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1  Introduction
Due to the massive amount of wireless equipment accessed via the internet, researchers 
have focused on the high demand for charging wireless mobile terminals (MTs). Thus, 
as a promising green communication solution, simultaneous wireless information and 
power transfer (SWIPT) was introduced to increase the battery life. SWIPT can achieve 
significant gains in energy consumption and spectrum efficiency (SE), improve inter-
ference management, and reduce transmission delays by enabling the simultaneous 
transmission of power and information [1]. Two practical receiving methods exist for 
the SWIPT strategy, i.e., time switching (TS) and power splitting (PS), to harvest energy 
and decode information. In addition, a cooperative relaying (CoR) method combined 
with SWIPT was proposed to increase network reliability and expand the signal cover-
age area [2, 3]. The non-orthogonal multiple access (NOMA) scheme has been regarded 
as a promising technique to improve the SE for 5G and future communication systems 
because the signals of different MTs in NOMA can be multiplexed on the same resource 
elements [4]. Therefore, some researchers combined NOMA with SWIPT relay technol-
ogy to improve the SE and achieve green communication [4, 5].
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Numerous studies were conducted on wireless resource management to improve the 
performance of the SWIPT-NOMA relay system [6–11]. Reference [6] utilized an aver-
age power allocation scheme in the downlink and fixed power control in the uplink to 
evaluate the ergodic rate; however, the strategy does not guarantee that all signals are 
successfully decoded in the downlink and uplink. Reference [7] compared a cognitive 
radio-inspired power allocation scheme with a fixed power allocation scheme to ensure 
the fairness of the data rate. Reference [8] analyzed the error probability of the SWIPT-
NOMA system by using a fixed allocation power scheme. In [9], the outage probability 
was regarded as the optimization function to obtain the power allocation factors. The 
analysis in [10] was in line with realistic scenarios regarding the impact of imperfect 
channel state information (ICSI) and residual hardware impairments (RHIs). Reference 
[11] evaluated the performance of a complex SWIPT scenario that allocated fixed power 
in the downlink. However, most papers focused on fixed power allocation, whereas arti-
ficial intelligence-based (AI) schemes for wireless resource allocation have not been well 
researched.

Many studies investigated access schemes in SWIPT-NOMA relay systems [12–14]. 
Reference [12] analyzed a SWIPT-NOMA relay system that considered channel esti-
mation errors (CEEs) and RHIs. When all users accessed the system, more interference 
occurred at the receivers. Reference [13] investigated the outage probability choosing 
an optimum near destination node and an optimum far destination node, and the near 
node was used as the relay. Nevertheless, neither [12] nor [13] considered the channel 
gain from the relay to the MT, causing performance degradation. [7–11] considered 
access to all users, which prevented the decoding of all signals and generated more inter-
ference at the receivers. Furthermore, the performance of an all-access users’ scheme is 
not high [15, 16] despite high model complexity. In contrast to [7–14] proposed access 
to users who have fed back channel state information (CSI), the algorithm had difficulty 
converging.

Therefore, it is imperative to develop a scheme that provides user access and allocates 
power to qualified users. AI techniques can extract valuable information from data to 
learn and support different functions for optimization, prediction, and decision-making 
in mobile edge computing, mobility prediction, optimal handover solutions, and spec-
trum management [17]. Deep reinforcement learning (DRL) can solve real-time and 
dynamic decision-making problems for power allocation [18–20]. Reference [18] pro-
posed a deep Q network (DQN) for each MT to obtain the optimal power allocation 
scheme. The objective was to reduce the size of the state space; however, this distributed 
power allocation method has no information interaction between the MTs, resulting in 
power allocation conflicts. Reference [19] proposed a two-step model-free DRL-based 
power control scheme to maximize the long-term sum energy efficiency (EE). Based on a 
multi-carrier NOMA network with SWIPT, reference [20] proposed to use a deep belief 
network (DBN) to approximate the optimal power allocation.

1.1 � Contribution

To deal with problems of traditional methods [7–16], inspired by the above studies 
[17–20], we propose a combined user selection and dynamic power allocation (USDPA) 
scheme that chooses the best users access the system and decides optimal power 
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allocation to maximize the sum rate. The main advantages and contributions of this 
paper are summarized as follows.

•	 The USDPA scheme is proposed in the SWIPT-NOMA relay system to optimize the 
user access and power allocation simultaneously to maximize the sum rate because 
traditional optimization methods have difficulty solving nonlinear and non-convex 
problems. More importantly, the results show that our algorithm can successfully 
access more users than comparable algorithms.

•	 We use a deep neural network (DNN) for the user selection network to generate the 
access decision. Subsequently, the access decision is mapped to several candidate 
access actions, whose number changes adaptively. In addition, the result displays that 
the model converges quickly without adding additional computational complexity.

•	 We utilize a DQN to generate the optimal power allocation for each candidate access 
action. Afterwards, we use the optimal pair of access action and power allocation 
action with the maximum sum rate in the system. The best power allocation action is 
stored in the replay memory to train this network.

•	 Finally, we compare the performance of the USDPA with other schemes. The simula-
tions under different scenarios show that the proposed algorithm improves quality of 
service (QoS) and can achieve better performance than other related schemes.

1.2 � Organization

The remainder of this paper is organized as follows. Section  2 describes the system 
model and the problem formulation of the user selection and power allocation model 
for the SWIPT-NOMA relay system. Section 3 presents the USDPA scheme, including 
the user selection network and power allocation network. Section 4 presents the experi-
mental results and analysis, including the convergence, the sum rate, and the number of 
successful communication users (NSCUs). Finally, the conclusions are summarized in 
Sect. 5.

2 � System model and problem formulation
2.1 � Problem formulation

We consider a system model that includes a base station (BS), a relay employing a 
decode-and-forward (DF) protocol, and N  destinations, as illustrated in Fig. 1. Hereaf-
ter, subscripts S, R and Di will be used for the BS, relay, and destination i , respectively. 
The radius of sector S1 are ϒS1 with the BS at the center and an angle φ . The radius of sec-
tor S2 are ϒS2 with same center and angle as sector S1 . The relay is located on a circular 
arc of radius ϒS1 , and the N  destinations are randomly and uniformly distributed in the 
region between ϒS1 and ϒS2 . Each destination node and the relay have a single antenna 
operating in half-duplex (HD) mode. We assume that all small-scale fading in the system 
is independent and identically distributed Rayleigh fading occurs. The channel coeffi-
cients of the links from the BS to the relay and the relay to Di are hS,R ∼ CN

(

0, d−τ
S,R

)

 and 
hR,Di ∼ CN

(

0, d−τ
R,Di

)

 , respectively, where di,j denotes the distance between node i and 

node j , and τ is the path-loss exponent.
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For simplicity, we assume that the transmission time T = 1 and the bandwidth B = 1 . 
The power splitting relay (PSR) strategy is used (Fig. 2). Within the duration of each αT  , 
the relay performs energy harvesting (EH) and information decoding (ID); within each 
(1− α)T  period, the relay performs information forwarding (IF) in the NOMA mode. ρ 
is the power splitting factor for harvesting energy, and (1− ρ) is for decoding informa-
tion. At the end of αT  of each slot, the relay receives the signal from the BS, which can 
be expressed as:

where xS is the signal transmitted by the BS to the relay. nR ∼ CN
(

0, σ 2
R

)

 is the additive 
white Gaussian noise.

The energy harvested by the relay is defined as follows:

where η is the energy conversion efficiency factor. The remaining battery power of the 
relay is Br(t) at the beginning of each slot and Br(0) = 0 in the first time slot. We assume 

(1)yR =
√

PShS,RxS + nR,

(2)EEH = ηρPS |hS,R|
2αT ,

BS

D1

Di

DN

Relay

Energy Harvesting
Information Forwarding

Fig. 1  The SWIPT-NOMA relay model. The BS sends signal to the relay, and then, the relay harvests energy to 
forward signals to the qualified destinations with NOMA

Energy harvesting at the relay R D

Information 
forwarding at the 

relay

S R

Information decoding at the 
relay

T (1- )T

Fig. 2  The PSR strategy. The relay uses the PSR strategy to harvest energy and forward the superimposed 
signals to the qualified users
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that the harvested energy is much less than the maximum storage capacity of the relay. 
After αT  of each slot, the total energy of the battery is:

where Br(t − 1) is the remaining energy of the previous time slot. The relay decodes 
the received signal and forwards the superimposed signal through NOMA. In each 
(1− α)T  , the maximum transmitting power of the relay can be expressed as:

We assume that Dj belongs to a set C that includes the qualified access users, where 
|C| = ̟ . The received signals from the relay can be defined as:

where �j is the power factor allocated by the relay to signal xj , and the power allocation 
factor �j , nD ∼ CN

(

0, σ 2
D

)

 is the additive white Gaussian noise.
The expression of the remaining energy of the battery at the relay after each time 

slot can be expressed as:

We implement successive interference cancellation (SIC) based on the power rank-
ing from strong to weak. If the j-th user is able to eliminate the signals of weaker 
users, the signal-to-interference-plus-noise ratio (SINR) for decoding its own signal 
is:

where ρR = PR/σ
2
D . The achievable data rate at the Dj is defined as follows:

The sum rate of this system is as follows:

2.2 � Problem formulation

We consider the maximum sum rate of the SWIPT-NOMA relay system; thus, the opti-
mization problem is expressed as:

(3)B(t) = Br(t − 1)+ EEH (t),

(4)PR =
B(t)

(1− α)T
.

(5)yDj = hR,Dj





�̟

j=1

�

PR�jxj



+ nD,

(6)Br(t) = (1− α)TPR



1−
�̟

j=1

�j



.

(7)SINRR,Dj =







ρR|hR,Dj |
2
�j

�̟
j=j+1 ρR|hR,Dj |

2�j+1
, j = 1, . . . ,̟ − 1

ρR|hR,Dj |
2
�j , j = ̟ ,

(8)CDj = (1− α) log2

(

1+ SINRR,Dj

)

.

(9)Csum =
∑̟

j=1

CDj .
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where the set C includes the qualified access users; Rth and � are data rate threshold 
for the Dj to decode the signal successfully and the set of power allocation factors, 
respectively.

Constraint C1 represents that each access user belongs to the qualified set C ; con-
straint C2 represents the minimum quality of service (QoS) requirements for selected 
access users, where the data rate of each qualified access user needs to be larger than the 
rate threshold; constraint C3 states that the power cannot be larger than the transmis-
sion power of the relay.

A user selection network is established to reduce the interference caused by the access 
of all users. In addition, since power allocation adjustment is inefficient, we propose a 
DQN algorithm to solve this problem.

3 � USDPA scheme
In this section, we describe the USDPA scheme to determine user access and power 
allocation. The USDPA algorithm for the downlink SWIPT-NOMA relay system is pre-
sented in Fig. 3. We first determine the user access based on the user selection network 
and subsequently derive the power allocation based on the DQN.

The relay forwards the signals to the users with actions of the user selection network 
and the power allocation network. By obtaining optimized the user access and power 
allocation of the system, we maximize the sum rate. The USDPA algorithm is shown in 
Algorithm 1.

3.1 � User selection network

In this part, we design an access policy that rapidly generates an access decision Y (t).

where Y (t) represents the output of the user selection network.

3.1.1 � User selection algorithm

The user selection network has an embedded parameter ω1(t) that connects the hidden 
neurons. At the beginning of each slot, the user selection network uses hR,D(t) as the 
input and outputs a relaxed user access action Y (t) with N dimensions according to the 
access policy πx(t) and the parameterized ω1(t) . Since each value in Y (t) is between 0 
and 1, it is difficult to determine who should access the system; thus, we design a map-
ping rule to quantize the output Y (t) . According to this rule, Y (t) is mapped into W  
access vectors, and the one with the maximum sum rate is the best access vector q∗(t).

A four-layer DNN is designed with one input layer, two hidden layers, and one output 
layer. The dimensions of the input hR,D(t) and output Y (t) are N  , which denotes the num-
ber of destination nodes. The two hidden layers’ activation function is a Relu function, and 

(10)

max
∑̟

j=1

CDj ,

s.t. C1 : Dj ∈ C, j = 1, . . . ,̟ ,
C2 : CDj ≥ Rth,

C3 :
∑̟

j=1

�j ≤ 1, �j ∈ �,

(11)πx(t) : hR,D(t) → Y (t),
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the output layer uses a Sigmoid activation function. In the t-th slot. The output of the user 
selection network can be expressed as Y (t) = fω1

(

hR,D(t)
)

 . The user selection algorithm is 
shown in Algorithm 2.

3.1.2 � The mapping rule

The output Y (t) of the user selection network is mapped to W  vectors. Each value of the 
vector is either 0 or 1, which 0 means the user is not accessed and otherwise. It should be 
noted that there are 2N cases for vectors; consequently, W ∈

[

1, 2N
]

 , where its initial value 
is the same as N  . Reference [21] proved the effectiveness of this method using the same 
binary representation in edge computing to evaluate the output of the DNN. The detailed 
mapping rules are as follows:

(1) q1 accounts for the first mapping vector of Y (t) and is obtained by comparing Y (t) 
with 0.5.

where j = 1, . . . ,N .
(2) The new sequence Y ∗(t) is obtained by sorting Y (t) according to the absolute value of 

the difference between Y (t) and 0.5.
(3) The values of the remaining W  -1 mapping vectors are related to Y ∗(t) , and the vector 

of the i-th mapping is as follows:

(12)q1[j] =

{

1, Y [j] > 0.5
0, otherwise,

Fig. 3  The USDPA algorithm. The proposed scheme includes user selection network to generate the access 
decision and power allocation network to generate power allocation decision effectively according to the 
access decision
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where l = 2, . . . ,W − 1 and j = 1, . . . ,N  . Specifically, when Y [j] = Y ∗[l],

(13)qi[j] =

{

1,Y [j] > Y ∗[l]
0,Y [j] < Y ∗[l],

(14)qi[j] =

{

1, 0.5 > Y ∗[l]
0, otherwise.
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After each ζ slot, W ∗ = min(max(W (t − 1), . . . ,W (t − ζ ))+ 1,N ) , where W (t − ζ ) 
is the position of the best user selection vector corresponding to slot (t − ζ ) of W  
vectors.

3.1.3 � The training of the user selection network

To maximize the sum rate, hS,R(t) and each access vector qk(t) are the inputs of the 
power allocation network, which outputs the power allocation pk(t) . Then, the sum rate 
is calculated using each action pair (qk(t), pk(t)) where k = 1, . . . ,W  . The system selects 
the best access action q∗(t) and adds the newly obtained pair ( hS,R(t), q∗(t) ) to the replay 
memory 1 for training, and q∗(t) is used as labels. Subsequently, a batch of training sam-
ples �1(t) are from the replay memory 1 to train the user selection network and the 
parameters ω1(t) and the policy πx(t) are updated. The ω1(t) is updated by reducing the 
loss function of the user selection network every �1 slots as follows:

The Adam optimizer is utilized in the training process with learning rate θ1 . After 
training, the user selection policy πx(t)

∗ can be updated.

3.2 � Power allocation algorithm

Next, we obtain the appropriate allocation action using the DQN; the algorithm is 
shown in Algorithm 3. We first provide some background information on reinforcement 
learning (RL) to clarify the algorithm. The key elements of RL are defined as follows:

State space: The state space is defined as s = {[hR,D(t), q1(t)], . . . , [hR,D(t), qw(t)]}.

(15)
Loss(ω1) = −

1

|�1(t)|

∑

u∈�1(t)

((q∗(u)) log fω1(u)(hR,D(u))

+ (1− q∗(u)) log(1− fω1(u)(hS,D(u)))
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Action space: a = 
{

a1, . . . , az
}

 is defined for its power allocation action space where 
z = AN

M . There are M power allocation factors, and the action space for N  destinations 
has AN

M actions.
Reward: We use the NSCUs, whose data rate is no less than the QoS threshold to obtain 

an immediate reward, which is defined as follows:

where ̟k(t) is the number of qualified users accessing the system in the k-th access 
vector. Moreover, the cumulative reward function of the power allocation network is 
defined as follows:

where γ is the discount factor of the reward during L slots.
Transition probability: P represents the transition probability, i.e., the probability to tran-

sition from state s(t) to the next state s(t + 1) , given the action a(t) executed in the state 
s(t).

The Q value function is instrumental in solving RL problems [22]. The function describes 
the expected cumulative reward R(t) of initial s(t) , performing action a(t) , and following 
policy πr(t) . To obtain the appropriate power allocation action, the Q value function is 
defined as:

The optimal action-value function in Eq. (18) is equal to the Bellman optimality equation 
[22], which is expressed as follows:

After the optimal Q-function Q∗(s(t), a(t)) is obtained, the Q-learning policy is deter-
mined by:

The state-value function is obtained as follows:

The Q-value is defined as follows:

where θ2(t) is the learning rate of the power allocation network.

(16)r(t) =



















10, NSCUs = ̟k(t),
9, NSCUs = ̟k(t)− 1 and̟k(t) > 1,
8, NSCUs = ̟k(t)− 2 and̟k(t) > 2,
7, NSCUs = ̟k(t)− 3 and̟k(t) > 3,
0, otherwise,

(17)R(t) =

L
∑

t=1

r(t)γ t−1,

(18)Qπr (t)(s(t), a(t)) = Eπr (t)[r(t)+ γQπr (t)(s(t + 1), a(t + 1))|s(t), a(t)]

(19)Q∗(s(t), a(t)) = E[r(t)+ γ maxQ∗(s(t + 1), a(t + 1))|s(t), a(t)].

(20)πr(t)(s(t), a(t)) = arg maxQ∗(s(t), a(t))

(21)V (s(t)) = maxQ(s(t), a(t)).

(22)Qt+1(s(t), a(t)) = (1− θ2(t))Qt(s(t), a(t))+ θ2(t)(r(t)+ γVt(s(t + 1))
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In general, the Q learning algorithm adopts the ε − greedy policy to select the power 
allocation action a(t) with probability 1− ε , whereas a random action has a probability of 
ε = 0.8 . The power allocation action is generated by:

where ω2 is the parameter of the power allocation network.

3.2.1 � Power allocation algorithm based on the DQN

Nevertheless, the Bellman equation is difficult to obtain because it is nonlinear and 
does not have a closed-form solution. The solution to this problem is to utilize neural 
networks to estimate the Q value. Therefore, we adopt a DQN to establish the power 
allocation network with a DNN to output the estimated Q value.

We design a power allocation policy πr(t) that quickly generates a power alloca-
tion decision corresponding to each access vector of the user selection network. The 
power allocation is implemented by the DQN, which is characterized by the embed-
ded parameter ω2(t) that connects the hidden neurons. After the output of the user 
selection network has been mapped to W  access vectors q(t) , hR,D(t) combined with 
each access vector qk(t) is used as the input of the power allocation network. The 
output of this algorithm is pk(t) corresponding to each access vector qk(t) . Then, we 
choose the actions (q∗(t), p∗(t)) with the maximum sum rate as the best actions and 
add the newly obtained pair ( hR,D(t), p∗(t) ) to the replay memory 2. Subsequently, a 
batch of training samples �2 from the replay memory 2 is used to train the power 
allocation network, and the parameters ω2(t) and πr(t) are updated.

A five-layer power allocation network is designed, with one input layer, three hidden 
layers, and one output layer. The Relu function is used as the activation function in 
the first two hidden layers, and the tanh function is used in the last hidden layer. The 
output of the power allocation network can be expressed as pk(t) = fω2

(

hR,D(t), qk(t)
)

.
After allocating power according to access vectors, the relay executes the opti-

mal actions (q∗(t), p∗(t)) with the maximum sum rate of the system and receives the 
immediate reward r(t) . Subsequently, the system moves to the next state, and the 
replay memory 2 is used to store the tuple (s(t), p∗(t), r(t), s(t + 1)) of each slot. When 
the replay memory 2 is full, the oldest record is removed, and the newest record is 
stored.

3.2.2 � The training of power allocation algorithm

A batch of training samples �2(t) from replay memory 2 is used to train the power allo-
cation network. Then, the target Q value is obtained according to the target Q network 
as follows:

where ω2 is the parameter of target Q network. The Q network is trained with �2(t) by 
minimizing the loss function of power allocation network which is defined as:

(23)a1(t) = arg maxQ(s(t), a(t);ω2),

(24)yi = r(i)+maxQ(s(i + 1), a1(i + 1);ω2),
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Meanwhile, the Adam optimizer is utilized in the training process with learning rate 
θ2 . We update the parameters ω2 of the target Q network by copying the parameters of 
the Q network to each slot.

3.3 � Complexity analysis

The complexity of the USDPA algorithm depends on the number of layers of the neural 
network and the number of neurons in each layer. The complexity of the user selection 
network is M1 � Nf1 + f1f2 + f2N  , where f1 and f2 are the numbers of neurons in the 
first and second hidden layers, respectively. The complexity of the power allocation net-
work is M2 � NfQ1 + fQ1fQ2 + fQ2fQ3 + fQ3N  , where fQ1, fQ2 and fQ3 are the numbers 
of neurons in the first, second, and third hidden layers, respectively. In the USDPA algo-
rithm, the output of the user selection network is mapped to W  user access vectors; thus, 
the algorithm complexity is O(M1 +WM2).

4 � Results and discussion
In this section, the effectiveness of the proposed user selection and power allocation 
optimization scheme of the SWIPT-NOMA relay system is verified using the simulation. 
The effects of Rth and various levels of transmitting power at the BS on the performance 

(25)Loss(ω2) = (yi − Q(s(i), a1(i);ω2))
2.
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of the SWIPT-NOMA relay system are analyzed to illustrate the superiority of the pro-
posed scheme in increasing the sum rate.

In this paper, Tensorflow 2.0 is used for simulation. The simulation parameters are set 
as follows [23] (Table 1).

The sizes of replay memory 1 and replay memory 2 are 1000 and 400, respectively. The 
initial number of mapping vectors W = N .

4.1 � Validation of training effects

In this part, we assess the performance of the proposed USDPA algorithm using simu-
lations with different requirements for the successful decoding of the signals. Figure 4 
shows the W  of the USDPA algorithm versus the training slots when PS = 40 dbm. The 
value of W  converges quickly after 4000 slots, and the value of W  is nearly stable within 
2, indicating that the mapping scheme does not increase the computational complexity. 
It can be seen that the higher the QoS, the lower the value of W  converges. The reason is 
that it is easier to satisfy the lower QoS. Figure 5 shows the loss of the USDPA algorithm 
with PS = 40 dBm and Rth = 0.3 bits/s/Hz. It can be seen that the loss functions of the 
user selection network and the power allocation network converge quickly.

Figure 6 shows the average reward of the USDPA versus the training time slots with 
PS = 40 dBm for different QoS requirements. It can be observed that different QoS 
requirements have different effects on the performance of the USDPA algorithm. Spe-
cifically, the algorithm takes longer to reach convergence when the QoS requirements 

Table 1  Parameters values of the system

Parameter Value

N 5

ϒS1 12 m

φ 90°

ϒS2 26 m

dS,R 12 m

τ 2

α 0.5

ρ 0.7

σ 2
R
, σ 2

D
− 30 dbm

η 0.9

� {0.1,0.15,0.2,0.25,0.3,0.35}

�1 10

�2 300

ζ 32

|�1| 100

θ1 0.01

θ2 10−5

|�2| 32

f1 120

f2 80

fQ1 256

fQ2 256

fQ3 512
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are high. In addition, when the QoS requirement is 0.3 bits/s/Hz, the loss of the alloca-
tion network converges rapidly after about 10,000 slots (Fig. 5), and the average reward 
converges rapidly to 10 (Fig. 6). Furthermore, the average reward after 2000 time slots is 
higher than 0.4 bits/s/Hz at a QoS requirement of 0.5 bit/s/Hz. The reason is that when 
the QoS requirement is 0.5 bits/s/Hz, the USDPA algorithm selects fewer users, causing 
less interference, and they can access the system more easily and successfully to meet 

Fig. 4  The W comparison under various QoS requirements versus time when PS = 40 dbm. The decreasing 
trend of W indicates that the complexity of the mapping rule is not increasing and can be converged quickly. 
The x-axis is the time slot, and the y-axis is the value of W . The illustrations are the USDPA with Rth = 0.2 bits/s/
Hz, Rth = 0.25 bits/s/Hz, Rth = 0.3 bits/s/Hz, Rth = 0.35 bits/s/Hz, and Rth = 0.4 bits/s/Hz

Fig. 5  The loss of USDPA algorithm with Rth = 0.3 bits/s/Hz and PS = 40 dBm versus time. After 1000 time 
slots, the user selection network can converge quickly. Therefore, the USDPA scheme converges quickly. 
The x-axis is the time slot, and the y-axis is the loss of the USDPA. The illustrations are the power allocation 
network and the user selection network
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the QoS requirement and allocate the appropriate power using the DQN. Therefore, the 
average rewards are relatively high. In general, the results indicate that the USDPA algo-
rithm exhibits excellent learning performance for different QoS requirements.

4.2 � Experimental results and discussion

The goal of this paper is to maximize the sum rate of the SWIPT-NOMA relay system. 
Consequently, the sum rate and the NSCUs are used to evaluate the algorithm’s per-
formance. Four algorithms are compared with the proposed algorithm: (1) All users 
access (AU) + DQN: all users access the system, and the power allocation scheme 
uses the DQN, which is the same as the power allocation scheme in [18]. (2) All users 
access + average power allocation (AU + AP): all users access the system, and the 
power of each user’s signal is the average power factor. The algorithm decodes the sig-
nals using the order of channels from strong to weak. (3) The user selection scheme 
average power allocation (US + AP): the users that access the system are determined 
by the proposed user selection network, and the power of each user’s signal is the 
average power factor. (4) Random user access (RU) + DQN: the users that access the 
system are determined randomly, and the DQN is used to allocate the power.

Figure  7 shows the NCMUs for different data thresholds. The NCMUs exhib-
its a decreasing trend for the USDPA, AU + DQN, US + DQN, AU + AP, and 
US + AP, when PS = 40 dBm. The reason is that it is difficult for the system to allo-
cate the appropriate power factor to enable the users to decode the signal success-
fully. AU + DQN shows the best NCMUs performance when the data thresholds are 
Rth = 0.2 bits/s/Hz and Rth = 0.25 bits/s/Hz. The reason is that AU + DQN is easier 
to satisfy the lower QoS requirements. The USDPA algorithm exhibits the optimum 
performance when Rth = 0.3 bits/s/Hz, Rth = 0.35 bits/s/Hz, and Rth = 0.4 bits/s/Hz 
because the user selection network choose some users to access the system. The fewer 
the users accessing the system, the less interference there is. However, according to 

Fig. 6  The average reward of USDPA algorithm with PS = 40 dBm under different QoS requirements versus 
time. The reward function determines the speed and degree of convergence of the reinforcement learning 
algorithm. At low QoS, the reward function is able to converge quickly and vice versa. The x-axis is the time 
slot, and the y-axis is the average reward. The illustrations are Rth = 0.3 bits/s/Hz, Rth = 0.4 bits/s/Hz, and 
Rth = 0.5 bits/s/Hz
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the USDPA, it is not possible for the system to access only one user. The reason is 
that the power allocation factor is less than 1 and does not take 0 and 1, which means 
that the sum rate of one user access will not be the maximum. Therefore, the sys-
tem always selects multiple users to access the system. What’s more, it can be seen 
that the performance of AU + AP and US + AP schemes both converge when the QoS 
requirement is high. The reason is that both of them use the average power allocation 
factor for access users, which makes it difficult to guarantee that all qualified users 
can successfully decode the signal under the high QoS requirements. When Rth = 0.3 
bits/s/Hz, the performance of the USDPA algorithm is 63.3%, 144.7%, 115%, and 7% 
higher than that of the RU + DQN, US + AP, AU + AP, and AU + DQN, respectively.

Figure 8 shows the average sum rate of the five schemes with PS = 40 dBm. We can see 
that the performance of the USDPA is the best for all QoS requirements. When Rth = 0.3 
bit/s/Hz, the average sum rate of the USPDA algorithm is 47.8%, 38.2%, 178%, and 63.1% 
higher than that of the AU + DQN, RU + DQN, AU + AP, and US + AP, respectively. The 
reason is that when the average power allocation is utilized for user access, there is no 
dynamic adjustment of the power allocation factor. More importantly, we observe that 
the average sum rate of the USDPA scheme is higher for a QoS requirement of 0.4 bits/s/
Hz than a QoS requirement of 0.35 bits/s/Hz. The reason is that when the QoS require-
ments are higher, the USDPA algorithm selects fewer users to access the system. Thus, 
there is less interference at the receivers, and the achieved sum rate is higher. In addition, 
if all users access the system, there is more interference at the receivers, although the 
DQN is used to allocate power. The US + AP algorithm maintains stable performance as 
Rth increases because the user selection network chooses appropriate users to access the 
system. Although the RU + DQN algorithm chooses the users randomly, it still main-
tains a steady average sum rate because it uses the DQN algorithm to allocate power.

Fig. 7  The NSCUs comparison versus Rth . Under different QoS conditions, the more users are successfully 
decoded, the more effective users are accessed. Then the algorithm performance is better. The x-axis is the 
Rth , and the y-axis is the NSCUs. The illustrations are the USDPA, AU + DQN, RU + DQN, AU + AP, US + AP
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Figure  9 displays the trend of the average sum rate of the five schemes with differ-
ent levels of transmitting power at the BS, when Rth = 0.3 bits/s/Hz at the receivers. The 
average sum rate increases with increasing PS . As PS increases, the SINR at the accessed 
receivers improves, leading to a performance improvement. In addition, we find that 
the USDPA scheme outperforms the other four schemes. The proposed scheme jointly 

Fig. 8  The average sum rate comparison versus Rth . Different QoS can detect the stability of the algorithm. 
When a certain value is reached, the algorithm starts to converge. The x-axis is Rth , and the y-axis is the 
average sum rate. The illustrations are the USDPA, AU + DQN, RU + DQN, AU + AP, US + AP

Fig. 9  The average sum rate comparison versus PS . The x-axis is PS , and the y-axis is the average sum rate. The 
illustrations are the USDPA, AU + DQN, RU + DQN, AU + AP, US + AP
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optimizes user access and power allocation, and the algorithm exhibits efficient learning 
ability by utilizing the user selection network and the power allocation network in the 
dynamic environment.

5 � Conclusion
We propose a USDPA scheme in the SWIPT-NOMA relay system to maximize the sum 
rate in the downlink. A model of the SWIPT-NOMA relay system was established with 
a PSR scheme to harvest energy and forward signals. The USDPA was used to opti-
mize the user access action and power allocation action simultaneously. The simulation 
results showed that the proposed scheme provided the best performance for increasing 
the sum rate. Due to the complexity of the problem, practical scenarios of multi-antenna 
configuration and a bidirectional relay will be analyzed in a future study.
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