-based user 
group scheduling and backhaul power allocation (ACGP), and joint AC-based user 
group scheduling and optimization-based backhaul power allocation (ACGOP). The 
main contributions are summarized as follows:

•	 We formulate a non-convex mixed-integer programming (NCMIP) problem to 
minimize both backhaul energy and access energy in UAV-assisted networks.

•	 To approach the optimum, we first transform the non-linear terms to linear by 
piecewise linear approximation and McCormic envelopes, leading to a mixed-
integer linear programming (MILP) problem, which can be solved optimally by 
branch and bound (B&B).

•	 We provide a near-optimal algorithm with lower computation time than the opti-
mal method. First, the original NCMIP problem is relaxed to a continuous optimi-
zation problem. Second, the relaxed problem is converted to a linear programming 
(LP) problem by piecewise linear approximation. Then, the heuristic solutions can 
be obtained after taking a rounding-up operation.

•	 Being aware of the high-complexity optimization methods, we propose ACGP and 
ACGOP learning schemes. To enable the learning algorithms to adapt to the con-
sidered NCMIP, in ACGP and ACGOP, we improve the conventional AC-DRL by 
a set of approaches, i.e., action filtering and reward re-design, to improve learning 
performance and avoid infeasible solutions.

•	 From the numerical results, we conclude that, compared with non-learning algo-
rithms, ACGP and ACGOP have superiority in computational time efficiency, 
while compared with conventional AC-DRL, ACGP and ACGOP achieve better 
performance in delivering feasible solutions. Experiments also show that the com-
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bined learning-optimization scheme, i.e., ACGOP, achieves better energy-saving 
performance than ACGP.

The rest of the paper is organized as follows. Section 2 provides the system model. In 
Sect. 3, we formulate the considered optimization problem and solve it by proposing an 
optimal algorithm and a heuristic algorithm. In Sect. 4, we resolve the problem by DRL 
and develop an AC-DRL-based algorithm. Numerical results are presented and analyzed 
in Sect. 5. Finally, we draw the conclusions in Sect. 6.

Notations: Some mathematical operators are defined as follows. For a vector a , ‖a‖ and 
a
H represent its Euclidean norm and conjugate transpose, respectively. For a matrix A , 

A
H refers to its conjugate transpose, and A† denotes its generalized inverse matrix. For 

scalars x and y, ⌈x⌉ and ⌊x⌋ means rounding-up and rounding-down operations, respec-
tively. [x]+ is equivalent to max{0, x} . N (x, y) means a Gaussian distribution with a mean 
x and a variance y. For a random variable X, E[X] is the statistical expectation of X.

2 � System model
We consider a UAV-assisted communication system including both backhaul and access 
links, as shown in Fig.  1. In the backhaul part, a multi-antenna UAV requests data 
from a multi-antenna ABS which is connected to the core network. In the access net-
work, the UAV acts as an aerial BS to serve single-antenna GUs in remote areas when 
the terrestrial BS in the current service area is not available, e.g., destroyed in a disas-
ter. As the UAV operates at high altitudes, it can overcome the influence of obstacles 
on the ground, e.g., buildings or mountains, and has more probability to experience 
LoS transmission. The difference between the backhaul and access networks in chan-
nel modeling is that the former forms a MIMO system while the latter is modeled as 
a multi-user MISO system. When the UAV receives GUs’ data requests, it first down-
loads these data from a remote ABS through a backhaul link and then distributes data to 
GUs through access links. The GUs in the service area are divided into several clusters 

Fig. 1  A UAV network with N = 3 clusters
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due to the limited communication coverage of the UAV. As an input to the UAV opti-
mization problem, GUs clusters can be determined by two methods. One is by cluster-
ing algorithms, e.g., K-means, based on the similarity of the GUs’ distances or channel 
conditions. The second is simply based on the GUs association and coverage area of the 
damaged base stations. In this paper, the latter method is adopted. In a cluster, there 
exist K single-antenna GUs and each has qk (bits) demands. The user set is denoted as 
K = {1, ..., k , ...,K } . The total demands is denoted by D =

∑K
k=1 qk . In each transmis-

sion task, all the GUs’ demands need to be served within the time limitation Tmax (sec-
onds), including the time used for acquiring data from ABS and delivering data to GUs1. 
As shown in Fig. 2, the system spectrum is reused in a TDMA fashion so that the time 
domain of a transmission task is divided into a sequence of timeslots I = {1, ..., i, ..., I} , 
where I is the maximum number of timeslots, given by ⌊Tmax

�
⌋ , and � (seconds) refers to 

the duration of each timeslot. In the access network, a timeslot accommodates multiple 
GUs with the SDMA transmission mode to further improve network capacity.

2.1 � Backhaul transmission

The ABS and UAV are equipped with Lt and Lr antennas, respectively, so that the 
backhaul link can be modeled as a MIMO channel. We assume that signals propagate 
through LoS transmission from ABS to UAV. Let G ∈ C

Lt×Lr be the channel matrix of 
the wireless backhaul link, which is determined by the spherical wave model [19] which 
is given by:

where olt ,lr corresponds to the path length between the lt-th transmitting antenna and 
the lr-th receiving antenna, fc refers to the carrier frequency, and β is the path loss expo-
nent. The received signal at the UAV from the ABS can be described by:
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Fig. 2  An illustration of the timeline of UAV actions

1  The time and energy consumed on sending requests from GUs to UAV are not considered in this paper, since they are 
negligible compared to those on content delivery.
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 where x and n denote the transmitted signal and white Gaussian noise of the UAV, 
respectively. In order to maximize the backhaul capacity, we employ the water-filling-
based power allocation [20]. The matrix G has a singular value decomposition (SVD):

where U ∈ C
Lt×Lt and V ∈ C

Lr×Lr are unitary matrices, and � ∈ C
Lt×Lr is a diagonal 

matrix whose elements are non-negative real numbers. The diagonal elements �1, ..., �L 
in � are the ordered singular values (from large to small) for G . Under the assumption 
that G is a full-rank matrix, let L = min{Lt , Lr} . We process the UAV’s received signal by:

where 
√
P = diag(

√
p1, ...,

√
pL) referring to a diagonal matrix, and pl means the power 

allocation among the antennas. Thus, the capacity of the MIMO channel can be calcu-
lated by:

where Bbh is the bandwidth of the backhaul link, and σ 2 is the receiver noise power of 

the UAV. Based on the water-filling power allocation, p∗l =
[

µ− σ 2

�
2
l

]+
 , where µ is the 

water-filling level [20]. Thus, the total transmit power on the backhaul is:

The achievable rate of the backhaul can be rewritten as:

At a timeslot, the backhaul transmission energy and the achievable transmitted data vol-
ume are:

2.2 � Access transmission

From Fig. 2, in the access transmission, the shaded block indicates that the user is sched-
uled. We define the scheduled users as a user group. Therefore, the maximum number 
of candidate groups can be calculated by G =

∑Lr
l=1

K !
l!(K−l)! , which increases exponen-

tially with K. The group combination is G = {1, ..., g , ...,G} . Toward eliminating multi-user 

(2)y = Gx + n,

(3)G = U�V†,

(4)ỹ = U†y =
√
P�V†x +U†n,

(5)rbh = Bbh
L

∑

l=1

log2

(

1+
pl�

2
l

σ 2

)

,

(6)pbh(µ) =
L

∑

l=1

p∗l =
L

∑

l=1

[

µ− σ 2

�
2
l

]+

.

(7)rbh(µ) = Bbh
L

∑

l=1

[

log2

(

µ�2l
σ 2

)]+

.

(8)ebh(µ) = �pbh(µ),

(9)dbh(µ) = �rbh(µ).
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interference within a group, minimum mean square error (MMSE) precoding is applied 
[21]. The signal is propagated between the UAV and GUs via a LoS channel. We denote Kg 
and Kg as the number and set of users in group g, and hk ,g ∈ C

Lr×1 as the channel vector 
for user k ∈ Kg , which is expressed as:

where ιk ,g ,lr means the distance between the UAV’s lr-th antenna and the k-th GU of the 
g-th group. We form Hg =

[

h1,g , ...,hKg ,g

]

 as the channel matrix of group g. Based on the 
MMSE, the precoding vector wk ,g ∈ C

Lr×1 can be calculated by:

where h̃k ,g is to the k-th column of the MMSE precoding matrix HH
g (σ

2
k ,g I+HgH

H
g )

−1 , 
σ 2
k ,g is the noise power for user k ∈ Kg and I is an identity matrix. Since the UAV’s trans-

mit power is a constant selected from 0.1 W to 10 W in practical UAV application [22], 
we assume the transmit power for user k in group g is fixed, denoted as pk ,g . The received 
signal at GU k ∈ Kg is given by:

where xk ,g and nk ,g denote the transmitted signal and white Gaussian noise of GU 
k ∈ Kg . According to (12), we obtain the SINR of GUs k ∈ Kg as:

Thus, the transmitted data volume for GU k ∈ Kg and the transmission energy for group 
g can be expressed as:

where Bac is the bandwidth of the access link.

2.3 � UAV energy model

The propulsion power can be modeled as a function with regards to the flying velocity U 
[23], which is given by:

(10)hk ,g =
[

ι
−β

k ,g ,1e
j2π fcιk ,g ,1 , · · · , ι−β

k ,g ,Lr
ej2π fcιk ,g ,Lr

]

,

(11)wk ,g =
h̃k ,g

�h̃k ,g�
,

(12)
yk ,g =

√

pk ,gh
H
k ,gwk ,gxk ,g +

∑

j∈Kg\{k}

√

pj,gh
H
k ,gwj,gxj,g

+ nk ,g , k ∈ Kg , g ∈ G.

(13)SINRk ,g =
pk ,g |hHk ,gwk ,g |2

∑

j∈Kg\{k} pj,g |h
H
k ,gwj,g |2 + σ 2

k ,g

,

(14)dk ,g = �rk ,g = �Bac log2
(

1+ SINRk ,g

)

,

(15)eg = �pg = �
∑

k∈Kg

pk ,g ,
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where P0 and P1 are the blade profile power and induced power in hovering sta-
tus, respectively. Utip and Uind refer to the tip speed of the rotor blade and mean rotor 
induced velocity, respectively. ̺1 is the parameter related to the fuselage drag ratio, rotor 
solidity, and the rotor disc area. ̺2 is denoted as the air density.

In the hovering phase, the UAV flies circularly around a hovering point with a 
small radius. To minimize the hovering power, the hovering velocity is given by:

Therefore, the hovering energy is only related to the hovering time. In the flying phase, 
the energy consumption with flying distance S is expressed as SP(U)

U  . When the flying 
path is predetermined, S is a constant parameter such that the flying velocity that mini-
mizes the flying energy is:

Both Uhov and Ufly can be obtained by graph-based numerical methods [24]. Therefore, 
the hovering power phov and flying power pfly are P(Uhov) and P(Ufly) . Because the UAV 
suspends data transmission when flying between the clusters in the fly-hover-communi-
cate protocol [5], the minimum flying energy is SP(Ufly)

Ufly .

2.4 � UAV flying path selection and fly‑hover‑communicate protocol

In the considered scenario, the UAV visits and serves each cluster’s data requests in 
a sequential manner according to the predetermined trajectory and visiting orders. 
Before taking off, the UAV pre-optimizes the trajectory according to different 
requirements at the dock station. We keep the trajectory design flexible. For exam-
ple, if the UAV task is time-critical, the flying path can be determined by the clusters’ 
priorities, e.g., the higher-priority cluster is served first. If the task is energy-critical, 
we apply Dijkstra’s algorithm to obtain the shortest or minimal cost path which is 
mainly adopted in this paper [25].

The timeline of UAV actions is depicted in Fig. 2. According to the fly-hover-com-
municate protocol, the UAV stops transmitting data when flying [5]. The UAV first 
experiences the flying phase before arriving at the hovering center of the target clus-
ter. Then, the UAV hovers at the cluster and delivers data to the GUs, which enables 
equivalent hovering time and communication time. When the transmission task in 
the current cluster is completed, the UAV flies to the next cluster.

The main notations are summarized in Table 1.

(16)
P(U) =P0

(

1+ 3U2

U2
tip

)

+ P1

(√

1+ U4

4U4
ind

− U2

2U2
ind

)

1
2

+ 1

2
̺1̺2U

3,

(17)Uhov = argmin U≥0P(U).

(18)Ufly = argmin U≥0

P(U)

U
.
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3 � Problem formulation and Heuristic approach
3.1 � Problem formulation

Our goal is to minimize the total system energy consumption via a joint design for user-
timeslot scheduling and backhaul power allocation subject to the users’ quality of service 
requirements. The total energy consumption consists of four parts: (1) the flying energy, 
(2) the hovering energy, (3) the backhaul transmission energy, and (4) the access transmis-
sion energy. As analyzed in the previous section, the flying energy is independent from the 
scheduling and power transmission decisions and hence can be skipped in the joint design. 
On the other hand, the hovering energy is determined by the transmission time and hence 
needs to be optimized.

We denote a set of binary variables indicating timeslot allocation as follows:

Then joint design of timeslot allocation (via αac
g ,i,α

bh
i  ) and backhaul power optimization 

(via µ ) for energy minimization can be formulated as follows: 

αac
g ,i =

{

1, group g ∈ Gis scheduled at timesloti,
0, otherwise.

αbh
i =

{

1, backhaul link is scheduled at timesloti,
0, otherwise.

(19a)

P1 :

min
αacg ,i ,α

bh
i ,µ

I
∑

i=1

αbh
i

(

ebh(µ)+ ehov
)

+
I

∑

i=1

G
∑

g=1

αac
g ,i

(

eg + ehov
)

(19b)s.t.

I
∑

i=1

G
∑

g=1

αac
g ,idk ,g ≥ qk , ∀k ∈ K,

Table 1  Summary of symbols and notations

Notation Description

Lt , Lr Number of transmitting, receiving antennas in UAV

Kn ,Kn Number and set of users in cluster n

Gn ,Gn Number and set of groups in cluster n

Kg,n ,Kg,n Number and set of users in group g of cluster n

qk ,D Demands of user k and total demands

Tmax Time limitation for each task (in seconds)

I,I Number and set of timeslots in each frame

� Duration of each timeslot (in seconds)

µ Water-filling level

ebh(µ) Backhaul energy

dbh(µ) Transmitted data in backhaul link

ehov Hovering energy at each timeslot

eg Communication energy for group g at each timeslot

dk ,g Transmitted data for user k in group g at each timeslot
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 where ebh(µ) and eg are given in (8) and (15), respectively, and ehov = � · phov is the hov-
ering energy at each timeslot.

In (19a), the first summation represents the transmission and hovering energy spent 
on the backhaul, and the second summation is the energy consumed on the access 
links. Note that we optimize water-filling level µ instead of directly optimizing back-
haul power pbh since pbh depends on µ based on Eq. (6). Constraints (19b) guaran-
tee that each GU’s request is satisfied in the access network. Constraint (19c) states 
that contents delivered through the backhaul should accommodate the total demands 
from the GUs. Constraint (19d) is to avoid concurrent transmission of the backhaul 
and access links. Constraint (19e) upper bounds the water-filling level to umax , which 
is the maximal water-filling level under the backhaul’s limited transmit power. Con-
straints (19f ) and (19g) confine variables αac

g ,i and αbh
i  to binary.

Due to the non-convex items ebh(µ)αbh
i  and dbh(µ)αbh

i  , P1 is a NCMIP problem 
which is difficult to obtain the optimal solution. One method to solve this problem is 
to apply a piecewise linear approximation to linearize non-linear functions, i.e., ebh(µ) 
and dbh(µ) [28]. Thus, the approximations of ebh(µ)αbh

i  and dbh(µ)αbh
i  have a form of 

bilinear function, which can be transformed to linear problems by using the McCor-
mick envelopes [26]. The resulting problem is an integer linear programming (ILP) 
problem, which can be solved optimally by the B&B method [27]. When the num-
ber of linear pieces is sufficient in fitted functions and the bounds of the McCormick 
envelopes are sufficiently tight, the solutions can approach the global optimum. How-
ever, the operations of relaxation and approximation bring about high computation 
time (minutes level) which is unaffordable in practice.

3.2 � Heuristic approach

To reduce the computation time of the problem P1 , we propose a heuristic algorithm. 
First, we consider an extreme condition � → 0 , such that P1 can be relaxed to a con-
tinuous optimization problem P2 in (22a). After relaxation, the allocated time for 
group g and the backhaul link are continuous values:

(19c)dbh(µ)

I
∑

i=1

αbh
i ≥ D,

(19d)αbh
i +

G
∑

g=1

αac
g ,i ≤ 1, ∀i ∈ I ,

(19e)µ ≤ umax,

(19f )αac
g ,i,∈ {0, 1}, ∀g ∈ G, i ∈ I ,

(19g)αbh
i ∈ {0, 1}, ∀i ∈ I ,
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P2 can be formulated as follows: 

 where

By fitting F(µ) and τ bh(µ) with piecewise linear approximations, P2 can be approxi-
mated as a linear programming (LP) problem, which can be solved by classical algo-
rithms such as simplex method [28]. In practice, when � > 0 , P2 provides a lower bound 
of P1 and variables τ1, ..., τg are integer multiples of � . Thus, we take a rounding-up oper-
ation for post-processing, which introduces errors but makes the solutions of P2 feasible. 
We summarize the proposed heuristic algorithm in Alg. 1.

(20)τg = lim
�→0

�

Tmax/�
∑

i=1

αac
g ,i,

(21)τ bh(µ) = D/rbh(µ).

(22a)min
τg ,µ

F(µ)+
G
∑

g=1

τg

(

pg + phov
)

(22b)s.t.

G
∑

g=1

τgdk ,g = qk , ∀k ∈ K,

(22c)τ bh(µ)+
G
∑

g=1

τg ≤ Tmax,

(22d)τg > 0, ∀g ∈ G,

(22e)σ 2/�21 < µ ≤ µmax,

(23)

F(µ) =τ bh(µ) ·
(

pbh(µ)+ phov
)

Eq.(6)
Eq.(7)
= D

Bbh
·

∑L
l=1

(

µ− σ 2

�
2
l

)+
+ phov

∑L
l=1

[

log2

(

µ�2l
σ 2

)]+ .
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When � is sufficiently small, i.e., the solution of P2 approaches the optimal solution 
of P1 and the proposed heuristic method provides near-optimal solutions. The heuristic 
algorithm is more efficient than the optimal algorithm as solving the relaxed continuous 
problem is easier than solving its original integer programming problem. However, P2 
is still suffered from high computation complexity as the number of variables is G + 1 , 
which exponentially increases with the number of GUs. This limits its application prac-
tice when the number of users is large or the latency requirement is stringent.

4 � AC overview and the proposed solutions
Being aware of the high computation complexity of the iterative optimal and suboptimal 
algorithms, We develop ACGP and ACGOP toward real-time applications.

4.1 � AC‑DRL framework

To make the paper self-contained, we provide a brief overview of the adopted AC-DRL 
framework first. Basic RL is modeled as a Markov decision process (MDP) with three 
elements: state, action and reward. At each time step t, the current environment is rep-
resented as a state st . The agent takes an action at based on st and a policy. Then a reward 
rt is received by the agent and the next state st+1 can be observed. By collecting the 
tuple {st , at , rt , st+1} , the agent updates the policy iteratively with value-based or policy-
based methods. The goal of an RL agent is to learn a policy that maximizes the expected 
cumulative reward. In DRL, the policy or other learned functions are approximated as 
a neural network to deal with the high-dimensional state space and improve the learn-
ing efficiency. AC is one of the DRL frameworks, which integrates the strengths of both 
value-based and policy-based methods [16]. AC-DRL split the learning agent into two 
components, where the actor is responsible for updating policies and making decisions 
while the critic is used for evaluating the decisions by value functions.

For the actor, the stochastic policy is applied, which is denoted as π(a|st) represent-
ing the probability of taking action a under state st . Usually, we model π(a|st) as Gauss-
ian distribution with a mean ψ(st) and a variance χ(st) [29]. At each learning step t, an 
action at is taken by following the policy π(a|st) . After that, the agent receives a reward 
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rt as the feedback. The objective of AC-DRL is to maximize the cumulative reward so 
that the loss function of the actor can be defined as:

where Qπ (st , at) = Eπ [
∑∞

t ′=t γ
t ′−t r′t |st , at ] , representing a Q-value function with a dis-

count factor γ . The critic is to evaluate the quality of the action by estimating the current 
Q-value. Temporal difference (TD) learning can be applied for Q-value estimation with 
high learning efficiency [16]. In TD learning, the TD error is the difference between the 
TD target rt + Qπ (st+1, at+1) and the estimated Q-value Qπ (st , at) . The loss function of 
the critic is the square of TD error:

To update the policy and Q-value, we use parameterized functions, i.e., ψθ t (st) , χθ t (st) 
and Qωt (st , at) , to approximate π(a|st) and Qπ (st , at):

where θ t and ωt are the parameters of the approximators. Based on the fundamental 
results of the policy gradient theorem [16], the gradient of J (θ t) and L(ωt) are given by:

The update rules for θ t and ωt can be derived based on gradient descend:

where ρ refers to the learning rate.
However, approximating Qπ (st , at) directly brings about a large variance on gradient 

∇θ J (θ t) , resulting in poor convergence [30]. To reduce the variance, we estimate a 
V-value function V π (st) = Eπ

[

∑∞
t ′=t γ

t ′−t r′t |st
]

 instead of Q-value. Based on TD learn-

ing and parameterized V-value Vωt (st) , the loss function of the critic can be expressed as:

In addition, the TD error δV (ωt) provides an unbiased estimation of Q-value [30]. Thus, 
we can rewrite Eq. (28) and Eq. (29) by:

(24)J = E[−Qπ (st , at)],

(25)L = E[(rt + γQπ (st+1, at+1))− Qπ (st , at)]
2.

(26)π(a|st) ≈ πθ t (a|st) ∼ N (ψθ t (st),χθ t (st)),

(27)Qπ (st , at) ≈ Qωt (st , at),

(28)∇θ J (θ t) = E
[

−∇θ log πθ t (at |st)Qωt (st , at)
]

,

(29)∇ωL(ωt) = E
[

2L(ωt)∇ω

(

Qωt (st+1, at+1)− Qωt (st , at)
)]

.

(30)θ t+1 =θ t − ρ∇θ J (θ t),

(31)ωt+1 =ωt − ρ∇ωL(ωt),

(32)L(ωt) = E[δV (ωt)]2 = E[rt + γVωt (st+1)− Vωt (st)]2.

(33)
∇θ J (θ t) =E[∇θ log(π(at |st; θ t))Qπ (st , at)]

=E
[

∇θ log(π(at |st; θ t))δV (ωt)
]

,
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In this paper, we apply DNNs as the approximators. The tuple {st , st+1, rt , δV (ωt)} is 
stored in a repository over the learning process. At each learning step, a batch of tuples 
will be extracted as the training data for parameter updating.

4.2 � The proposed ACGP and ACGOP

We first reformulate P1 by defining states, actions, and rewards, such that an RL 
framework can apply. Next, we propose two AC-based solutions with highlighting the 
differences from conventional AC-DRL and tailored design for solving P1 . In a learn-
ing episode, we denote the learning steps range from t = 1 to t = te , where te repre-
sents the last step when any termination condition reaches. We set the termination 
conditions by:

•	 The GUs’ requests have been completed.
•	 The service runs out of time.

Based on the AC-DRL framework, we consider two schemes: (1) A straightforward 
learning approach ACGP, i.e., the agent makes decisions for all the variables. (2) A 
combined AC learning and simple optimization approach, i.e., ACGOP.

For ACGP, the system states st are jointly determined by the undelivered demands 
bk ,t and the remaining timeslots ηt:

The undelivered demands bk ,t is the residual data to be transmitted to GU k at timeslots 
t. The actions at in ACGP are corresponding to the decision variables in P1 . When t = 1 , 
the agent predicts the water-filling level, i.e., at = µ . The backhaul power pbh(at) and 
backhaul transmission rate rbh(at) can be calculated by Eq.(6), Eq.(7). Then, the backhaul 
energy is expressed as:

where τ̄ bh(at) = ⌈D/rbh(at)⌉ . When t = 2, ..., te , the agent makes the decisions for user 
scheduling in the access network. The action at = g , representing the index of the 
selected user group. The expressions of the state transition are given by:

The reward function rt is commonly related to the objective of the original problem. For 
example, rt = −et is widely adopted for min-energy problems [31], where et is the energy 
consumed at step t, given by:

(34)∇ωL(ωt) =E
[

2L(ωt) · ∇ω

(

Vωt (st+1)− Vωt (st)
)]

(35)st = {b1,t , ..., bK ,t , ηt}.

(36)ebh(at) = τ̄ bh(at)
(

pbh(at)+ phov
)

,

(37)bk ,t+1 =
{

qk , t = 1,
bk ,t − dk ,at , t = 2, ..., te.

(38)ηt+1 =
{

I − τ̄ bh(at), t = 1,
ηt − 1, t = 2, ..., te.



Page 15 of 27Yuan et al. J Wireless Com Network         (2021) 2021:78 	

Note that, In the simulation −et will be treated as a benchmark. A tailored reward func-
tion for ACGP and ACGOP can be found in (46).

In ACGOP, we observe that when user scheduling is fixed, the remaining backhaul power 
allocation becomes a single-variable optimization problem that is computationally light. 
Thus, the agent in ACGOP only takes actions for user scheduling while the backhaul power 
is determined by an efficient golden-section search approach. Specifically, the state st keeps 
the same as in ACGP. When t = 1, ..., te , the learning agent makes decision for user sched-
uling, i.e., at = g . The expressions of state transition can be rewritten as:

When a termination condition is reached, i.e., t = te , if ηt ≤ 0 , then the solutions are not 
feasible, otherwise ηt can be regarded as the available number of timeslots for backhaul 
transmission. Since the user scheduling is obtained by the learning agent, the original 
problem can be reduced to a single-variable power control problem P3 : 

(39)et =
{

ebh(at), t = 1,

eat + ehov , t = 2, ..., te.

(40)bk ,t+1 =
{

qk − dk ,at , t = 1,
bk ,t − dk ,at , t = 2, ..., te.

(41)ηt+1 =
{

I − 1, t = 1,
ηt − 1, t = 2, ..., te.

(42a)
min

σ2

�
2
1

<µ≤µmax

F(µ)

(42b)s.t.τ bh(µ) = �ηte ,

Fig. 3  Function graph of F(µ)
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Lemma 1  Assume σ
2

�
2
1

< 1 , F(µ) is a unique function with a unique minimum point in 
[

σ 2

�
2
1

,+∞
]

.

1 � Proof
See appendix 7.1. �

Figure 3 illustrates the function graph of F(µ) . Based on Lemma 1, the optimal value 
µ∗ can be quickly found by golden section search [32]. After that, the backhaul energy 
ebh(µ∗) can be calculated by Eq. (36). The energy consumption at each time step is 
rewritten as:

We observe that conventional AC-DRL may have limitations on dealing with P1 . First, 
the decision variables in P1 are both continuous and discrete. Thus, we need to map 
the stochastic policy in AC-DRL to the corresponding action space. Second, the action 
spaces is huge due to the combinatorial nature of P1 . Searching in such a huge space may 
reduce learning efficiency and solution quality. Third, conventional AC-DRL may con-
verge to an infeasible solution without tailored reward design. In this paper, we propose 
a set of approaches to address the above issues.

4.2.1 � Action mapping

Denote ât as the original action selected by the stochastic policy π(a|st) . Since π(a|st) 
follows Gaussian distribution, ât is a continuous value on [−∞,+∞] . We introduce two 
mapping functions:

M1(x) maps x to a continuous space [−κ , κ] , where κ is a positive parameter, while 
M2(x) maps x to a discrete space G = {1, 2, ...,G} . In order to map ât to the correspond-
ing action space, we define the after-mapped action at as:

4.2.2 � Action filtering

The size of discrete space G increases exponentially with the number of users. To con-
fine the action space, we eliminate a considerable number of redundant actions which 

(43)et =
{

eat + ehov , t = 1, ..., te − 1,

eat + ehov + ebh(µ∗), t = te,

(44)M1(x) = min{max{−κ , 0}, κ},

(45)M2(x) = ⌈κ +M1(x)

2κ/G
⌉.

(46)•ACGP : at =
{

µmax(M1(ât )+κ)
2κ , t = 1,

M2(ât), t = 2, ..., te.

(47)•ACGOP : at = M2(ât), t = 1, ..., te.
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bring no benefit to rewards. Specifically, the redundant actions refer to scheduling the 
groups that contain demand-satisfied GUs. Therefore, at the beginning of each step, we 
take an action filtering operation to find which GUs’ demands have been satisfied and 
remove the corresponding groups. As a result, the action space decreases gradually over 
the learning steps, thereby improving the search efficiency and the solution quality.

4.2.3 � Reward design

All the constraints in P1 except (19b) can be met by properly defining actions and states. 
The constraints (19b) cannot be guaranteed as the commonly used reward function, i.e., 
rt = −et , purely minimizes energy, and the GU’s demand is not taken into account. We 
re-design a tailored reward function. First, if the after-learned policy is infeasible at the 
end of each episode, the agent will get a penalty −ζ which is negative [33]. Second, an 
extra reward ǫ

∑K
k=1 dk ,at will be added to rt . That is, the reward enforces the actor to 

deliver more data to meet GUs’ demands. However, transmitting more data results in 
more energy consumption. In this case, we can decrease the weight factor ǫ to control 
energy growth. The re-designed reward is expressed as:

In Alg. 2, we summarize the pseudo-code of ACGOP. Analogous to ACGOP, Alg. 2 can 
apply to ACGP by replacing Eq.(47), Eq. (43), Eq. (40) and Eq. (41) with Eq. (46), Eq. (39), 
Eq. (37) and Eq. (38), respectively.

The significance of the proposed ACGOP and ACGP lies at the practical apply-
ing. The optimization tasks in a UAV-aided communication system are typically with 
realistic constraints and strict computational delay requirements. Compared to offline 

(48)rt =
{

−ζ , if t = te and
∑K

k=1 bk ,t > 0

−et + ǫ
∑K

k=1 dk ,at , otherwise



Page 18 of 27Yuan et al. J Wireless Com Network         (2021) 2021:78 

optimization approaches, ACGOP and ACGP provide online learning and timely 
energy-saving solutions, and achieves a good trade-off between solution quality and 
computational time. In addition, unlike conventional DRL methods, ACGOP combines 
AC learning and optimization to improve the solution quality.

5 � Numerical results
In this section, we evaluate the performance of the proposed solutions and other three 
non-learning benchmarks:

•	 Optimal approach (OPT): McCormick envelopes + B&B (refer to Section 3).
•	 Prop-HEU: Near-optimal algorithm in Alg. 1.
•	 Semi-orthogonal user scheduling-based heuristic algorithm (SUS-HEU) [34]: Apply-

ing SUS for user scheduling and solving P3 backhaul for power allocation.

In addition, we simulate two conventional AC-DRL schemes based on [31] for perfor-
mance comparison.

5.1 � Parameter settings

The parameter setting is similar to that in [12]. We consider both the ABS and UAV are 
equipped with Lt = Lr = 3 antennas. The backhaul channel matrix G and the access 
channel vector hk ,g are obtained by Eq. (1) and Eq. (10), respectively, with the carrier fre-
quency fc = 2.4 (GHz) and the path loss exponent β = 2.6 . In the access link, the GUs 
are randomly scattered and separated into N = 3 clusters. In each cluster, the number of 
GUs is up to K = 10 . The GUs’ demands are randomly selected from the set {3, 3.5, 4, 
4.5, 5} (Gbits). We assume the bandwidth for the ABS and UAV are Bbh = 1 (GHz) and 
Bac = 0.05 (GHz) [35]. The maximum water-filling level µmax is set to 10 units. The 
UAV’s hovering power phov and GUs’ transmit power pk ,g is 5 (Watt) and 2 (Watt), 
respectively. The noise power in UAV σ 2 and GUs σ 2

k ,g are -87.49 (dB) and -116.98 (dB). 
The duration of timeslot � is set as 0.1 (s).

Table 2  Parameters in ACGOP and ACGP

Parameters Actor Critic

Number of hidden layers 3 3

Number of nodes/layer 300 300

Activation function (hidden layers) ReLU ReLU

Activation function (output layer) Sigmoid None

Learning rate ρ 0.001 0.001

Loss function Eq. (24) Eq. (25)

Optimizer Adam Adam

Batch size 64 64

Discount factor γ 0.9

Size of repository 10,000 tuples

Number of learning episodes 400

Software platform Python 3.6 with

TensorFlow 0.12.1
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Fig. 4  Objective energy vs. K ( Tmax = 16s)

Fig. 5  Objective energy vs. Tmax ( K = 7)

Fig. 6  Computational time vs. K ( Tmax = 16s)
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Two fully connected DNNs are employed as the actor and the critic. The adopted 
parameters in ACGOP and ACGP are summarized in Table 2.

5.2 � Results and analysis

We compare the performance of the algorithms in terms of energy minimization and 
computation time. Figure  4 shows the objective energy with the number of users K. 
We can observe that ACGOP has 3.97% gap to the optimum, while for ACGP, the gap 
increases to 10.27%. Prop-HEU obtains a near-optimal solution with 1.61% average gap 
but requires much more computation time, e.g., see Fig. 6. SUS-HEU results in the high-
est energy consumption among all the schemes due to its inappropriate grouping strat-
egy in energy savings. In addition, by averaging the results from the OPT algorithm, the 
sub-figure in Fig. 4 illustrates the proportion of the communication and hovering energy, 
and the percentage of the access and backhaul energy. The majority energy consumption 
is from serving access links, while the backhaul energy takes up around 25% which is a 
non-negligible part. The communication energy consumed on backhaul and access links 
accounts for 31% of the total energy while the proportion of hovering energy is 69%.

Figure 5 demonstrates the total energy consumption with respect to Tmax . When Tmax 
increases from 14 (s) to 17 (s), the energy consumption reduces by 10.43%, 12.34%, 
and 15.31% for Prop-HEU, ACGP, and ACGOP, respectively. This is because, in the 
access network, a small Tmax may enforce more GUs to share the same timeslot, which 
increases inter-user interference as well as the precoding energy. On the other hand, in 
the backhaul network, the system needs to allocate more backhaul power to satisfy the 
backhaul constraint within a very limited time. When the transmission time is sufficient, 
e.g., Tmax > 17 (s), the min-energy points in all the schemes are achieved.

Figure  6 compares the computation time with respect to K. The computation time 
refers to the time from giving inputs to algorithms until receiving the results. From 
Fig. 6, the computation time of OPT and Prop-HEU grows exponentially with K. When 
K=10, the computation time reaches 11 (s) and 90 (s), respectively. ACGOP, ACGP, and 

Fig. 7  Objective energy with different learning rate
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SUS-HEU can provide online solutions by applying the after-learned DRL policy or 
low-complexity SUS strategy to avoid directly solving complex optimization problems, 
thereby saving tenfold to hundredfold computation time compared with OPT and Prop-
HEU. The average computation time of the three algorithms is relatively close. However, 
by recalling the energy-saving performance, ACGOP saves 8.21% and 15.28% energy 
compared to ACGP and SUS-HEU, respectively.

Figures 7 and 8 illustrate the impacts of different learning rates ρ for ACGOP on the 
performance of convergence and feasibility. From Fig. 7, we can obverse that the objec-
tive energy converges over the learning episodes. The convergence speed in the case of 
ρ = 10−3 is faster than that of ρ = 10−4 , whereas, when ρ increases to 10−2 , the curve 
has large fluctuations and the energy at the convergence is higher than that of ρ = 10−3 
and ρ = 10−4 . Figure  8 depicts the total transmitted data over learning episodes. 
When ρ = 10−3 and ρ = 10−4 , the two curves are overlapped and the after-converged 

Fig. 8  Transmitted data with different learning rate

Fig. 9  Objective energy with different AC-DRL methods
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solutions for both are feasible, i.e., the transmitted data are equal to the demands. But 
for ρ = 10−2 , the feasibility cannot be guaranteed. Therefore, to achieve a fast learning 
speed while ensuring the feasibility of the solutions, the learning rates need to be appro-
priately selected. Taking ACGOP as an example, ACGP has the same tendency.

Figures  9 and 10 compare the proposed solutions with conventional AC-DRL. From 
Fig. 9, ACGOP, ACGP and conventional AC-DRL with the reward in [31] and action fil-
tering have similar performance in energy minimization. Conventional AC-DRL with the 
reward in Eq. (48) and without action filtering performs badly, which has slow convergence 
speed and high after-converged energy. Moreover, Fig.  10 demonstrates that neither the 
Conventional AC-DRL schemes can guarantee feasibility. The reason is that the reward in 

Fig. 10  Transmitted data with different AC-DRL methods

u

Fig. 11  Backhaul energy vs. backhaul power
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[31] is only related to the objective function but fails to consider the constraints of the prob-
lem. For AC-DRL without action filtering, a huge space may lead to low exploration effi-
ciency and degraded performance.

In Fig. 11, the backhaul energy, referring to the consumed communication and hovering 
energy due to serving backhaul, is influenced by backhaul power. In general, power opti-
mization is needed because either lower or higher backhaul power could possibly increase 
energy consumption. The former could largely prolong the hovering time thus lead to a 
surge in energy consumption, while the latter reduces the hovering time and energy but 
may result in higher communication energy consumption. The minimum backhaul energy 
can be achieved via optimizing total backhaul power, and the water-filling-based power 
allocation is more energy-saving than other schemes. It can be found that the backhaul 
energy of the water-filling-based scheme is 40.35% lower than that of the uniform allocation 
scheme on average. This is because the water-filling method is able to maximize the capac-
ity for the MIMO system. With a given total power pbh , the water-filling-based scheme has 
a higher transmission rate and less transmission time τ bh than other schemes. Thus, the 
backhaul transmission energy pbhτ bh is reduced.

6 � Conclusion
In this paper, we studied a joint user-timeslot scheduling and backhaul power allocation 
problem to minimize the energy consumption of UAV-assisted communication systems. 
We developed an optimal method and a heuristic algorithm as the non-learning bench-
marks. Due to the high computation time, the above methods cannot provide real-time 
solutions. We then proposed two learning schemes, i.e., ACGP and ACGOP, based on 
actor-critic deep reinforcement learning. Different from conventional AC-DRL, the pro-
posed ACGOP combines AC and optimization to accelerate learning performance. In addi-
tion, we design a set of approaches, such as action filtering and reward re-design, to reduce 
huge action space and guarantee feasibility. Numerical results demonstrated that ACGOP 
and ACGP improve computational efficiency and guarantee solution feasibility. Simulations 
also showed that ACGOP achieves better energy-saving performance than ACGP.

An extension of the current work is to investigate the robustness of the communication 
links. Considering link failure probability and allowing re-transmission, we can develop an 
energy-saving and robust joint user group scheduling and re-transmission scheme for UAV 
networks.

Appendix
Proof of Lemma 1

F(µ) can be expressed as a piecewise function:

where fl(µ) = D
Bbh

· µ−al+cl
log2(µ)+bl

 , al = 1
l

∑l
l′=1

σ 2

�
2
l′

 , bl = 1
l

∑l
l′=1 log2

(

σ 2

�
2
l′

)

 , cl = phov

l
 and 

�L+1 = 0 . The function f (µ) can prove to be continuous but not differentiable at the 

(49)F(µ) = fl(µ), µ ∈
[

σ 2

�
2
l

,
σ 2

�
2
l+1

)

, l = 1, ..., L,
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breakpoints between adjacent intervals. We define φl(µ) = µ(log2(µ)+ bl) and 
ϕl(µ) = µ− al + cl . The first derivative and second derivative of fl(µ) are given by:

Based on Eq. (50), we can derive:

where µ∗
l  is the point that satisfies ln 2 · φl(µ∗

l ) = ϕl(µ
∗
l ) . Since �l > �l+1 , we can derive 

that al < al+1 , bl < bl+1 , cl > cl+1 and µ∗
l > µ∗

l+1 by graphical method, as shown in 
Fig. 12.

Recalling the precondition that σ
2

�
2
1

< 1 , it is not difficult to prove that µ∗
1 > σ 2

�
2
1

 . Then, 

F ′( σ
2

�
2
1

) = f ′1(
σ 2

�
2
1

) < 0 based on Eq.(52) and Eq.(53). Moreover, F ′(µ) = f ′L(µ) > 0 when 

µ > max{µL,
σ 2

�
2
L

} . Thus, there must exist minimum points in 
[

σ 2

�
2
1

,+∞
)

 on F(µ) . We 

assume a minimum point µ∗∗ is located in 
[

σ 2

�
2
l

, σ 2

�
2
l+1

)

 . There are two situations:

(50)f ′l (µ) =
D

Bbh
· ln 2 · φl(µ)− ϕl(µ)

ln 2 · φ2
l (µ)/µ

,

(51)(1) if µ∗
l <

σ 2

�
2
l

, fl′(µ) > 0,µ ∈
[

σ 2

�
2
l

,
σ 2

�
2
l+1

)

,

(52)(2) if µ∗
l ≥ σ 2

�
2
l+1

, fl′(µ) < 0,µ ∈
[

σ 2

�
2
l

,
σ 2

�
2
l+1

)

,

(53)(3) if
σ 2

�
2
l

≤ µ∗
l <

σ 2

�
2
l+1

, f ′l (µ)























< 0, µ ∈
�
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Fig. 12  Function graphs of φl(µ) and ϕl(µ)
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•	 µ∗∗ ∈
(

σ 2

�
2
l

, σ 2

�
2
l+1

)

 . In this case, µ∗∗ = µ∗
l  . On one hand, we can derive that 

µ∗
L < · · · < µ∗

l+1 < µ∗
l < σ 2

�
2
l+1

< · · · < σ 2

�
2
L

 , i.e., µ∗
m < σ 2

�2m
, m = l + 1, ..., L . Based on 

Eq. (51) and Eq.(53), it can be concluded: 

 On the other hand, we can also obtain that 
µ∗
1 > · · · > µ∗

l−1 > µ∗
l > σ 2

�
2
l+1

> σ 2

�
2
l

> · · · > σ 2

�
2
2

 , i.e., µ∗
m > σ 2

�
2
m+1

, m = 1, ..., l − 1 . 

Based on Eq. (52) and Eq. (53), it can be concluded: 

 Therefore, µ∗∗ = µ∗
l  is the only minimum point on F(µ).

•	 µ∗∗ = σ 2

�
2
l

 . In this case, we can derive that 

µ∗
L < · · · < µ∗

l+1 < µ∗
l < σ 2

�
2
l

< σ 2

�
2
l+1

< · · · < σ 2

�
2
L

 , i.e., µ∗
m < σ 2

�2m
, m = l, ..., L , and 

µ∗
1 > · · · > µ∗

l−1 > µ∗
l > µ∗

l−1 >
σ 2

�
2
l

> σ 2

�
2
l−1

> · · · > σ 2

�
2
2

 , i.e., 

µ∗
m > σ 2

�
2
m+1

, m = 1, ..., l − 1 . Based on Eq. (51) and Eq. (52), we can conclude: 

 Therefore, µ∗∗ = σ 2

�
2
l

 is the only minimum point.

Thus, the conclusion.
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