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1  Introduction
Wireless ad-hoc networks (WANETs) have grown in popularity primarily because of 
their simplicity and scalability. WANET technology has been used in many applications, 
for example in machine-to-machine communication (e.g., [1–3]), military communica-
tions (e.g., [4]), and disaster recovery in 4G and 5G (e.g., [5, 6]).

WANETs need to transfer messages from their sources to their destinations. Direct 
transmission from source to destination is undesirable (due to high interference levels as 
well as shortening of the battery life). Hence, WANETs typically apply multihop routing. 
In this paper, we study the challenge of multihop routing in multiple-input–multiple-
output (MIMO) networks, where each node is equipped with multiple antennas.

We adopt a stochastic geometry approach, without focusing on a specific network 
structure, using the ubiquitous homogenous Poisson point process (HPPP) for the 
locations of the nodes (e.g., [7–11]). Several works have considered multihop routing 
in WANETs using the HPPP model. Most have considered geographic routing (e.g., [12, 
13]), since it considerably simplifies the analysis.
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In geographic routing, the next hop is selected using knowledge of the geographic 
locations of the potential relays, where the routing decision at each hop is independ-
ent of all other decisions. The most popular geographic routing scheme is nearest 
neighbor routing (e.g., [12, 14]).

Routing algorithms can be significantly improved when the routing decisions take 
the instantaneous channel state information (CSI) into account. This type of algo-
rithm is known as opportunistic relaying. Opportunistic relaying (e.g., [15–20]) was 
shown to outperform traditional routing (such as nearest neighbor). To date, how-
ever, opportunistic relaying has not been investigated for MIMO multihop networks. 
MIMO increases the data rate in WANETs by enabling both spatial multiplexing and 
interference mitigation (e.g., [21]).

A good performance measure for routing schemes is the multiplication of bit rate 
and link length. Intuitively, this multiplication makes sense since delivering the same 
link rates to longer link lengths (distance between a transmitter and its next relay) 
enables faster delivery of the data from their initial sources to their final destinations, 
as does delivering a higher data rate for a link at the same distance (e.g., doubling the 
link distances while maintaining the same rates or doubling the link rates while main-
taining the same distances will double the network throughput).

Some of these ‘bit rate × distance’ metrics are based on the outage rate (e.g., the 
transport-capacity [22] and the progress rate density [23]). An alternative approach 
assumes that each link achieves the ergodic rate (e.g., the Asymptotic-Density-of-
Rate-Progress, ADORP, [18]). The ergodic rate is higher than the outage rate (e.g., 
[24, 25]) but typically requires a longer delay. The achievability of the ergodic rate in 
MIMO WANETs was recently discussed in detail [25]. Conveniently, the ergodic rate 
also lends itself better to analysis. Thus, this work focuses on the ADORP metric.

Recently, in a study that considered single antenna (SISO) WANETs using the 
ADORP routing performance measure, we derived a routing scheme that maximizes 
the network throughput based on local knowledge at each node [20]. We also con-
ducted complete network simulations in which messages were routed from sources 
to destinations and showed that the ADORP provides a good characterization of the 
capability of the network to deliver messages from sources to destinations.

This paper extends the work on SISO routing [20] to MIMO routing. Using multiple 
antennas, the network gains two important capabilities: spatial multiplexing (i.e., the 
ability to transmit multiple data streams in parallel) and interference mitigation (i.e., 
the ability to combine the signals from different receive antennas such that the effect 
of the interference from undesired transmissions is lessened). Thus, MIMO can sig-
nificantly increase the throughput of WANETs.

However, in addition to the selection of the next hop, smart routing in MIMO net-
works requires decisions on the number of spatially multiplexed data streams and 
their precoding vectors. Hence, these new capabilities significantly complicate the 
routing decisions. Each transmitter needs to determine the number of data streams 
for each transmission (while also selecting the preferred relay). This decision needs to 
consider the link to the selected receiver, as well as any available information related 
to the interference at this receiver. In addition, the interference mitigation capability 
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increases transmitter uncertainty, since it becomes more difficult to predict the final 
impact of the interference on the received signal quality.

Furthermore, although increasing the number of data streams can increase the data 
rate of the link, it has two shortcomings: increasing the number of data streams reduces 
the receiver’s ability to mitigate interference and increases the effect of the transmis-
sion on other receivers in the network (even when the total transmission power is fixed). 
Thus, the routing decision in MIMO routing is significantly more challenging than in 
SISO routing.

A number of works have quantified the gain of MIMO in WANETs, in terms of the 
transmission-capacity metric over a bipolar network model (e.g., [26–31]). The trans-
mission capacity calculates the number of single-hop transmissions possible in a specific 
area (using simple abstractions of the routing mechanism). However, the transmission 
capacity evaluates the maximum density of transmitters per unit area while all data 
streams (regardless of their gain) are constrained to the same outage probability at the 
same data rate. Some of these studies (e.g., [26, 28, 30]) have shown that if the transmit-
ter density can be sufficiently increased, a single stream is preferable.

An alternative approach considered a network optimization while assuming a fixed 
stream transmission, i.e., all users transmit an identical number of data streams (e.g., [30, 
32]). Thus far, an adaptive selection of the number of streams has not been studied ana-
lytically for routing in MIMO WANETs using HPPP modeling.

In this paper, we present a novel routing metric for MIMO WANETs based on local 
knowledge. The achievable rate over MIMO WANETs depends on the precoder (at 
the transmitter), the receive weights (at the receiver), and the number of data streams 
to transmit. We propose a routing scheme that adaptively selects the number of data 
streams jointly with the selection of the next hop relay. Unlike the single antenna case 
[20], the routing that maximizes performance in this scenario cannot be explicitly 
expressed. Instead, we use an approximation that allow us to derive a novel and efficient 
routing scheme. This scheme has three advantages. It has low computational complexity, 
it allows each transmitter to send an adaptive number of data streams, and it achieves 
better performance than previously published schemes.

To demonstrate the superiority of this novel routing scheme, we compare its perfor-
mance to the popular nearest neighbor routing which has been tested in previous works 
(e.g., [12, 14]). We also compare this scheme to a single-stream transmission, which has 
been reported to maximize the transmission capacity (e.g., [26, 28, 30]). We show that 
unlike the transmission capacity in the bipolar model, when considering the actual rout-
ing, the ADORP experiences a significant degradation with single-stream transmission. 
Thus, the optimization of the number of streams is crucial.

The main contributions of this paper are as follows: (1) We present a novel routing 
scheme for MIMO WANETs that outperforms currently known schemes. The routing 
scheme jointly selects the physical layer parameters (the number of data streams) and 
the network layer parameters (the next hop relay) based on local knowledge and net-
work statistics. (2) We show that adaptive selection of the number of data streams at 
each node leads to a significant performance gain over the use of identical numbers of 
data streams for all nodes. (3) We show that HPPP modeling is useful in providing infor-
mation on the effect of non-neighbor nodes (which are not included in the transmitter’s 



Page 4 of 26Richter and Bergel ﻿J Wireless Com Network        (2021) 2021:131 

local knowledge). Note that the analytical characterization of the signal gain in a par-
tial-zero-forcing receiver is also important in itself, since it is applicable to other MIMO 
scenarios.

The rest of this paper is organized as follows. Section 1 describes methods of the struc-
ture of the analyzed WANET. Section 2 presents a performance analysis of the MIMO 
WANETs. Section 4 presents the novel routing scheme. Section 4 reports the numerical 
results, and Sect. 5 draws conclusions.

2 � Methods
We consider a decentralized WANET over an infinite area, where each node is equipped 
with multiple antennas. The locations of the nodes are modeled by a homogeneous Pois-
son point process (PPP), � , with density � (i.e., the number of nodes in any area of size A 
has a Poisson distribution with a mean of �A).

2.1 � Medium‑access‑control (MAC)

We use the common slotted ALOHA medium-access-control (MAC) model (e.g., [7, 10, 
11, 33]) where each node chooses to be an active transmitter at a given slot with prob-
ability ptx , independently of the other nodes1. Using the thinning property of PPP (e.g., 
[9]), the locations of the transmitting nodes can be represented by the PPP �T of density 
�ptx . The MAC decisions are made locally and independently. Thus, each node does not 
know which of the other nodes are scheduled to transmit.

2.2 � Physical layer (PHY)

Considering a specific time slot, some of the nodes choose to transmit, while all the oth-
ers are considered receivers. Each node is equipped with N antennas. The received vec-
tor at the ith node is given by

where ri,j and Hi,j are the distance and the channel matrix between the jth transmitter 
and the ith node, respectively, xj ∈ C

N×1 is the transmitted symbol vector of transmit-
ter j. The noise vector at the ith node, vi , is assumed to have a proper complex Gaussian 
distribution with zero mean and E{vivHi } = σ 2

v IN . The noise vector, vi , is independent of 
the transmitted symbol vector, xj . The summation is over N , the set of natural numbers. 
The path loss exponent is denoted by α and satisfies α > 2 . For convenience, all the main 
network parameters are listed in Table 1.

We assume throughout that all entries of the channel matrices, {Hi,j} , are composed 
of statistically independent and identically distributed (iid) standard complex Gaussian 
random variables. We also assume that all nodes use identical total transmission power, 
ρ , and equal power allocation for each stream.

(1)yi =
∑

j∈N
r
− α

2
i,j Hi,jxj + vi

1  While the CSMA protocol is considered more stable and robust, the ALOHA protocol is easier to implement and 
easier to analyze. Furthermore, the ALOHA protocol was shown to perform nearly as well as CSMA in systems with 
multiple antennas (e.g., [34, 35]).
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Denoting by Kj is the number of data streams of the jth transmitter, the transmitted vec-
tor, xj , is constructed by xj =

√
ρ

Kj
Fjzj , where Fj = [fj,1, fj,2, ..., fj,Kj ] ∈ C

N×Kj is the precod-

ing matrix of the jth transmitter. Each column in F is a precoding vector for a single data 
stream (and satisfies �fj,ℓ� = 1,∀ℓ ). The details on the selection of the precoding vectors are 
given below. The data symbols of the jth transmitter are the entries of the vector 
zj = [zj,1, zj,2, ..., zj,Kj ]T , where all data symbols are independent and identically distributed 
(iid) standard complex Gaussian random variables with unit variance.

Considering linear receivers, the decision variable of the kth data stream from transmitter 
j to node i, ẑi,j,k , is generated by multiplying the received vector yi by the weight vector 
wi,j,k ∈ C

N×1 , such that ẑi,j,k = wH
i,j,kyi . The vector wi,j,k is the receive weights at node i for 

the kth stream of the jth transmitter. This weight vector multiplies the received signal at 
each antenna and hence determines the effective channel gain and the interference mitiga-
tion at the receiver. We denote by

the fading variable between the ℓ th stream of the jth transmitter and the detector of the 
kth stream at the ith node.

If node i is interested in the data transmitted by transmitter j, the desired signal power of 
the kth stream is Si,j,k = ρ

Kj
· r−α

i,j Wi,j,k ,k and the power of the interference plus noise to this 

stream is Ji,j,k = ρ
Kj

· r−α
i,j

∑Kj

ℓ = 1
ℓ �= k

Wi,j,k ,ℓ +
∑

n ∈ �T

n �= j

ρ
Kn

· r−α
i,n Wi,n,k + σ 2

v  , where

(2)Wi,j,k ,ℓ = |wH
i,j,kHi,jfj,ℓ|2

(3)Wi,n,k �

Kn∑

ℓ = 1

Wi,n,k ,ℓ.

Table 1  Definitions of parameters and variables

Parameters Definition

ptx Transmission probability of the slotted ALOHA MAC.

� Density of nodes [nodes/km2]

� , �T The point process of all the nodes / all the active transmitters.

N Number of antennas.

α Path loss exponent.

ri Location vector of the ith node.

ρ Total transmission power.

ri,j ,Hi,j Distance and channel matrix between the jth transmitter and the ith node, respectively.

Kj Number of data streams of the jth transmitter.

Fj = [fj,1, ..., fj,Kj ] Precoding matrix of transmitter j.

wi,j,k Receive weight vector at node i for the kth stream of the jth transmitter.

Nj The neighborhood of node j (set of node indices).

Mj={(ri ,Hi,j ):i∈Nj } The local knowledge of node j.

f (·), κ(·) Routing and stream number function (selection of the next hop and the number of 
streams for transmission).

B System bandwidth (in Hertz).

rRZ Radius of the routing zone.
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The signal-to-interference-plus-noise-ratio (SINR) at node i, for detecting the kth stream 
of the jth transmitter, is SINRi,j,k = Si,j,k

Ji,j,k
 . Assuming a near-optimal coding scheme and a 

long enough code word, transmitter j can reliably send information to node i at any rate 
up to Ri,j =

∑
k Ri,j,k , where the rate contribution per stream is

and B is the channel bandwidth. Note that (4) considers independent linear decoding of 
each data stream, where the signals from all other streams are considered as noise (bet-
ter performance can be achieved using nonlinear decoding, e.g., successive interference 
cancelation, but such decoders are out of the scope of this work).

2.3 � Routing mechanism

Each message has its source (origin) node and its destination (desired) node. The task 
of the routing algorithm is to forward messages from their sources to their destinations. 
A direct long distance transmission has significant drawbacks (e.g., high transmission 
power and strong interference); thus, multihop routing is preferred.

As stated above, we focus on geographic routing together with opportunistic relaying 
[15, 20]. Specifically, the routing decisions are performed independently at each node 
and are based solely on the locations of the nodes and the available CSI.

In opportunistic relaying, a transmitter first selects the next relay based on channel 
states and relay locations. Afterward, the transmitter searches in its buffer for the mes-
sage that gains most from the use of this relay. We assume that the message buffer is long 
enough such that it always contains a message to a destination that is located very close 
to the line that extends from the source to the selected relay.

Each transmitter only has knowledge of the location of the destination node, the loca-
tions of its neighbor nodes, and the channel matrix to each neighbor. We define two 
nodes to be neighbors if their distance is at most rRZ . Thus, the neighborhood of node j 
is the set of indices: Nj �

{
i : �ri − rj� ≤ rRZ

}
 where the vector ri contains the coordi-

nates of the ith node. We also use the term routing zone to describe the area of all poten-
tial neighbors, i.e., the circular area of radius rRZ that is centered at each node.

Using the notations given above, the local knowledge that is available to each node can 
be written as the set: Mj �

{
(ri,Hi,j) : ∀i ∈ Nj

}
 . This local knowledge can be obtained 

in various ways. For example, the location can be obtained by each node using GPS and 
then broadcast to its neighbors. As WANETs typically use time division duplexing 
(TDD), CSI to neighboring nodes can easily be obtained by pilot-based channel estima-
tion (e.g., [36]) and using channel reciprocity (e.g., [37]).

The routing decisions are described by two functions that depend on the available 
knowledge, Mj . The first function is the routing function, f (Mj) that denotes the next 
relay selection of user j, i.e., f (Mj) ∈ Nj is the index of the node selected as the next 
hop. The second function is the stream number function, κ(Mj) ∈ {1, 2, ...,N } that 
denotes the number of data streams to transmit by user j (note that the maximum num-
ber of data streams is limited by the number of antennas, i.e., κ(Mj) ≤ N).

In particular, we show that a good routing approach can be formulated by evaluat-
ing a score for each candidate relay and then choosing the candidate with the maximal 

(4)Ri,j,k = B · log2
(
1+ SINRi,j,k

)
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score. More specifically, to determine the next relay and the number of data streams, 
the transmitter first calculates a routing metric (score) for each of the candidate relays. 
We denote the routing metric of candidate i with K data streams at transmitter j with 
local knowledge Mj by m(i,Mj ,K ) . Then, the routing function f (Mj) and the stream 
number function κ(Mj) are chosen as the relay index and number of data streams that 
maximize the routing metric, e.g.,

Good choices of routing metrics are discussed below.

2.4 � Precoding and receive weight vectors

Since the transmitter’s local knowledge does not include the channel matrices between 
the selected relay and its interferers, and because the elements of these channel matri-
ces are Gaussian iid, the transmitter has no knowledge of the ‘direction’ of the interfer-
ers. More precisely, the transmitter’s knowledge may contain hints as to the interference 
power, but all the interference vectors with the same norm are equally likely. Thus, local 
knowledge may improve the selection of the number of streams per transmission. How-
ever, given the number of transmitted data streams and the (equal) power allocation per 
stream, the optimal precoding does not depend on the local CSI, and is given by the 
eigen-beamformer (EBF).

In EBF, the precoding matrix of the jth transmitter, Fj , is determined by the singu-
lar value decomposition (SVD) of the channel matrix to the selected receiver. Thus, if 
f (Mj) = i , we use the SVD of Hi,j = Ui,j�i,jV

H
i,j , and the precoding matrix Fj is chosen 

as the first Kj columns of the unitary matrix Vi,j . Note that the selection of the precoding 
vectors depends solely on the channel matrix of the desired link and does not include 
any knowledge about the channels of the interferers.

Given the EBF precoding matrix and assuming that the receiver can estimate the inter-
ference covariance matrix, the optimal linear weight vector is the well-known minimal 
mean square error (MMSE) weight vector. The MMSE vector, wi,j,k , is given by

where Ci = σ 2
v IN +

∑

n

ρ
Kn

r−α
i,n Hi,nFnF

H
n H

H
i,n is the noise plus the interference covariance 

matrix.
However, the MMSE weight vector, wi,j,k , does not allow for the derivation of the 

closed form performance measure needed for the WANET analysis, or the derivation of 
good routing schemes. Hence, we also consider a receiver that uses partial zero forcing 
(PZF). The PZF receiver represents an efficient, low complexity alternative for interfer-
ence management that is amenable to analysis (e.g., [27, 30]).

The PZF nulls the interference of the most dominant interferers while ignoring the 
interference from all the other interferers (dominant interferers are selected typically 
by their distance to the receiver, the received power of the interference, or their effect 
on the SINR). The choice of the zero-forced interferers explicitly considers the trade-off 
between interference suppression and the desired signal gain.

(5)f (Mj), κ(Mj) = argmax
i,K

m(i,Mj ,K ).

(6)wi,j,k = C−1
i Hi,jfj,k
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We denote by N Inter
ZF,i,j the set of zero-forced interferers when node i tries to decode data 

from transmitter j. We also denote the total number of data streams to be canceled by 
TZF
i,j =

∑
n ∈ N Inter

ZF,i,j
Kn.

Further details on the PZF receiver structure are given in ‘Appendix 1.’ Nevertheless, 
keep in mind that in practice, each receiver uses weight vectors according to (6) and our 
numerical results present findings for both types of receivers.

2.5 � Routing performance

The messages are generated in a homogenous manner in all the nodes of the network. To 
analyze the maximal network performance, we assume that the message generation rate 
is high enough and that the nodes are equipped with long enough buffers such that the 
message buffers of all nodes are rarely empty or full.

We adopt the fast mobility model [20, 38], since it is relatively easy to analyze, and can 
give at least an upper bound on the achievable performance in real-life networks. This 
model assumes that small movements in the network will cause enough changes to the 
network topology such that over a long enough observation time, the network can be 
considered homogenous (and no node will become a network bottleneck).2 It should be 
noted that the fast mobility model inherently allows for long message delays (Further 
details can be found in [20]).

While the routing mechanism aims to deliver messages from their sources to their 
destinations (through several hops), in this work we measure performance by analyzing 
a single time slot. Thus, the routing performance is assessed in terms of the density of 
the rate-distance product in the network, termed the Asymptotic-Density-of-Rate-Pro-
gress (ADORP) [18]. Due to network homogeneity, each transmitter can be considered 
a typical transmitter, and the ADORP can be evaluated by choosing one of the receivers 
as a probe.

Taking transmitter j as the probe transmitter (which can either transmit a new mes-
sage, or relay a received message from another user) the ADORP is given by:

where Ri,j is the achievable rate in the link from transmitter j to node i, the density of 
active transmitters is �ptx , and (1− ptx) is the probability that the selected relay is indeed 
listening. (Recall that each transmitter does not know which other nodes are scheduled 
to transmit at the current time slot.)

Note that if two transmitters decide to transmit to the same receiver, the two packets 
will be received in an interference-limited manner, i.e., the receiver decodes each mes-
sage, while considering the other message as noise. Thus, we can consider each message 
separately, and the interference term for each message includes all other transmitted 
messages, regardless of their destinations.

In the next section, we analyze the PZF-based receiver performance in MIMO 
networks.

(7)D̄
(
f (·), κ(·)

)
� �ptx(1− ptx)E

{
rf (Mj),jRf (Mj),j

}

2  The fast mobility model is still slow enough that it assumes that the nodes barely move during the transmission of a 
message.
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3 � Performance analysis in MIMO networks based on PZF receivers
This section presents the performance analysis of the signal in MIMO networks with 
PZF receivers. We first apply the chain rule for expectations on (7):

where

and EW ,J |Mj {·} is the expectation with respect to the received signal power and the 
interference power, given the available local knowledge.

To further simplify (9), we characterize the conditional distribution of the signal 
fading variables, Wi,j,k ,k . Let γi,j,k to be the kth singular value of Hi,j , and define:

Thus, (9) can be rewritten as:

The importance of (11) is that it separates the statistical behavior of the signal power and 
the statistical behavior of the interference power into terms that are statistically inde-
pendent given N Inter

ZF,i,j (the terms Yi,j,k and Ji,j,k , respectively). This is shown in the fol-
lowing lemma which characterizes the distribution of Yi,j,k . Note that this lemma is also 
applicable to PZF receivers in non-routing scenarios.

Lemma 1  Consider the decoding of the kth data stream from transmitter j, at node i, 
where the transmitter uses EBF and the receiver uses PZF according to (27). The dis-
tribution of Yi,j,k is the same for all k and depends only on Kj and TZF

i,j  . If TZF
i,j = 0 , then 

Yi,j,k = 1 . If 1 ≤ TZF
i,j ≤ N − Kj then Yi,j,k |TZF

i,j ,Kj ∼ Beta(N − TZF
i,j − (Kj − 1),TZF

i,j ) , 
where Beta(α,β) is the beta distribution with shape parameters α and β . For larger values 
of TZF

i,j  , we get Yi,j,k = 0.

Proof  See "Appendix 2". �

Thus, Lemma 1 provides a complete characterization of the statistics of the signal 
power, given the local knowledge, the choice of number of streams ( Kj ) and the total 
number of interferer streams to be canceled ( TZF

i,j  ). Because interferers that affect TZF
i,j  

are completely nulled by the PZF receiver, Ji,j,k and Yi,j,k are indeed statistically inde-
pendent given the set of zero-forced users, N Inter

ZF,i,j.

(8)D̄
�
f (·), κ(·)

�
= �Bptx(1− ptx) · EMj





κ(Mj)�

k=1

Gf (Mj),j,κ(Mj)





(9)Gi,j,k(Mj) � EW ,J |Mj

{
ri,j log2

(
1+

ρ
Kj
r−α
i,j Wi,j,k ,k

Ji,j,k

)∣∣∣Mj

}

(10)Yi,j,k �

∣∣∣wH
i,j,kHi,jfj,k/γi,j,k

∣∣∣
2
= Wi,j,k ,k/γ

2
i,j,k .

(11)Gi,j,k(Mj) = EW ,J |Mj

{
ri,j log2

(
1+

ρ
Kj
r−α
i,j γ 2

i,j,kYi,j,k

Ji,j,k

)∣∣∣Mj

}
.
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The optimal routing scheme given the local knowledge is defined by the functions 
f (·) and κ(·) that maximize the conditional ADORP (the argument of the expectation 
in (8)). However, unlike the single antenna case [20], Equation (8) does not lead directly 
to an optimal routing function. This is because Ji,j,k depends on the number of streams 
selected by each of interfering users. Thus, it is not possible to consider the optimal 
selection function κ(·) that maximizes the expectation in (8) without considering its 
effect on all other users. Hence, finding the optimal routing is intractable. (By contrast, 
the single antenna case is much simpler, because it only has one stream).

Thus, the routing task in MIMO is much more challenging than in SISO, since the 
transmitter needs to jointly select the preferred relay and the number of data streams 
to transmit. An intuitive routing scheme can implement the popular approach of using 
identical numbers of data streams for all users. By limiting the set of possible func-
tions, κ(·) , the resulting ADORP is obviously a lower bound on the achievable ADORP. 
Hence, we set κ(·) = K  where K is the number of streams used by all users. We then 
can find the optimal routing for a given K by explicitly evaluating the expectation in (9) 
given the local knowledge, Mj . (In an additional stage, an offline optimization can find 
the number of data streams, K that gives the highest ADORP for any set of parameters 
{α, �, ptx,N , ρ} .) Note that the conditional distribution of Ji,j,k |Mj is known but quite 
complicated. Yet, the expectation can still be evaluated, for example, through Monte 
Carlo simulations for a given local knowledge, Mj . We dub this approach the fixed sta-
tistically optimal (FSO) routing scheme and examine its performance in the numerical 
results section below.

As mentioned above, the FSO scheme has very high complexity, since evaluating the 
routing metric through the expectation in (9) is very demanding. Moreover, while the 
FSO aims at finding the optimal next-hop, the selection of the same number of streams 
for all links is very limiting.

In the next section we present a novel routing scheme that outperforms the FSO, but 
only requiring low computational complexity.

4 � Smart routing scheme based on local knowledge
This section presents the smart routing (SR) scheme for MIMO multihop routing. The 
SR scheme is derived through optimization of an approximation to the conditional 
ADORP given the local knowledge. The derivation of this approximation is described 
below in several stages.

We start by simplifying the derivation, considering only part of the available knowl-
edge. More specifically, the SR metric for a candidate node i is based solely on part of the 
routing zone termed the known zone (KZ). The KZ of candidate node i is the largest disk, 
centered at the tested relay that can fit into the routing zone. Thus, for transmitter j, the 
radius of the KZ of the ith tested relay is given by:

We denote by NK,i,j the number of nodes within the KZ of the ith tested relay and by Ki,j 
the local knowledge of the nodes in the KZ of candidate node i:

(12)rK,i,j � rRZ − ri,j .
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Thus, we approximate

The evaluation of (14) with respect to the distribution of Ji,j,k requires the evaluation of 
each possible combination of transmission decisions of each user in the KZ. This will 
typically be too complicated so we chose a different treatment for closer users (which 
can create strong interference) than for all other users.

To do so, we condition the expectation with respect to the user’s transmission decisions 
and then use the Jensen inequality. To control the computational complexity, we only con-
dition on part of the users in the KZ. We define the SR-L as the SR scheme for which the 
number of conditioned users is:

See Fig. 1 for an illustration of a simple example.
We also define the vector that contains the decisions of these nodes by 

bi,j = [b1, b2, . . . , bNC,i,j ] . Each element in this vector denotes the transmission decision of a 
single node (i.e., bℓ ∈ {0, 1} ) where the nodes are ordered according to their distances from 
node i. Note that there are 2NC,i,j possible vectors of bi,j , each having the probability:

(13)Ki,j �

{
(rn,Hn,j) : ∀n ∈ Nj , ri,n ≤ rK,i,j

}
.

(14)Gi,j,k(Mj) ≃ E

{
ri,j log2

(
1+

ρ
Kj
r−α
i,j Wi,j,k ,k

Ji,j,k

)
∣∣Ki,j

}
.

(15)NC,i,j � min{L,NK,i,j}.

(16)P(bi,j = bi,j) =
NC,i,j∏

ℓ=1

p
bℓ
tx · (1− ptx)

1−bℓ .

Fig. 1  Local neighborhood of the probe transmitter: each dot represents a node in the network. The red 
triangle is the probe transmitting node and the green star is the tested relay (node i in this example). The 
red dashed circle represents the routing zone with radius rRZ centered at the probe transmitter. The distance 
between the probe transmitter and the tested relay is ri,j . The known zone (KZ) of tested relay i is marked by 
the small blue dotted circle centered at the tested relay with radius rK,i,j (12). In this case, the KZ contains a 
single undesired node; thus, NK,i,j = 1



Page 12 of 26Richter and Bergel ﻿J Wireless Com Network        (2021) 2021:131 

where bi,j = [b1, b2, ..., bNC,i,j ] . An example of the permutations with NC,i,j = 2 is given 
below.

Next, we use the chain rule for expectations and the Jensen inequality to further sim-
plify the approximation3:

At this stage, we need to consider the receiver operation. As stated above, the receiver 
typically uses an MMSE receiver. However, to allow for a tractable derivation, we assume 
a PZF receiver. To optimize the receiver, we need to consider all possible choices of zero-
forced users. For simplicity, we consider at most one zero-forced interferer. We denote 
the number of zero-forced users by z ∈ {0, 1} . That is, if z = 0 then TZF

i,j = 0 , and the 
receiver only uses the EBF. If z = 1 we assume that the receiver zero-forces a single inter-
ferer. As the transmitter has no knowledge of the channel matrices between the inter-
ferers and the receiver, it will assume that the receiver zero-forces the nearest active 
interferer.

Using these approximations, we can evaluate the effect of the interference quite easily. 
The denominator in the log function in the last line of (17) can be written as:

where the parameter eℓ,z(bi,j , n) is the activation weight for node ℓ , given the SR-L 
parameter, n, the activation parameter, z, and the vector of states of the nodes within 
the routing zone, bi,j . Recall that the nodes are ordered according to their distances from 
the ith tested relay, and rK,i,j is the radius of the KZ (12). For an activation vector b , the 
parameter eℓ,z(b, n) is given by:

Stated in words, the first condition in (20) considers the nodes within the KZ that are 
not taken into consideration while evaluating the SR with parameter L. Hence, in (1819), 
the expected power of these nodes depends on the ALOHA transmission probability. 
The second line considers the nodes in the KZ that are assumed to be receivers (with 
bℓ = 0 ) and hence do not induce interference. The third and fourth lines indicate that 
all nodes with bℓ = 1 interfere with the reception except for the nearest transmitter that 

(17)
Gi,j,k(Mj) ≃ E

{
E

{
ri,j log2

(
1+

ρ
Kj
r−α
i,j Wi,j,k ,k

Ji,j,k

)∣∣∣bi,j ,Ki,j

}}

≃ Ebi,j

{
ri,j log2

(
1+

ρ
Kj
r−α
i,j Wi,j,k ,k

E{Ji,j,k |bi,j ,Ki,j}

)∣∣∣ri,j ,Hi,j

}
.

(18)

J̃ zi,j,k(bi,j ,Ki,j) � E{Ji,j,k |bi,j ,Ki,j}

= J̄i(rK,i,j)+
NK,i,j∑

ℓ=1

r−α
i,ℓ · eℓ,z(bi,j ,NC,i,j)

(19)eℓ,z(b, n) =





ptx ℓ > n
0 ℓ ≤ n, bℓ = 0

1− z ℓ ≤ n, bℓ = 1,
�ℓ−1

k=1 bk = 0

1 ℓ ≤ n, bℓ = 1,
�ℓ−1

k=1 bk > 0

.

3  The Jensen inequality is applicable since log2(1+ 1/x) is convex in x. This is actually a lower bound on performance 
that is used here as an approximation. It was shown in [35] that this approximation is acceptable in homogenous PPP 
if it excludes a large enough number of nearest users. In our scheme, this means that the approximation will be tight if 
NC,i,j ≫ 1.
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will be canceled if z = 1 . We further assume that this nearest interferer transmits N/2 
streams4. Thus, we assume that in the SR scheme, the PZF scheme ( z = 1 ) is supported 
only for Kj ≤ N/2 . Note that in the EBF case (i.e., z = 0 ) the third and the fourth rows in 
(20) are identical.

The term J̄i(rK,i,j) denotes the expected interference of the (unknown) transmitters 
outside the KZ. The average interference plus noise generated outside of a circle with 
radius r centered at the ith tested next hop is given by [39, eq. (14)]:

and recall that in our case E{Wi,n,k}E{ ρ
Kj
} = ρ . It is worth noting that (21) can also be 

estimated from the received signal at each receiver and then broadcast to the neighbors 
even without knowing the density, �.

To simplify the evaluation of the desired signal power term in the SR metric, we 
approximate the Beta r.v. Yi,j,k by its mean. For z = 0 we have TZF

i,j = 0 and hence we use 
E{Yi,j,k} = 1 . For z = 1 (PZF receiver), we approximate the desired signal loss by 
E{Yi,j,k} =

N−TZF
i,j −(Kj−1)

N−(Kj−1)  . By further assuming that TZF
i,j = N/2 , we can replace this 

expectation in the PZF case by:

The joint selection of the SR routing function and the SR stream function can be sum-
marized as: 

where

and 1{A} is the indicator function that is equal to 1 if condition A is true. The function 
max{a, b} in (24) chooses between the EBF receiver or the PZF receiver. The EBF receiver 
is allowed in all cases, while the PZF receiver is allowed only for K ≤ N/2.

To better explain the routing metric, note that ri,j and γ 2
i,j,k are obtained from the local 

knowledge on the tested ith relay, Ȳ (N ,Kj) represents the expected power loss due to 
PZF and J̃ zi,j,k(bi,j ,Ki,j) represents the expected interference power for each setting. This 

(20)J̄i(r) =
2π�

(α − 2)
r2−α

E{Wi,n,k}E{ ρ
Kj
} + σ 2

v

(21)Ȳ (N ,Kj) �
0.5N − (Kj − 1)

N − (Kj − 1)
.

(22)
fSR (Mj), κSR (Mj) = argmax

i ∈ Nj

1 ≤ K ≤ N

mSR (i,Mj ,K )

(23)
mSR (i,Mj ,K ) � ri,j ·

K∑

k=1

Ebi,j

{
log2

(
1+ ρ

K
r−α
i,j γ 2

i,j,k

·max

{
1

J̃0i,j,k (bi,j ,Ki,j)
,
Ȳ (N ,K )·1{K≤N/2}

J̃1i,j,k (bi,j ,Ki,j)

}∣∣∣Ki,j

}

4  As the transmitter does not know the number of data streams selected by the interferer, an assumption must be made 
here. The assumption that the interferer transmits N/2 streams aims to give the maximal value supported by both the 
desired user and the interferer. (Cancelation is feasible only if the joint number of streams of both the desired transmit-
ter and the nearest interferer is at most N.) This choice also showed good performance in simulations.
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latter term is composed of 2 parts (1819). One part is evaluated using local knowledge at 
the transmitter, while the other part, J̄i(rK,i,j) , uses statistical modeling to characterize 
the expected interference from nodes outside the routing zone.

Recall that the evaluation of J̄i(rK,i,j) is the only part of this work that uses the PPP 
modeling of the network. Using PPP modeling we can compute the expected interfer-
ence power from nodes outside a disk, as a function of the disk radius. As mentioned 
above, this function can also be locally estimated at each node and broadcast to its 
neighbors.

In words, the SR routing metric, mSR (i,Mj ,K ) , is the score for each candidate node. 
The SR routing function, fSR(Mj) ∈ Nj and the SR stream function, κSR ∈ {1, 2, ...,N } , 
are the index of the node and the number of data streams that maximize this metric. 
Note that ri,j and γi,j,k in (24) are known given Ki,j.

Algorithm 1 illustrates the simplicity of the evaluation of the SR scheme.
To demonstrate the simplicity of this computation, we present a brief example for the 

case where L = 2 and the KZ contains 3 nodes (thus NK,i,j = 3 ). Hence, by (15), NC,i,j = 2 
and bi,j = [b1, b2] . To evaluate the SR metric in this case, we use the following table:

b1 0 1 0 1
b2 0 0 1 1

P(bi,j) (1− ptx)2 ptx − p2tx ptx − p2tx p2tx
J̃0
i,j,k(bi,j) 0 r−α

i,1 r−α
i,2 r−α

i,1 + r−α
i,2

J̃1
i,j,k(bi,j) 0 0 0 r−α

i,2

where the columns correspond to the 2NC,i,j = 4 possible combinations for b1 and b2 . 
In the first combination ( [b1, b2] = [0, 0] ) both interferers are idle, and the PZF receiver 
does not cancel any transmitter. Because Node 1 is closer to the tested relay than Node 
2, for combinations [1, 0] and [1, 1] the receiver cancels Node 1, and for combination 
[0, 1] the receiver cancels Node 2.
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Clearly, the complexity of the SR can be controlled by the L-parameter. Setting L = ∞ 
allows conditioning on all nodes in the KZ, while for any L < ∞ the computational com-
plexity is lower (and bounded). In the numerical results section, we demonstrate the 
performance of the SR scheme, with parameters L = 1 and L = ∞.

5 � Numerical results
This section presents the simulation results that demonstrate the efficiency of the 
proposed routing schemes. We use two types of simulations. Most of the simulations 
evaluate a single time slot and assess the ADORP. We also present a complete network 
simulation, where messages pass from sources to destinations through multiple hops 
over many time slots.

In all the ADORP simulations, the number of nodes has a Poisson distribution with an 
average of Nnodes = 200 , and the nodes are uniformly distributed in a disk with an area 
of size Nnodes/� , centered at the probe transmitter. We also used the bias correction in 
[39]. The transmitted power, ρ , was set to ρ = 1 , the thermal noise variance to σ 2

v = 0.5 
and the node density was � = 2.5 [nodes/km2 ]. The radius of the routing zone was set 
such that the average number of nodes within the routing zone was �πr2RZ = 10 . All the 
results are averaged over 1000 network realizations.

Figure  2 depicts the normalized ADORP (ADORP/B) as a function of the ALOHA 
transmission probability, ptx , for a system with a path loss exponent of α = 2.7 and 
α = 3.3 , where each node is equipped with N = 2 antennas. This is the only figure in 
which we present performance when all receivers use the PZF weights (27). (All the 
other figures present the performance with MMSE receivers.) The figure depicts the per-
formance of the common nearest neighbor (NN) routing, the FSO routing, and the novel 
SR routing.

Both the NN and the FSO schemes take the traditional approach of setting an identical 
number of data streams to all transmitters. For the results in Fig. 2, the optimal num-
ber of data streams for each transmission probability was determined through offline 
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Fig. 2  PZF receiver: Normalized ADORP versus ALOHA transmission probability for the SR, FSO and NN 
schemes, where N = 2,π r2RZ = 10 and α = {2.7, 3.3}
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optimization. The NN scheme does not use local knowledge and always selects the near-
est neighbor to be the next hop.

The FSO scheme (defined at the end of Sect. 2) requires the evaluation of the expecta-
tion in (11), which is far from trivial. While this evaluation is not feasible in practical sys-
tems, in this numerical study we evaluated this expectation through MC simulations for 
the given local knowledge, Mj . That is, at each step we generated many realizations of a 
random network around the transmitter, such that the local knowledge was respected 
and the PPP distribution was used outside the routing zone (e.g., [20]).

Both the SR and the FSO exhibited significant advantages compared to the common 
NN scheme. Thus, the use of local knowledge contributes significantly to the selection of 
the next hop. The gain of SR over FSO is small; however, it should be kept in mind that 
the FSO uses an exact optimization after limiting all users to utilize the same number 
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Fig. 3  MMSE receiver: Normalized ADORP vs. ALOHA transmission probability for various routing schemes, 
where N = 2,π r2RZ = 10 and α = {2.7, 3.3}
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Fig. 4  MMSE receiver: Normalized ADORP vs. ALOHA transmission probability for various routing schemes, 
where N = 4,π r2RZ = 10 and α = {2.7, 3.3}
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of data streams. The fact that it outperformed the FSO using an approximated method, 
shows the importance of the adaptive selection of the number of streams.

Furthermore, the FSO scheme is not practical given its high complexity. By contrast, 
the SR routing scheme (23) requires much lower computational complexity and yields 
higher performance.

Figure  3 depicts the normalized ADORP (ADORP/B) as a function of the ALOHA 
transmission probability, ptx , for the same system setup, except for the use of MMSE 
receivers (6). When using the MMSE receive weights, the achievable performance was 
higher than for the PZF receiver, and the disparities between the different schemes 
changed slightly. Again, the SR and FSO routing schemes outperformed the NN, show-
ing the advantage of the use of local knowledge. In this case the difference between FSO 
and SR was negligible.

Figure  4 depicts the normalized ADORP (ADORP/B) as a function of the ALOHA 
transmission probability, ptx , when each node is equipped with N = 4 antennas, and a 
path loss exponent of 2.7 and 3.3. Again, the performance gap between the two versions 
of the SR scheme, L = {1,∞} was negligible. This again confirms the attractiveness of 
SR-1.

In the N = 4 case, the maximum performance ratio between the SR scheme and the 
NN scheme was 1.12 and 1.10 for α = 2.7 and α = 3.3 , respectively. Compared to Fig. 3, 
the gain of SR and FSO over NN was much smaller for smaller number of antennas and a 
lower path loss exponent, α.

With a smaller number of antennas, the receiver is more sensitive to interference. This 
makes it more important that the probe transmitter should be aware of the interference 
and take it into account. Furthermore, with a large number of antennas, the variations of 
the desired signal become smaller (also known as channel hardening). Thus, the proba-
bility of having a ‘very good’ channel or a ‘very bad’ channel decreases and the advantage 
of opportunistic routing vanishes.

For a small path loss exponent, more interferers affect the receiver’s performance. 
Thus, the receiver’s ability to handle interference is not enough, and the transmitter has 
more incentive to avoid interference using knowledge of the neighbor locations.
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Fig. 5  Selected number of streams vs. ALOHA transmission probability for various routing schemes, where 
N = {4, 8},π r2RZ = 10 and α = 3.3
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Figure  4 also compares our routing schemes to the optimal ADORP with single-
stream transmission (which was shown to maximize the transmission capacity; e.g., 
[26, 28, 30]). This curve is termed FSO1 and its performance was even worse than the 
NN scheme. This illustrates the importance of the optimization of the number of data 
streams, which was implemented in all the other curves in this figure. Recall that the 
SR scheme performs an inherent optimization of the number of data streams, while the 
FSO and the NN in these simulations require offline optimization.
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Fig. 6  Normalized ADORP vs. N = {2, 3, 4, 6, 8} (number of antennas) for a system with ptx = 0.25 , π r2RZ = 10 
and α = 2.7 . The figure depicts the curves of the SR-1 scheme, the optimal FSO scheme ( FSOopt ) and the FSO 
schemes for FSO with single-stream transmission ( FSO1 ) and full-stream transmission ( FSON ), the optimal NN 
scheme ( NNopt ) and the NN schemes with single-stream transmission ( NN1 ) and full-stream transmission ( NNN

)
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Fig. 7  Optimal number of streams (highest ADORP from Fig. 6) versus N = {2, 3, 4, 6, 8} (number of antennas) 
for a system with ptx = 0.25,π r2RZ = 10 and α = 2.7 . The figure depicts the curves of the SR-1 scheme, the 
optimal FSO scheme ( FSOopt ) and the optimal NN scheme ( NNopt)
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The optimization of the number of data streams is further illustrated in Fig.  5, 
which depicts the optimal average number of data streams vs. the ALOHA transmis-
sion probability for N = 4 and N = 8 , when the path loss exponent is α = 3.3 . For the 
SR-1 scheme, the figure presents the average number of data streams selected by the 
users in the system, averaged over all Monte Carlo simulations. For the FSO and the 
NN schemes, the number of data streams is fixed throughout the network. However, to 
optimize the network, we performed offline optimization: we ran the simulation for each 
possible number of streams and chose the value that maximized the average ADORP. As 
can be seen, the average number of data streams decreased as a function the ALOHA 
transmission probability. This was expected since the number of interferers and the total 
interferers’ power increase with the transmission probability, and forces the transmis-
sion to focus its energy on a smaller number of data streams. Note that the SR scheme 
enjoys a continuous change in the average number of data streams (and, of a course, a 
different and optimized choice for each transmitter).

Figure  6 depicts the highest ADORP as a function of the number of antennas, 
N ∈ {2, 3, 4, 6, 8} for a system with a path loss exponent of 2.7 and ALOHA transmission 
probability, ptx = 0.25 . We compare the SR scheme to the modified version of Louie 
et al. [26] who found that a single-stream transmission has a superiority of over a full 
mode transmission in certain scenarios. Specifically, Fig.6 presents the modifications of 
the FSO scheme and the NN scheme that use fixed stream transmission, and either send 
1 or N data streams. Figure 6 shows again the advantage of the adaptive stream transmis-
sion that brings the performance gain at very low complexity.

Correspondingly, Fig. 7 presents the optimal number of streams that achieved the best 
performance in Fig.  6. Inspecting the results in Fig.  7, the SR scheme allows a dynamic 
selection of the number of data streams, which in average, may be irrational number. How-
ever, both the FSO and the NN schemes need to select an integer. In this scenario, the num-
ber of data streams used by the NN schemes was half the number of antennas (0.5N) while 
the novel SR scheme used 0.6N. This increase in the number of data streams is part of the 
reason for the SR performance advantage. The FSO scheme used approximately the same 
number of data streams as the SR scheme, but was forced to settle to the nearest integer at 
each data point.

To further demonstrate the advantages of our novel routing scheme, we performed a 
complete network simulation in which messages were routed from sources to destinations 
according to the mechanism described in Subsection II-C (also see in [20]). The simulation 
included an average of 100 nodes uniformly distributed over a simulation area of 1000m2 
where each node was equipped with two antennas. We considered that each node had a 
home location and an iid mobility model (e.g., [38]). The mobility model followed a sym-
metric normal distribution with variance of 2.84m. This represents low mobility that is only 
sufficient to unravel network bottlenecks. We chose a simulation length that depends on 
ptx according to ts = 100/ptx + 8 · 100 slots. Thus, each simulation was run for a duration 
of ts · T  seconds, where T was the duration of a time slot. Each message contained 20BT 
bits where B was the bandwidth.

The simulation utilizes a hybrid automatic repeat request (HARQ) scheme. Thus, if a 
message is not decoded successfully, the receiver will store the received symbols and wait 
for another retransmission. Once the routing algorithm decides to send a message again 
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to the same relay, the transmitter will transmit additional parity bits of the same message 
and will continue with the same approach until the message is successfully decoded. Thus, 
all messages in this simulation are eventually decoded, and we have no outage events. (The 
messages are not subjected to any delay constraint.)

The performance was measured by the normalized density of end-to-end rate distance 
metric (eeR) [18], where we summed the distance-bit product for all successful messages, 
and divided by the size of the area-time and by the bandwidth. The normalized eeR metric 
is given by [18, equation (9)]: eeR � 1

TTA·B
∑

m LmM · im where A is the simulation area, 
TT = ts · T  is the simulation time, M = 20BT  is the number of bits per message, im is the 
successful delivery indicator, and Lm is the distance between source and destination at the 
time of message generation. Using the ergodic rate approach, a message is assumed to be 
successfully decoded if it accumulates mutual information that is equal or larger than K in 
each of its hops. The summation is over all the messages in the network. Figure 8 depicts 
the normalized eeR as a function of the ALOHA transmission probability, ptx , for a sys-
tem with a path loss exponent of 3.3. We used the parameters of the SR to be the smallest 
known zone (KZ) with L = 1 . Figure 8 shows the eeR performance of the NN scheme and 
the SR scheme. It also depicts the relevant normalized ADORP for each scheme. As can be 
seen, the end-to-end performance indeed converged to the normalized ADORP. (The dif-
ference is due to the fact that each hop distance of the routing in eeR had a deviation from 
the line between the transmitter and the destination.) In addition, as expected from the pre-
vious results, the SR scheme significantly outperformed the NN scheme. The gains ranged 
from 12% to 30%.

6 � Conclusions
In this paper, we proposed a novel routing scheme for multihop MIMO WANETs. 
This smart routing (SR) scheme works in a decentralized manner where each decision 
in each node is based solely on its local knowledge. The SR scheme takes into account 
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Fig. 8  Density of the normalized end-to-end rate distance metric (eeR) as a function of the ALOHA 
transmission probability in a full network simulation where each node was equipped with N = 2 . The figure 
depicts the performance of the SR and the NN routing schemes, for a path loss exponent of α = 3.3
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both channel state information and geographic knowledge (the location of the nodes), 
all at low computational complexity.

The proposed approach adaptively selects the number of data streams for each 
transmission. This adaptive selection was shown to even outperform the ‘optimal’ tra-
ditional routing (where the number of data streams is fixed for all transmissions). This 
combination of robust performance with low implementation complexity makes the 
SR scheme very attractive for practical routing in MIMO WANETs.

We also presented a performance analysis of PZF receivers in general MIMO net-
works that can serve to characterize the signal gain.

This work considered the transmission of data streams with equal power. Future 
work may study the performance improvement when the transmitter optimizes the 
power allocation between the data streams. Although equal power allocation was 
shown to be close to optimal in Gaussian noise [40], this was not shown for the multi-
user MIMO interference channel. Hence, such study in the context of MIMO routing 
might yield interesting insights.

Appendix 1: Partial‑zero‑forcing (PZF) receiver structure
This appendix presents the PZF receiver structure. We assume that each receiver 
knows which nodes transmit at each slot, and can measure their channel matrices and 
uses this knowledge for interference cancelation. We define Hnull,i,j as the effective 
channel matrix of receiver i that contains its interferers. Specifically, the columns of 
Hnull,i,j are {Hi,nFn}n∈N Inter

ZF,i,j
 . The number of columns of Hnull,i,j is TZF

i,j  (which is the total 

number of inter-user streams to be canceled). Thus, the dimensions of Hnull,i,0 are 
N × TZF

i,j .
When trying to decode the kth stream at receiver i, the receiver also nulls the other 

(Kj − 1) streams of the probe transmitter. It is important to note that if TZF
i,j + Kj > N  , the 

receiver cannot decode its messages. These (Kj − 1) streams induce intra-stream interfer-
ence. By adding the (Kj − 1) intra-streams, the interfering signals are spanned by the effec-
tive channel matrix:

where Fj,k ∈ C
N×(Kj−1) denotes the matrix Fj without its kth column. The projection 

onto the null space of H̃null,k is given by the matrix:

and the normalized PZF weight vector is:

This weight vector satisfies wH
i,j,kHi,jFn = 0T for n ∈ N Inter

ZF,i,j (of course n  = j ) and 
wH
i,j,kHi,jfj,ℓ = 0 for all ℓ  = k.

(24)H̃null,k =
[
Hi,jFj,k ,Hnull,i,j

]

(25)Pi,j,k = IN − H̃null,k

(
H̃H

null,kH̃null,k

)−1
H̃H

null,k

(26)wi,j,k =
Pi,j,kHi,jfj,k

�Pi,j,kHi,jfj,k�
.
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The rank of the projection matrix is max{M, 0} where:

Therefore, if M is not positive, the PZF precoding is not feasible and the receiver is idle 
for this time slot.

Appendix 2: Proof of Lemma 1
This appendix evaluates Yi,j,k (10) which depends on the desired fading variable, 
Wi,j,k ,k =

∣∣∣wH
j,kHi,jfj,k

∣∣∣
2
 , using the PZF receiver and BF precoding. In this section we take 

transmitter 0 as the probe transmitter. We use Yi,0,k to denote the r.v. that describes the 
desired fading from the probe transmitter at the ith candidate relay. The PZF received vec-
tor, wi,0,k , depends on Pi,0,k (26) the matrix that projects outside the null space of H̃null,k 
(25) (the effective channel matrix of the interfering signals). In the first step, we simplify the 
term of Wi,0,k ,k into a multiplication of the desired singular value × scalar. In the second 
step, we find the distribution of this scalar. We use manipulations from linear algebra.

In the first step, we aim at simplifying H̃null,k and thus inspect its structure in (25) and 
use SVD: Hi,0 = Ui,0�i,0V

H
i,0 , in which Ui,0 and Vi,0 are unitary matrices. Thus, the matrix 

H̃null,k (25) can be written as

where we define Bk � UH
i,0Hi,0F0,k and G � UH

i,0Hnull,i,0 ∈ C
N×TZF

i,j  . Since the precoding 
matrix F0,k is chosen as the Kj left singular vectors of the unitary matrix Vi,j without the 
kth vector, the resulting matrix Bk is a N × (K0 − 1) matrix in which each column only 
contains a single nonzero element. These nonzero elements are the singular values of the 
matrix Hi,0 (given by the diagonal elements of �i,0 ). It should be emphasized once again 
that Bk does not contain the kth column that corresponds to the kth singular value. For 
example, matrix B2 , for N = 4 and K0 = 3 , has dimensions of B2 ∈ R

4×2 where all the 
elements are zero except two elements: [B2]1,1 = γi,0,1 and [B2]3,2 = γi,0,3.

Now, setting (),e:tildePspsd,k,e:tildePspsd,k,e:tildePspsd,k,e:tildePspsd,k in Pi,0,k 
(26) the projection matrix onto the null space of ˜,e : Hspsnull, k , e : tildePspsd, kHnull,k 
can be rewritten as:

where

Substituting (29) into the PZF received vector for the kth stream in (27), and noting that

(27)M = N − TZF
i,j − (Kj − 1).

(28)H̃null,k = Ui,0

[
UH
i,0Hi,0F0,k ,U

H
i,0Hnull,i,0

]
= Ui,0[Bk ,G]

(29)Pi,0,k = Ui,0P̃i,kU
H
i,0

(30)P̃i,k � IN − [Bk ,G]

[[
BH
k

GH

]
[Bk ,G]

]−1[
BH
k

GH

]
.

(31)Pi,0,kHi,0f0,k =Ui,0P̃i,kU
H
i,0Ui,0�i,0V

H
i,0f0,k = Ui,0P̃i,kek ,N · γi,0,k
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where we used UH
i,0Ui,0�i,0V

H
i,0f0,k = �i,0V

H
i,0f0,k = γi,0,kek ,N , and ek ,N is the column vec-

tor of length N in which the kth element is 1 and all other elements are 0. Hence, (27) 
becomes:

where (32) uses basic properties of the projection matrix: P̃H
i,k = P̃i,k and P̃2

i,k = P̃i,k.
Substituting the PZF receives weight vector (32) into the desired fading power:

In words, we simplified the term of the desired fading power into a multiplication of the 
desired singular value, γ 2

i,0,k , times the scalar, eHk ,N P̃i,kek ,N . This completes the first step of 
this appendix. In the following, we evaluate the distribution of this latter scalar.

This evaluation is not straightforward because the projection matrix P̃i,k (30) is not 
uniformly distributed. (Note that the columns of Bk are deterministic.) Hence, we 
need to further simplify P̃i,k . To this end, we use the formula for the inverse of a block 
matrix

where E � GHG−GHBk(B
H
k Bk)

−1BH
k G and C � (BH

k Bk)
−1 . We use the fact that 

Bkek ,N is a vector of zeros, and only the element in the position [2, 2] (i.e., E−1 ) is rel-
evant since for the other elements of the matrix we have a multiplication with Bkek ,N or 
eHk ,NB

H
k  . Then, we substitute the last equation into (30). Then, the scalar eHk ,N P̃i,kek ,N can 

be written as:

where the Īk is the N × (N − K0 + 1) matrix given by

and we define Īk to satisfy Īk ĪHk = I− Bk(B
H
k Bk)

−1BH
k .

Using the fact that ek ,N = Īk Ī
H
k ek ,N , equation (34) can be rewritten as

(32)wi,0,k = Ui,0P̃i,kek ,N√
eHk ,N P̃i,kek ,N

(33)

Wi,0,k ,k =
∣∣wH

i,0,kHi,0f0,k
∣∣2 =

∣∣∣∣∣∣
eHk ,N P̃i,kU

H
i,0√

eHk ,N P̃i,kek ,N

Hi,0f0,k

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
eHk ,N P̃i,kek ,Nγi,0,k√

eHk ,N P̃i,kek ,N

∣∣∣∣∣∣

2

= γ 2
i,0,ke

H
k ,N P̃i,kek ,N .

(34)

[[
BH
k

GH

]
[Bk ,G]

]−1
=

[
BH
k Bk BH

k G

GHBk GHG

]−1

=
[
C+ CBH

k GE
−1GHBkC − CBH

k GE
−1

−E−1GHBkC E−1

]

(35)

eHk ,N P̃i,kek ,N = 1− eHk ,N [Bk ,G]
[[

BH
k

GH

]
[Bk ,G]

]−1[
BH
k

GH

]
ek ,N

= 1− eHk ,NG
(
GH (I− Bk(B

H
k Bk)

−1BH
k )G

)−1
GHek ,N

= 1− eHk ,NG
(
GH Īk Ī

H
k G

)−1
GHek ,N

(36)Īk =
[
ek ,K0

0
0 I

]
.
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Noting also that ĪHk ek ,N = e1,N−K0+1 , we define G̃ � ĪHk G ∈ C
(N−K0+1)×TZF which is the 

matrix G after puncturing (K0 − 1) rows. Eventually, (34) can be written as

where the projection matrix

is uniformly distributed over the space of projection matrices of the same rank. (Recall 
that the projection matrix P̃i,k (30) is not uniformly distributed.)

Substituting (3738) into (33), the normalized fading is defined by

Using an eigen-decomposition, P̃
G̃
= Ũ�̃ŨH and defining d � ŨHtildee1,N − K0 + 1 

we have: Yi,0,k = dH �̃d = ��̃d�2 where �̃ is a projection to the first M dimensions. Not-
ing that Ũ is uniformly distributed over the space of unitary matrices, vector d is uni-
formly distributed over the unit sphere. Thus, using [41, IV-C], given TZF , Yi,0,k has a beta 
distribution, Yi,0,k |TZF ∼ Beta(M,TZF) and its mean is given by E{Yi,0,k |TZF} = M

N−(K0−1)

.
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