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1  Introduction
The fifth-generation (5G) wireless systems provide support for many applications, such 
as smart home, smart city [1, 2], smart traffic, smart health care [3], industry 4.0 [4], 
smart agriculture, unmanned aerial vehicles [5–11] and so on. Many special applications 
require ultrareliable low-latency communications (URLLC) for 5G systems [12, 13]. The 
strict requirements of URLLC have led to research in many fields, including link sched-
uling problems for 5G systems (e.g., [14–16]). Additionally, the link scheduling problems 
are closely related to the fundamental issues in 5G wireless networks such as coverage, 
connectivity, capacity and throughput, and delay. The correctness of any link schedul-
ing algorithm relies on the underlying interference model. Moscibroda and Wattenhofer 
[17] shifted interference models from simple graph-based models to a more realistic 
model, that is, the signal-to-interference plus noise ratio (SINR) model. Recently, much 
research on link scheduling problems has been conducted under the SINR model (e.g., 
[18–25]). The SINR model considers global interference, i.e., the sum of all interfering 
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signals plus the background noise. Therefore, the SINR model closely covers the main 
features of complex fading models such as the two-ray-ground model without losing too 
much of the simplicity needed for algorithmic design. In general, the path loss expo-
nential model is taken into account when one designs link scheduling algorithms. That 
model assumes any signal transmitted with power Pt is always received after distance d 
with power Pt/dα , where α is the path loss exponent and 2 < α < 6 . However, the path 
loss exponential model does not take short-term fluctuations into account, such as fad-
ing. In fact, the radio propagation model is very complex, and the power of the received 
signal is by no means a determinate value. It is an empirical mathematical formulation 
for the characterization of radio wave propagation as a function of frequency, distance 
and other conditions. Experimental work conducted in Manhattan [26] found that Ray-
leigh fading can be a useful model in heavily built-up city centers where there is no line 
of sight between the transmitter and receiver and many buildings and other objects 
attenuate, reflect, refract, and diffract the signals. In recent years, the Rayleigh fading 
model has been considered in numerous research works, such as [27–31].

In this paper, we focus on the shortest link scheduling problem under the Rayleigh fad-
ing model. Given a set of m links E = {e1, e2, . . . , em} , the shortest link scheduling algo-
rithms partition E into subsets E1,E2, . . . ,EK  such that K is minimal and the successful 
transmission of all links in each subset satisfies the Rayleigh fading model and the SINR 
interference constraint.

The main contributions can be summarized as follows.

•	 We consider the Rayleigh fading model, take the accumulated interference into 
account and design an efficient link scheduling algorithm, named the shortest link 
scheduling algorithm under the Rayleigh Fading (SLSRF) model. Under the Rayleigh 
fading model, the received power at the receiver is a random variable, not a determi-
nate value. Therefore, it is more difficult to design link scheduling algorithms under 
the Rayleigh fading channel model than under the path loss exponential model. In 
addition, we take the SINR interference model into account, and transform the global 
interference into local interference skillfully by partitioning the network area into 
hexagons. Each sender is located in a hexagon, and at most one link is selected from 
a hexagon such that the interference of every two links is upper-bounded. Theoreti-
cal analysis proves that the interference of a link, i.e., e1 , which is beyond some dis-
tance to a link, i.e., e2 , does not affect the Rayleigh success probability of e2.

•	 The SLSRF simultaneously selects one link from each hexagon with the same color, 
and this selection process is executed one by one. In fact, the selection process can 
execute concurrently and does not lead to conflicts. This situation motivates us to 
propose a distributed link scheduling algorithm, which is a distributed version of the 
SLSRF; thus, we refer to it as the DI-SLSRF. We propose a leader election algorithm, 
and senders residing in the same hexagon execute the leader election subroutine with 
a distributed pattern.

•	 We validate the correctness and performance of the SLSRF and DI-SLSRF by elabo-
rate simulations. Although the ideas behind the SLSRF and DI-SLSRF are similar to 
those behind the SLSPC and SLSUM [22], SLSRF and DI-SLSRF get less schedule 
delay than that of SLSPC and SLSUM.
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2 � Method and organization of the paper
This work is organized in three main steps.

•	 First, we did an extensive study of the state of the art on link scheduling problems, 
radio propagation model and interference model. We found that the link schedul-
ing strategy based on plane partition can effectively control the global interference 
of the SINR model. Most algorithms partitioned the network region into rectan-
gles and used the non-fading SINR model. Our research idea is to apply the reg-
ular hexagonal partition scheme to the non-fading SINR model link scheduling. 
In Sect. 3, we reviewed the related work. And, the models and assumptions were 
described in Sect. 4.

•	 Then, we proposed a shortest link scheduling algorithm based on the regular hex-
agonal partition under the Rayleigh fading model, named SLSRF. Communication 
links were grouped according to the distance between the senders and their cor-
responding receivers. For each group, we partitioned network area into hexagons 
and colored them such that two neighboring hexagons had different colors. Time 
is partitioned into slots; at each slot, we scheduled at most one link from each 
hexagon having the same color. We outlined the SLSRF, proved its correctness and 
effectiveness by theoretical analysis and elaborate simulations in Sects.  5 and 6, 
respectively.

•	 Last, we proposed a leader election algorithm, named LE, and extended the SLSRF 
to a distributed version in Sect. 7. Before sending a message, a sender must com-
pete for the channel by executing the LE and the leader can send a message to its 
corresponding receiver. We concluded this paper in Sect. 8.

3 � Related work
The link scheduling problem under the SINR model originated from the work of 
Moscibroda and Wattenhofer [17]. From then on, much work on link scheduling has 
been conducted under the SINR model. Because of the global characteristic, link 
scheduling problems are NP-hard under the SINR model [32]. By partitioning the 
network area into some cells, global interference becomes localized, which is an effec-
tive method for designing a link scheduling algorithm.

Goussevskaia et al.  [32] partitioned the network area into squares and divided the 
problem instance into disjoint link length classes and then constructed a feasible 
schedule for each length class using a greedy strategy. The interference model used in 
[32] is an approximation of the SINR model, in which the effect of the ambient noise 
is neglected. In this case, the SINR model is simplified to the signal-to-interference 
ratio (SIR) model, in which the transmission range of a link can be infinite. Thus, the 
possible number of link length classes can also be infinite.

Blough et al.  [33] noted that black-gray links would affect the performance of the 
link scheduling algorithm. Black-gray links mean that their lengths are equal or near 
the maximum transmission range of the sender; these are treated separately, as they 
are difficult to schedule. In contrast to [32], Blough et  al.  [33] considered the exact 
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SINR model, that is, both the ambient noise and the accumulated interference at a 
receiver were considered.

Xu et al. [34] studied the maximum weighted independent set of links (MWISL) problem 
under the SINR model with oblivious power assignment in wireless networks. They parti-
tioned the network area into large squares and then partitioned each large square into small 
squares. Next, they utilized partition and shifting strategies to find multiple sets of well-sep-
arated links and then selected the one with the largest weight. Similar to [34], by combining 
the partition and shifting strategies with a pick-and-compare scheme, Zhou et al.  [35] pre-
sented a class of localized scheduling algorithms with a provable throughput guarantee under 
the SINR constraint. Different from [34, 35] obtained a maximum independent set of links 
in a small square instead of choosing one link from a small square. The basic idea of the algo-
rithms in [35] was to create a set of disjoint local link sets in which the scheduling can be done 
independently without violating the global interference constraints. The distance between two 
cells is determined by the longest link, resulting in a loose approximation factor.

Since the hypergraph model can limit the interference of links around itself, the inter-
ference from links at farther distances is negligible. Then, based on the characteristic 
of the hypergraph and the idea of [33], combining the SINR and hypergraph models, 
Wang  et  al.  [36] proposed an improved algorithm for shortest link scheduling with 
oblivious power assignment. The main difference between [33, 36] is as follows. (1) [36] 
does not group the links into subsets; (2) [36] eliminates black-gray links by improving 
their transmission power; and (3) [36] chooses as many links at each time slot as possible 
instead of one link, as in [33]. Therefore, [36] decreased the latency of all links.

Based on the fact that a short link can tolerate large interference while a long link tol-
erates small interference, Huang et al.  [37] proposed a novel approximation algorithm 
for shortest link scheduling with oblivious power control. The motivation of [37] is that 
if two transmission links are far from each other, the interference of one link on the other 
should be small under the SINR constraint. By partitioning the links into disjoint local 
link sets that are a certain distance away from each other, independent scheduling inside 
each local link set is possible. Similar to [34, 37] partitioned the network area into large 
squares and partitioned each large square into small squares. For every small square, 
[37] designed a maximum link scheduling algorithm to select as many links as possible.

All the works mentioned above partitioned the network area into squares. Yu et al. [22] 
considered another partition strategy, that is, the hexagon partition. The algorithms 
of [22] were motivated by cellular networks, in which each cell uses a set of frequen-
cies that are different from those of neighboring cells to avoid interference and provide 
guaranteed bandwidth. Simulations demonstrated that the hexagon partition was more 
efficient than the square partition employed by [32, 33]. Moreover, [22] considered the 
energy consumption. The algorithms of [22] consume less energy than those of [32, 33] 
in the case of approximate latency of the link set.

However, a major deficiency of the SINR model is that if the sending power is fixed, 
i.e., P, the received power at the receiver at a distance d from the sender is always Pd−α , 
that is, the SINR model ignores the influence of the multipath fading effect on the signal 
transmission. Therefore, when these results are applied to the actual network environ-
ment, the bound conditions are faced with great challenges.
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Liu and Haenggi [38] addressed the throughput with the Rayleigh fading channel and con-
sidered the impact of the topology on the network performance by comparing networks with 
a random topology and three regular topologies, including the square, triangle and hexagon 
topologies. Among the three regular networks (square, triangle, and hexagon), the hexagon 
network provides the highest throughput since every node has only three nearest neighbors, 
which is the smallest number of neighbors among the three networks. Dames et al. [39] exam-
ined the relationship between the nonfading SINR model and the Rayleigh fading model and 
found that we can apply existing algorithms for the nonfading SINR model in the Rayleigh 
fading scenario while losing only a factor of O(log∗ n) in the approximation guarantee.

4 � Models and definitions
The topology of a wireless network is modeled as a directed graph G = (V ,E) , where V 
denotes the set of nodes and E denotes the set of links. All nodes are deployed in a 2-dimen-
sional plane area randomly. The nodes are partitioned into two classes: one is the set of 
senders, denoted by S, and the other is the set of receivers, denoted by R, that is, V = S ∪ R , 
S = {s|s is a sender} and R = {r|r is a receiver}. If a sender u sends a signal to a receiver v, we 
use a directed edge e to denote the communication link, that is, e = (u, v) . Assume that all 
links have different senders and receivers, that is, if e1 = (u1, v1) and e2 = (u2, v2) , then u1 , 
v1 , u2 and v2 are all different. Let ‖ uv ‖ denote the Euclidean distance between u and v. The 
distance between two links, e1 = (u1, v1) and e2 = (u2, v2) , is defined as ‖ u1v2 ‖ . A sender 
u sends signals with power Qu , and the power at the expected receiver v is Quv . Note that the 
receiver v may receive another signal from another undesirable sender, say w, which transmits 
a signal simultaneously with u. We say that w interferes with the communication of v, and 
we use Qwv to denote the received power at v. We define the transmission probability of u, 
denoted by pu:

4.1 � SINR model

The SINR model is also called the physical interference model, since it reflects physical 
reality more accurately than the graph-based interference models. In the SINR model, 
a signal is received successfully if and only if the signal-to-interference plus noise ratio 
(SINR) at the receiver is above a threshold determined by the communication hardware 
and the modulation and coding scheme. More formally, a communication over a link 
e = (u, v) succeeds if and only if the following condition holds:

where β denotes the minimum SINR value required for a signal to be successfully 
received, N is the ambient noise and I is the accumulated interference caused by other 
senders transmitting simultaneously with u, denoted by ISu , that is, ISu = {w|w is trans-
mitting a signal simultaneously with u} . Therefore,

(1)pu =
{

1, u transmits a signal
0, otherwise

.

(2)
Quv

N + I
≥ β .

(3)I =
∑

w∈ISu

Qwv .
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4.2 � Rayleigh fading model

The Rayleigh fading is a statistical model for determining the effect of a propagation 
environment on a radio signal. It assumes that the magnitude of a signal at a receiver is a 
random variable, which varies according to the Rayleigh distribution. When the sender 
u transmits signals with power Qu , in the Rayleigh fading model, the power received at v 
is exponentially distributed with a mean value Q̄uv . The random variable of the received 
power is denoted by quv . Then,

Here, Q̄uv = Qu�uv�−α denotes the average received power, with 2 < α < 6 denoting the 
path loss exponent, the exact value of which depends on the external conditions of the 
medium (humidity, obstacles etc.).

If two links e1 = (u1, v1) and e2 = (u2, v2) transmit simultaneously, the interference of 
e1 on e2 is exponentially distributed with a mean

that is,

Let Et denote the set of links that transmit signals in slot t simultaneously; then, the 
accumulated interference on ei ∈ Et is I =

∑

ej∈Et∧j �=i Iejei . Under the SINR model and a 

fixed I, the probability that ei can successfully transmit the signal is

Theorem 1  Under the condition of I, the probability that ei = (ui, vi) transmits the sig-
nal successfully is

Proof  Taking the expectation over I, we have

(4)pQuv (quv) = Q̄−1
uv · e−quvQ̄

−1
uv .

(5)Q̄u1v2 = Qu1�u1v2�
−α ,

(6)pQu1v2
(qu1v2) = Q̄−1

u1v2
· e−qu1v2 Q̄

−1
u1v2 .

(7)P

[

Quivi

I + N
≥ β|I = x

]

.

P = exp
(

−βNQ−1
ui

�uivi�α
)

∏

ej∈Et∧j �=i

(

1+ β�uivi�α
∥

∥ujvi
∥

∥

−α
)−1

.

P

�

Quivi

I + N
≥ β|I = x

�

= E

�

P

�

Quivi

I + N
≥ β

��

= exp

�

−
βN

Q̄uivi

�

E





�

ej∈Et∧j �=i

exp

�

−
βIejei

Q̄uivi

�





1

Q̄ujvi

exp

�

−
qujvi

Q̄ujvi

�

d(qujvi )

= exp

�

−
βN

Q̄uivi

�

�

ej∈Et∧j �=i

1

Q̄ujvi

� ∞

0

exp

�

−
�

β

Q̄uivi

+
1

Q̄ujvi

�

qujvi

�

d(qujvi )

= exp
�

−βNQ−1
ui

�uivi�α
�

�

ej∈Et∧j �=i

�

1+ β�uivi�α
�

�ujvi
�

�

−α
�−1

.
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Here, the last equation holds only if Quj = Qui , which can be guaranteed by an assump-
tion in the next section. � �

5 � Shortest link scheduling algorithm with Rayleigh fading
Next, we outline the shortest link scheduling with Rayleigh fading (SLSRF). The SLSRF 
comprises three critical steps: classifying links, partitioning the network area and selecting 
links from hexagons.

5.1 � Classify links

Let maxlen and minlen denote the maximum length and minimum length of the links, 
respectively. We classify the links into some disjoint groups according to their lengths, that 
is,

All links in the same group have the same sending power. Let Qi = 8βN (2i+1minlen)α 
denote the sending power of the ith group.

5.2 � Partition the network area and select links

For the ith group, let

We partition the network area into hexagons with a side length of µ2i+1minlen and 
color them such that no two adjacent hexagons have the same color; see Fig. 1. We use 1, 
2 and 3 to denote three different colors. A link belongs to a hexagon if its sender resides 
in the hexagon. Next, we consider the hexagons group by group and select the links for a 

(8)







E = C0 ∪ C1 ∪ · · · ∪ CK ,K =
�

log(maxlen/minlen)
�

,

Ci = {e|2iminlen ≤ �e� < 2i+1minlen}, i = 0, . . . ,K ,
Ci ∩0≤i<j≤K Cj = ∅.

(9)µ = 1+
(

β
/

(

(5/4)1/6 − 1
))1/α

.

Fig. 1  Network area partition with three different colors
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time slot t by choosing one from each hexagon in the same group. The set of links sched-
uled simultaneously in time slot t is denoted by Et . Recall that the received power at the 
receiver is a random variable under the Rayleigh fading model. The link ei ∈ Et transmits 
successfully with a probability. Therefore, we examine each link e ∈ Et . If the SINR value 
of e is smaller than β , then its communication fails. Afterwards, e is rescheduled in the 
next time slot. In the next algorithm, we use SINREt (e) to denote the SINR value of e in 
the simultaneous transmission set Et in time slot t. This procedure is repeated until all 
the links belonging to the same group are scheduled. Then we consider other groups 
until all links in the link length class under consideration are scheduled. The pseudo 
code of the SLSRF algorithm is presented in Algorithm 1.

Next, we prove the correctness of algorithm SLSRF.

Lemma 1  [40] If a set Ei of links is feasible in the Rayleigh fading channel model with 
transmitting probability 1 and if the Rayleigh success probability is at least 1/

√
e for each 

link, Ei is feasible in the SINR model.
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Theorem  2  For each link in Et , t = 1, 2, . . . ,T  , the Rayleigh success probability is at 
least 1/

√
e with high probability.

Proof  Let ei = (ui, vi) ∈ Et . Then the Rayleigh success probability of ei is

Obviously, P is proportional to ‖ ujvi ‖ and is inversely proportional to ‖ uivi ‖ . That is, 
if the interference is fixed, the larger the length of ei is, the smaller the Rayleigh success 
probability is. On the other hand, if ei is fixed, the smaller the distance of ‖ ujvi ‖ is, the 
smaller the Rayleigh success probability is. This observation means that if ej is near ei , 
then the interference of ej on ei is large and the Rayleigh success probability of ei is small. 
We conclude that if ‖ ujvi ‖ takes the minimum value and ‖ uivi ‖ takes the maximum 
value then P takes the minimum value. Next, we derive the lower bound of P.

Assume that ui resides in the hexagon labeled A (see Fig. 2), the color of which is 1. 
According to the SLSRF algorithm, the senders of the links in Et lie in the hexagons 
with the same color 1, and these hexagons form hexagon-shaped belts, as shown in 
Fig. 2. The first belt, i.e., the inner belt, contains 6 hexagons (black hexagons in Fig. 2, 
and the distance from the links in these 6 hexagons to vi is at least (µ− 1)2i+1minlen . 
More generally, the hth belt contains 6h hexagons. When h is even, the distance from 
links in the 6h hexagons to vi is at least 

(

(3h−2)
√
3µ

2 − 1
)

2i+1minlen . When h is odd, 

the distance from links in the 6h hexagons to vi is at least 
(√

27h2−36h+13µ
2 − 1

)

2i+1minlen . Since 

(3h− 2)
√
3µ =

√
27h2 − 36h+ 12 <

√
27h2 − 36h+ 13 , we conclude that the dis-

tance from the links in the hth belt hexagons to vi is at least 
(

(3h−2)
√
3µ

2 − 1
)

2i+1minlen

.

Therefore,

P = exp
(

−βNQ−1
ui

�uivi�α
)

∏

ej∈Et∧j �=i

(

1+ β�uivi�α
∥

∥ujvi
∥

∥

−α
)−1

.

Fig. 2  Select one link from the colored hexagons (with label 1)



Page 10 of 20Huang et al. J Wireless Com Network        (2021) 2021:135 

Let X =
∞
∏

h=2

(

1+ β

(

(3h−2)
√
3µ

2 − 1
)−α

)−6h

 . Obviously, X is determined by α , β and h 

all together. When h and β are fixed, X decreases with decreasing α . Similarly, when h 
and α are fixed, X decreases with increasing β . Since 2 < α < 6 , and generally β < 40 . 
Next, we set α = 2 and β = 50 . Then, when h < 48 , P > 1/

√
e . That is, when h < 48 , the 

SLSRF ensures a Rayleigh success probability of each link of no less than 1/
√
e . It seems 

that the SLSRF is not precise. However, in a real network environment, α > 2 and 
β < 25 . For instance, if α = 3 and β = 10 , which are typical settings, then P is always 
larger than 1/

√
e.

Let Y =
(

1+ β

(

(3h−2)
√
3µ

2 − 1
)−α

)−6h

 . Figures 3 and 4 show the variation tendency of 

Y, which is called the interference factor, with the variation of α , β and h. From Fig. 3, we 
can derive that when h > 12 , the interference factors reaches up to 1. From Fig. 4, we 
can see that different β values have almost the same influence on the Rayleigh success 
probability of ei . When h ≥ 12 , the interference factors reach up to 1. Therefore, we can 
conclude that when h ≥ 12 , the interference factors can be neglected and they do not 
impact the Rayleigh success probability of ei . The Rayleigh success probability of ei is 
P > 0.8825× 0.8× 0.99h . When h ≤ 12 , P > 1/

√
e . However, when h > 12 , the 

influence factors of the hth links can be neglected. Therefore, for each link in Et , 
t = 1, 2, . . . ,T  , the Rayleigh success probability is at least 1/

√
e with high probability. �

P = exp
(

−βNQ−1
ui

�uivi�α
)

∏

ej∈Et∧j �=i

(

1+ β�uivi�α
∥

∥ujvi
∥

∥

−α
)−1

≥ exp
(

−βNQ−1
ui

(

2i+1minlen
)α)

(

1+ β(µ− 1)−α
)−6

∞
∏

h=2

(

1+ β

(

(3h− 2)
√
3µ

2
− 1

)−α)−6h

= exp

(

−
1

8

)

·
4

5
·

∞
∏

h=2

(

1+ β

(

(3h− 2)
√
3µ

2
− 1

)−α)−6h

.

2 4 6 8 10 12 14 160.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

h
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e 
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Fig. 3  Y increases sharply to 1 with different α s, β = 10
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5.3 � Discussion

In the Rayleigh fading channel model, the successful transmission of a link is a random 
variable. Although the Rayleigh success probability of ei is smaller than 1/

√
e , the trans-

mission of ei may be successful. Therefore, Et is a correct feasible set even though the 
Rayleigh success probabilities of some links are lightly smaller than 1/

√
e . The Rayleigh 

success probabilities of ei is impacted by many factors. For instance, in an application 
environment, the size of the network is finite, that is, h is generally small. Moreover, 
for the proof of Theorem  2, we assume that one link is selected from hexagons with 
the same color as that of the one that ei resides in. In fact, there may be no links to be 
selected. These factors make the Rayleigh success probability of ei larger than that ana-
lyzed in Theorem 2. On the other hand, if we improve the transmitting power, such as 
Qi = 10βN (2i+1minlen)α , the first factor of the Rayleigh success probability increases 
and the Rayleigh success probability of ei increases. Therefore, we can improve the trans-
mitting power if necessary.

6 � Simulations
Next, we show the correctness and effectiveness of the proposed algorithm by simula-
tions. Comparing the SLSRF with the SLSPC and SLSUM [22], we conclude that the 
SLSRF is indeed efficient.

6.1 � Simulation settings

Assume that all nodes are deployed in a large network region with an area of 
2000m× 2000m randomly and that the distance between each pair of nodes is no less 
than 1. We further assume that the link lengths are arbitrarily distributed; thus, we ran-
domly select two points, say ui and vi , forming a link ei = (ui, vi) in the network region 
that satisfies the condition minlen ≤� uivi �≤ maxlen . In the following simulations, 
we let minlen = 1 and maxlen = 30 . Assume that each link has a distinct sender and a 
distinct receiver. The ambient noise N is fixed at −70 db . We set α = 3 and β = 10 db 
unless the impact of a parameter is under consideration, in which case we adjust the 
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corresponding parameter within a reasonable value range. We compare the SLSRF with 
four algorithms: GOW [32], GOW* [33], SLSPC and SLSUM [22]. Some parameters 
influence the scheduling results of the GOW*, SLSPC and SLSUM, and we set ε1 = 0.4 
(in [33] ε1 ≥ 1/7 ) for the GOW*, ε2 = 4 (in [22] ε2 > 0 ) for the SLSPC and ϕ = 2.5 (in 
[22] ϕ > 0 ) for the SLSUM. We choose ε1 = 0.4 , ε2 = 4 and ϕ = 2.5 because these set-
tings yield the best performance in terms of latency based on our simulations on the 
GOW*, SLSPC and SLSUM. The important parameters are listed in Table 1.

6.2 � Simulation results

Figure 5 demonstrates that in the case of the same parameter settings, the SLSRF has the 
shortest latency among all the algorithms. Although GOW does not consider ambient 
noise, the SLSRF has better performance than that of the GOW. The ideas behind the 
SLSRF, SLSUM and SLSPC are similar, but the SLSRF has the best performance, since 
the side length of hexagons of the SLSRF is the smallest. Then, the SLSRF partitions the 
network area into hexagons with the largest number and selects a set of links with the 
largest number. Therefore, the SLSRF under the Rayleigh fading channel model has bet-
ter performance than that of the SLSPC and SLSUM under the SINR model.

Table 1  Parameter settings

Parameter Value Parameter Value

Network area 2000m× 2000m β ≥ 1

#links 200–1000 N −70 db

minlen 1 ε1 [33] 0.4

maxlen 30 ε2 [22] 4

α 2–6 ϕ [22] 2.5
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Fig. 5  The SLSRF has the best performance
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Next, we investigate the influence of the parameters on the SLSRF. The main influence 
factors are α and β . We consider a link, say e = (u, v) . With increasing α , the interference 
at the receiver v decreases. However, the intended mean power does not vary. Therefore, 
intuitively, the links causing mutual interference are allowed to be close to each other. 
Indeed, with increasing α , µ decreases, and the distances between links in the same time 
slot become small, the number of hexagons becomes large, and the number of links in 
the same time slot becomes large. Therefore, the latency of the set of links decreases, 
which corresponds to Fig. 6.

Similarly, with the increase in β , the interference at the receiver must decease; thus, the 
distance between links transmitting simultaneously should increase. Indeed, with increasing 
β , µ increases, and the side length of hexagons also increases. Therefore, the latency of the 
set of links increases, which corresponds to Fig. 7. The number of links is 400 in Figs. 6 and 7.

Finally, we examine the Rayleigh success probability of each link in a time slot. Accord-
ing to Theorem 2, the Rayleigh success probability of each link is at least 1/

√
e . However, 

if a link transmits a signal successfully, then its SINR value should be at least β . First, we 
select a link set, denoted by ER , in which the Rayleigh success probability of each link 
is at least 1/

√
e . Then, we calculate the SINR value of each link. The link whose SINR 

value is larger than β is selected to join link set ES . The ratio of ES to ER is defined as 
the success ratio. We set α = 3 , β = 10 db and #links = 800 . The program runs 30 times 
independently. The total number of time slots is 3150. The number of time slots in which 
the success ratio is smaller than 1/

√
e is 24, which accounts for 0.76% the total time slots. 

The number of time slots in which the success ratio is between 1/
√
e and 100% is 23. 

Therefore, the proportion of time slots with a 100% success ration is 98.5%. Table 2 illus-
trates the above results.

7 � Distributed implementation
For a large wireless network, a distributed link scheduling protocol is more practical 
than a centralized one because a centralized protocol requires more information about 
the structure and topology of the network. For example, the SLSRF needs a central 
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processing unit to collect the information of links, such as the position, number of hexa-
gons, etc. Additionally, the central processing unit must schedule one link from a hexa-
gon and then inform the result to all other links. Therefore, we consider a distributed 
implementation of the SLSRF, named DI-SLSRF, since all hexagons with the same color 
are separated and the links in different hexagons can be scheduled in a distributed way.

7.1 � Network model and assumptions

Recall that we use a graph G = (V ,E) to model a wireless network, with V being the 
transceivers and E being the set of links. Assume that all nodes are deployed in a 
2-dimensional plane area that has a central position. The assumption is reasonable and 
matches the case of practical wireless networks, such as cell-networks with base stations 
or wireless networks with access points (APs). Assume each node knows the central 
position and its own position, which is done by space positioning techniques. Another 
assumption is that a sender knows the target position. In this case, a sender is aware 
of the distance of its communication. We normalize the minimum distance 1, that is, 
minlen = 1 . Again, we use maxlen to denote the maximum communication distance. In 
this section, we assume a synchronization system in which the time is divided into slots.

7.2 � Outline of the DI‑SLSRF algorithm

We define a link class Ci , i = 0, 1, 2, . . . , ⌊log maxlen⌋ , in which the length of each link e 
satisfies 2i ≤ �e� < 2i+1 . The senders are aware of which class they belong to, since they 
know the distance of their communication.
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Table 2  Success ratio

Success ratio (%) Number of slots Proportion (%)

100 3103 98.5

60–100 23 0.74

< 60 24 0.76
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First, the network area is partitioned into hexagons with a side length of 2i+1µ for the 
ith group, µ is defined as Eq. (9). Without loss of generality, we set the central position 
as the origin of the coordinate system and the center point of a hexagon. We label the 
central hexagon 1, the top-left hexagon 2 and the top-right hexagon 3. All hexagons are 
labeled 1, 2 or 3 such that no two neighboring hexagons have the same labels; see Fig. 8. 
As shown in Fig.  1, we use 1, 2 and 3 to denote three different colors. Obviously, the 
senders are aware of the color of the hexagon in which they reside.

Again, we note that the DI-SLSRF schedules at most one link from a hexagon. That is, 
at most one sender sends a message in one hexagon. For this reason, all senders residing 
in the same hexagon compete for the channel to send messages. Therefore, we design a 
subroutine, named the leader election (LE) algorithm, see Algorithm 2, to select at most 
one sender to send a message. The LE comprises θ log n rounds, and each round contains 
four slots, where n denotes the number of senders. Assume a message can be received by 
the receiver in one slot time.

A sender has 4 different states: competitor, candidate, loser and leader. In the com-
petitor state, a sender sends a probe message with probability p = 1/n for the purpose 
of competing for the channel in the first slot and receives the message in the second 
slot. If a sender sends a probe message and does not receive any probe messages, it 
changes its state to the candidate, which means that it will occupy the channel. On 
the other hand, if a sender sending a probe message receives at least a probe message, 
which means that two or more senders compete for the channel, then it keeps its state 
and senses the channel in the next slot. In the candidate state, a sender informs other 
senders that it will occupy the channel by sending a busy message in the third slot and 
listening to the fourth slot. If a sender in the candidate state receives a busy message, 
which means that another sender occupies the channel, it changes its state to the loser 
and no longer competes for the channel. If it does not receive any busy messages, it 
changes its state to the leader. In the leader state, a sender occupies the channel and 
sends its message to the receiver. That is, the link with the sender in the leader state is 
scheduled. After being scheduled, the node quits the LE algorithm. At the beginning 

Fig. 8  The central position overlaps the origin of the coordinate system
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of the algorithm, all senders are initialized with the competitor state. The state dia-
gram is shown in Fig. 9, and the pseudo code is listed in Algorithm 2.
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Fig. 9  State diagram
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Next, we provide the outline of the DI-SLSRF. We define a notation Super-Big-Round, 
which comprises 3 Big-Rounds. A Big-Round comprise 4θ log n+ 1 slots. All senders resid-
ing in the hexagons of the same color, say 1, execute the subroutine LE in a distributed way, 
using 4θ log n slots. After executing the subroutine LE, at most one sender in each hexagon 
with color 1 is selected as the leader. All leaders send messages to the receivers in the next slot. 
Then, senders residing in the same color hexagons, say 2 and 3, execute the LE algorithm, and 
the selected leaders send messages to their receivers. We call this process a Super-Big-Round, 
which corresponds to a class. If there are unscheduled links, the DI-SLSRF is carried out con-
tinuously. Initially, let i = 0 . The pseudo code of the DI-SLSRF is presented in Algorithm 3.

7.3 � Analysis

Next, we prove the correctness of the DI-SLSRF.

Lemma 2  For each hexagon, at most one sender with the leader state is returned by the 
LE, that is, no two senders transmit data to their receivers concurrently.

Proof  If u sends a probe message in the first slot and does not receive any probe mes-
sages in the second slot, then no other sender competes with u for the channel; hence, 
u will occupy the channel in the following slot. On the other hand, once u occupies the 
channel, u sends a busy message to other senders, and the senders sensing the channel 
busy will change their states to the loser and no longer compete for the channel. In sum-
mary, only one sender occupies the channel at the end of the LE algorithm.�  �

Lemma 3  The LE selects one sender with the leader state with a high probability.

Proof  Assume that the LE does not select one sender in a round k; there are two events 
leading to this result. One is the event where two or more senders send probe messages 
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to compete for the channel. The other is where no sender sends a probe message. In sum-
mary, the probability of the event in which the LE does not select one sender in a round 
is 1− p(1− p)ζ , where ζ is the number of senders executing the LE simultaneously.

Next, we give the following fact.

Fact: Given a set of probabilities p1, p2, . . . , pn , with ∀i, pi ∈ [0, 1/2] , the following ine-
qualities hold:

After θ log n rounds, the probability of the LE not selecting one sender is at most

The last equation holds only if θ is sufficiently large. That is, after θ log n rounds, the LE 
algorithm selects one sender with the leader state with the probability 1− n−5 , which is 
a high probability. � �

Theorem 3  Without loss of generality, assume that the link e = (u, v) belongs to the i-th 
link class and resides in a hexagon with color c = 1 . If u is the only leader returned by the 
LE, then the Rayleigh success probability is at least 1/

√
e with high probability.

Proof  u is the only link returned by the LE in the hexagon with color 1. The next proof 
is the same as that of Theorem 2. Note that, the correctness of Theorem 2 is under the 
assumption that a link must be scheduled in a hexagon. In the DI-SLSRF, there may be 
a link scheduled in a hexagon. Therefore, Theorem 2 guarantees the correctness of this 
theorem. � �

8 � Conclusions
In this paper, we study the shortest link scheduling problem under the Rayleigh fad-
ing model and propose the SLSRF and DI-SLSRF algorithms. The SLSRF partitions the 
network region into hexagons and colors them with three different colors such that no 
two adjacent hexagons have the same color. Then, the SLSRF selects one link from a 
hexagon with a certain color. A theoretical analysis proves that the links selected from 
the hexagons with the same color are scheduled simultaneously without interference. 
The DI-SLSRF is a distributed version of the SLSRF, that is more suitable for large-scale 
networks.

A drawback of offline link scheduling is that it neglects the dynamic nature of request 
scheduling in wireless networks. Therefore, online link scheduling in wireless networks 
with the Rayleigh fading model is an open problem.

(10)(1/4)
∑n

k=1 pk ≤
n
∏

k=1

(1− pk) ≤ (1/e)
∑n

k=1 pk .

(11)pno ≤ (1− p/4)θ log n ≤ e−
pθ
4 log n ∈ n−5.
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