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1  Introduction
To accommodate the explosive growth of big data, distributed data stores have become 
the main solution for many public cloud services. Toward such a trend, many emerg-
ing database systems such as Redis [1], RAMCloud [2], and DynamoDB [3] are being 
increasingly deployed at the public cloud, due to their strength of performance, scalabil-
ity, and fault tolerance.

Despite being promising, outsourcing data processing in the public cloud would also 
raise new challenges for its privacy and support for flexible types of data operations. 
Public cloud might be vulnerable to security breaches, and privacy concerns are becom-
ing more serious with recent incidents of massive data disclosures [4]. Although stand-
ard encryption technology could guarantee data privacy, it would explicitly invalidate 
textual search functions over encrypted data. Accordingly, in the literature, there have 
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been recent endeavors on investigating how to enhance data privacy while preserving 
data operation privileges, such as searchable symmetric encryption (SSE) for encrypted 
keyword search [5–7]. By leveraging these cryptographic primitives, a line of work on 
encrypted database systems have been proposed and implemented [8–10]. Yet, most of 
them focus on centralized database servers, which are not specifically designed for dis-
tributed systems.

In the literature, only a few recent works [11–14] have started to study secure data 
retrieval in distributed systems. These works can be viewed as valuable start points in 
the design space, but there are still some challenging issues to be solved. First, most of 
exiting solutions only focus on a single-user setting that allows encrypted queries from 
a single user holding the secret key. However, in practical database systems, there will 
be multi-users accessing the database. To this end, existing solutions either introduce a 
third-party authority for query authorization management or leveraging the data owner 
to generate query token for each authorized user [15]. However, the former will be suf-
fered from the problem of untrusted authority (e.g., Denial-of-service attack), while the 
latter is difficult to realize in reality because the data owner must be online consistently. 
Second, update operation needs to be treated carefully for encrypted database systems. 
Simply adding new records or removing idle records will allow the cloud server to learn 
the associations between newly updated entries and those search results. Recent leak-
age-abuse attacks [16] have shown that this additional leakage can be exploited to learn 
sensitive information about the query requests or data contents. Thus, it is desirable to 
devise a new system framework for secure and reliable data sharing.

In this work, we design and implement a blockchain-assisted framework for secure 
and reliable data sharing in distributed database systems. Getting rid of a central third-
party authority, outsourcing query authorization to the smart contract of blockchain 
yields a reliable data sharing service, and no longer need the data owner to be always 
online for token generation. Besides, we devise a forward-privacy index construction to 
handle the problem of update operation in encrypted data storage. Specifically, we store 
the encrypted state of each keyword at the smart contract and ask the data owner to 
use fresh random masks generated from the latest state to encrypt newly added entries. 
Thus, the cloud server cannot learn whether a newly added entry contains a keyword 
used in a previous search token. Besides, our proposed index construction can support 
efficient data deletion. We implement the system prototype and provide a formal secu-
rity analysis. Extensive experiments demonstrate the practicality of the design. In sum-
mary, our contributions are listed as follows:

•	 We propose a blockchain-assisted framework that enables secure and reliable data 
sharing in a multi-user setting. A data owner can efficiently authorize multiple users 
to access the encrypted data store, or revoking users’ authorization.

•	 Our proposed index construction can protect against persistent adversaries and 
guarantees forward security. Specifically, it can support secure delete operation effi-
ciently, unlike the other forward-privacy schemes that only support insertion-only 
operations.

•	 We implement our system prototype and deploy it on Amazon Cloud. The experi-
mental results show that it preserves linear scalability of distributed data stores with 
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respect to their performance. And the performance is significantly improved when 
comparing to previous works.

2 � Overview
2.1 � System Architecture

Figure 1 presents our system architecture, containing four entities: the data owner, data 
users, the blockchain, and a number of distributed data stores. Our design serves the 
client who wishes to outsource their sensitive data to the public cloud and offers secure 
query services to authorized users. Specifically, the data owner performs data encryp-
tion, encrypted index construction, data update operation, as well as users’ authoriza-
tion. The owner holds the master key which is used to derive different private keys for 
the function above. The rule of the blockchain is to trace the state information of each 
keyword and maintain authorized users’ information. Meanwhile, it maintains a small-
sized consistent hashing ring to route the encrypted documents across all distributed 
data stores. A data node in the cloud handles query requests from authorized users. It 
processes search token over its secure local indexes and returns the matched results to 
the user.

From a high-level point of view, our system includes the following procedure to 
provide secure and efficient data sharing services. Initially, the data owner builds the 
encrypted index and stores it with corresponding encrypted documents to the distrib-
uted database. Meanwhile, the data owner needs to upload the encrypted state to the 
blockchain for query token generation. After user registration, the authorized user can 
obtain his query key from the data owner via the blockchain. To enable the secure query 
with forward security, the user first generates the query token by using his query key 
and sends it to the blockchain. After that, the blockchain computes the latest trapdoor 
based on the received token and the keyword state. Finally, the data node processes the 
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token over the encrypted local index and returns the documents that contain the exactly 
matched keywords.

In our architecture, we resort to the smart contract of blockchain to achieve secure 
and efficient data sharing. It can not only assist with data insertion with forward privacy 
guarantees, but also enforce access control policy for data sharing. Besides, after one 
time interaction, authorized users can always generate the search token by using smart 
contract without the interaction with the data owner any more. Thus, there is no need 
for the data owner to stay online.

2.2 � Threat model

Consistent with prior studies on search over encrypted data [6, 10], our security goal is 
to protect data owners’ database. Specifically, we consider the threats from semi-honest 
(aka honest-but-curious) adversaries on the data servers, who faithfully follows the pre-
scribed protocols but may intend to learn the information of data and queries by observ-
ing the query token, accessed index entries, and encrypted results. The attackers cannot 
access the private keys stored at the users, but they could dump the entire contents of 
the datasets from the server. We consider that data users are secure and trusted. It will 
not expose the keys to cloud servers, and private keys are securely stored on the client 
side.

2.3 � Design goals

We note that the blockchain actually is a trusted platform for correctness and avail-
ability, but does not provide protection of users’ privacy. Therefore, our design goal is 
to provide the strongest possible protection on the data privacy while simultaneously 
maintaining the service efficiency and quality. Our design goals are listed as follows:

Data confidentiality It should ensure strong protection of data owner’s files, state 
information, and users’ query content during the service flow. It is the most basic secu-
rity feature in general searchable encryption schemes.

Forward security Forward security is a strong security requirement for dynamic SSE 
schemes, which requires newly inserted entries are unlinkable to previous query results.

Multi-client support After user registration, authorized users can execute permitted 
query processing by using separate keys without extra round interaction with the data 
owner.

Query efficiency The complexity of the proposed secure query protocol should be sub-
linear, and the query latency and bandwidth should be bounded.

3 � Background knowledge
3.1 � Cryptographic primitives

Searchable symmetric encryption A searchable symmetric encryption scheme is a set of 
three polynomial time algorithms � = (KGen,Enc,Dec) : The key generation algorithm 
KGen takes a security parameter k as input and outputs a secret key K; the encryption 
algorithm Enc takes a key K and a value v ∈ {0, 1}∗ as inputs and outputs a ciphertext 
v∗ ∈ {0, 1}∗ ; The decryption algorithm Dec takes a key K and a ciphertext v∗ as inputs 
and returns v.
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Pseudo-random function (PRF) Define a pseudo-random function 
F : K × X → R , if for all probabilistic polynomial-time distinguishers Y, 
|Pr[Y F(k ,·) = 1|k ← K] − Pr[Y g = 1|g ← {Func : X → R}]| < negl(k) , where negl(k) is 
a negligible function in k.

Bilinear pairings Let G1 , G2 and GT  be three bilinear groups of prime order p, 
with generators g1 ∈ G1 and g2 ∈ G2 , respectively. A bilinear pairing is a map 
ê : G1 × G2 → GT  with the three properties: 1) Bilinearity: for all u ∈ G1 , v ∈ G2 and 
a, b ∈ Zp , ê(ua, vb) = ê(u, v)ab . 2) Non-degeneracy: ê(g1, g2) �= 1. 3) Computability: 
ê(u, v) can be efficiently computed for any u ∈ G1 , v ∈ G2.

3.2 � Blockchain and KV store

Blockchain In general, the blockchain [17–27] can be treated as a distributed data 
store that records all the transactions that have occurred in the peer-to-peer network. 
All participants in the network hold the same copy of the data record, and there is 
no central authority or single node can control the entire network. Compared to the 
original Bitcoin system [28], a new blockchain framework [29] is proposed, which 
allows users to create, deploy, and run smart contracts [29] (predefined computer 
program) on the blockchain. Once the contract is deployed, it can be automatically 
executed according to the agreed logic of smart contracts and verified to demonstrate 
the effectiveness of the contract operation [30]. In this work, we use the blockchain as 
a trusted platform for key sharing, permission grant, and trapdoor generation.

Encrypted key-value store We follow the construction of encrypted key-value stores 
proposed in [11], where the document can be stored as an encrypted key-value pair. 
Assume that the data owner has a document f to be outsourced in the data node, 
and it has a unique document identifier id. Then, the document f is encrypted with 
the above symmetric encryption scheme Enc, and its identifier id is protected with 
PRF (i.e., Pseudo-random function) P. Specifically, each key-value pair is defined as: 
〈

k , v
〉

=
〈

P(kid , id),Enc(kf , f )
〉

 , where kid and kf  are the private keys (Table 1).

4 � The proposed system
In this section, we present our blockchain-assisted design to support multi-client que-
ries in an encrypted KV store with forward privacy. Encrypted search protocol, on-chain 
query authorization and secure update protocol are also presented in this section.

Table 1  Glossary

Acronym Definition

G1, G2 Pseudo-random functions

h Hash function

w , {id1, .., idn} Keyword-file IDs pairs

α,β Encrypted Keyword-file IDs pairs

{I1, .., Im} Encrypted indexes

ê(u, v) Bilinear pairing operation

S On-chain keyword state table

U On-chain authority table
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4.1 � Encrypted Index design

The detailed algorithm to index file IDs {id1, .., idn} for a given keyword w is shown in 
Algorithm 1. This procedure is executed at the data owner side. First, the data owner 
generates a query token tw via computing ê(h(w), γ )kw , where h(w) ∈ g1 and γ ∈ g2 . Then, 
the owner finds the target node j for tw based on the position on the consistent hashing 
ring. After that, for the ith entry idi , it generates encrypted index pairs via secure PRF, 
i.e., αi = G1kα (tw , i) and βi = G2kiβ

(αi−1||k
i−1
β , idi) , where αi−1 is the address of previous 

index entry and ki−1
β  is the corresponding encryption key. Finally, the owner sends the 

state table S and index pairs 〈α,β〉 to the smart contract and the data node, respectively.
The encrypted index above holds the security notion of SSE. The index size is 

known to the data node. Without querying, no other information about the underly-
ing content is learned. This property is achieved by embedding the unique keyword 
state into the index entry. Thus, the associations between keywords in different docu-
ment IDs can be well protected.
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4.2 � Multi‑client authorization

To register a new user u, the data owner first generates a pair of query keys {k1u , k2u} , 
where k1u × k2u = kw . Then, the query key k1u and the authorized user table U are sent to 
the user and the smart contract, respectively, as shown in Algorithm 2. Correspond-
ingly, it also presents how to revoke an authorized user. Given the user id u, the smart 
contract just needs to remove the entry (u, γ k2u ) from U. After that, the user u can 
no longer query the encrypted data because the smart contract cannot generate the 
query token. By introducing the access permission table U at the smart contract, our 
design enforces the access control without the extensive interaction between owner 
and authorized users.

4.3 � Secure keyword‑match protocol

Based on the index construction, we present secure query protocol in details in Algo-
rithm 3. Given a query keyword w, the authorized user u wants to find all document IDs 
containing the keyword. First, the data user generates the keyword token tuw by using its 
query key k1u , where tuw = h(w)k

1
u . After receiving the user id u and token tuw , the smart 

contract first checks its access permission at table U and then computes the query token 
tw via bilinear pairing, i.e., ê(h(w)k1u , γ k2u ) = ê(h(w), γ )kw = tw . After that, the smart con-
tract generates the token αn by embedding the latest state n securely via secure PRF, i.e., 
αn = G1kα (tw , n) . Given the current token αn for keyword w, the data node can retrieve all 
IDs from the chaining index. In particular, each matched entry is unmasked via decryption 
to get the document ID and the next entry address till no entry is returned.

During the query procedure, the keyword and document IDs are strongly protected. 
Each node only learns the query token, accessed index entries, and the encrypted result 
set. Note that an authorized user only needs to spend O(1) time to generate the token 
for a keyword, and each data node spends O(n) time to fetch document IDs in parallel, 
where n is the number of documents matching the query condition. 
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4.4 � Secure record insertion

To enable dynamic search over encrypted data with forward security, we integrate the latest 
state value for a given keyword into the newly added index entry. Thus, the data node can-
not learn whether the newly added index contains the keyword queried before. We now 
present the details of our proposed insertion protocol in Algorithm 4. Given the keyword w 
and the newly added document ID idnew , the data owner first obtains the current state n 
from table S and then updates it to build the newly added index entry, as shown from Line 4 
to line 6 in Algorithm 4. Meanwhile, the previous index address αn and encryption key knβ 
are re-masked with idnew by using a fresh key kn

′

β  , i.e., βn′ = G2
kn

′
β
(αn||k

n
β , idnew) . Since the 

newly added index entry is generated from the latest state and a fresh key, the association 
between the searched keyword and the newly added document is fully protected. Formal 
security analysis will later be conducted in “Security analysis” section. 
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4.5 � Secure record deletion

The corresponding record deletion protocol following the index construction is pre-
sented in Algorithm 5. The core idea of the deletion algorithm is to reconnect the secure 
index chain after removing the deleted entry. Specifically, a data node first executes the 
secure query protocol as shown in Algorithm 3 and locates all matched entries over the 
encrypted index chain. Then, each matched entry is unmasked to obtain the underlying 
document ID. After ID checking and deletion, the data node will reconnect the index 
chain by re-encrypting the previous entry βi+1 with the next entry’s contents. If the doc-
ument ID idn of the first index entry αn matches the deleted ID iddel , the smart contract 
also needs to update the state and the private key.

4.6 � Encrypted keyword search example

To better understand the encrypted keyword search protocol of our blockchain-
assisted framework, Fig.  2 uses an example to show how it works to search all file 
IDs matching the keyword “war.” Specifically, the example of the MongoDB query is 
db.col.find(“movie′′ : “war′′) , which can select from “col′′ collection all documents where 
the keyword “movie′′ equals “war′′ . The authorized user with ID “UID01” first generates 
the query token tk = h(“war′′)k1 based on the query condition and sends it to the smart 
contact as a query transaction. Upon receiving the token from the client, the smart con-
tract first checks its access permission via the user table and generates the keyword 
token tkwar = e(tk , rk2) . After that, the smart contract creates the latest index entry 
α20 = G1(tkwar , 20) with the keyword state 20 and sends it to the corresponding data 
node. Each data node processes these tokens in parallel. Specifically, all matched entries α 
are located via the index chain with the tokens and the document IDs id are revealed after 
decryption. Finally, the encrypted documents are returned to the client from the data node.

5 � Security analysis
In this section, we will conduct rigorous security analysis of our proposed scheme. Specifi-
cally, we evaluate the security strength of secure keyword-match queries. Then, we discuss 
how our scheme can achieve forward security during the update operation.

5.1 � Security on encrypted keyword search

The keyword-match index design is built on the framework of SSE scheme proposed in [5]. 
Once the data owner uploads the encrypted index to the data server, the size of indexes 
will be learned. During the query procedure, there will be the leakage of access pattern and 
query pattern. Explicitly, the access pattern indicates the search results; the query pattern is 
the repeated query tokens. Following the security notion of SSE, we first define the leakage 
functions for exact-match index initialization as follows:

where K is the set of keywords, m is the number of data nodes, Zi is the node i’s key-
word-match index size, and �|α|, |β|� are the index lengths of key-value pairs. After pro-
cessing a keyword search request, we define the following leakage functions:

L
kwd
1 (K) = ({Zi}m, �|α|, |β|�)
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where K is the query keyword, tK  is the query token, and {�α,β�, id}n are n query results 
including the accessed index pairs and corresponding encrypted document IDs. In addi-
tion, we also define the leakage Lkwd

3
 to maintain repeated requests as follows:

where Q is q number of keyword search requests. Mq×q is the symmetric bit matrix 
that maintains the repeated requests. Each element in the Mq×q is initialized as 0. For 
i, j ∈ [1, q] , the elements of matrix Mi,j and Mj,i are equal to 1 if two tokens ti = tj . Given 
above leakage definitions, we provide the simulation-based security definition of the 
keyword-match scheme as follows:

Definition 1  Let �kwd = (KGen,Buildkwd,Querykwd) be our secure keyword-match 
query scheme, and let Lkwd

1
 , Lkwd

2
 and Lkwd

3
 be the leakage functions. Given a probabil-

istic polynomial time (PPT) adversary A and a PPT simulator S , define the following 
probabilistic games RealA(k) and IdealA,S(k):

RealA(k) : The data owner calls KGen(1k) to get a private key K. A selects a dataset D 
and asks the owner to build {Ikwd

1
, · · · , Ikwdm } via Buildkwd . Then, A adaptively conducts a 

polynomial number of q queries with the tokens and ciphertexts generated by the owner. 
Finally, A returns a bit as the output.

IdealA,S(k) : A selects D , and S builds {I ′kwd
1

, · · · , I ′kwdm } for A based on Lkwd
1

 . Then, A 
adaptively performs a polynomial number of q queries. From Lkwd

2
 and Lkwd

3
 in each 

L
kwd
2 (K ) = (tK , {�α,β�, id}n)

L
kwd
3 (Q) = (Mq×q)

Fig. 2  Blockchain-assisted keyword search illustration
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query, S generates the simulated tokens and ciphertexts, which are processed over 
{I ′kwd
1

, · · · , I ′kwdm } . Finally, A returns a bit as the output.

�kwd is adaptively secure with (Lkwd
1

,Lkwd
2

,Lkwd
3

) if for all PPT adversaries A , there exists 
a PPT simulator S such that: Pr[RealA(k) = 1] − Pr[IdealA,S(k) = 1] ≤ negl(k) , where 
negl(k) is a negligible function in k.

Theorem 1  �kwd is adaptively secure with (Lkwd
1

 , Lkwd
2

 , Lkwd
3

) leakages under the ran-
dom-oracle model if G1, G2, and h are secure PRFs.

Proof  Given Lkwd
1

 , the simulator S simulates the encrypted keyword-match indexes 
{I ′kwd
1

, · · · , I ′kwdm } for m nodes, which have the same size Z as the real encrypted indexes. 
Each simulated entry contains |α|-bit and |β|-bit random string as a key-value pair, which 
is indistinguishable from the real encrypted index entry.

From Lkwd
2

 , S can simulate the first query token and results. On the simulated index, S 
randomly selects n entries, which are the same as the query request over the real one, 
and assigns the resulting id to the simulated entries. The random masked key-value pair 
can be simulated as α′

i = G1′(t ′, n),β ′ = G2′(α′
i−1

, id) , where i ∈ {1, n} and t ′ is a random 
string as the simulated token, and id is identical to the one in the real keyword-match 
queries. In particular, we use random oracles {G1′,G2′} as PRFs {G1,G2} . From Lkwd

3
 , S 

updates M1,1 = 1 in a matrix Mq×q.

In the subsequent jth queries ( j ∈ {2, q} ), if the query appears repeatedly, S will choose 
the same tokens simulated before, and return the repeated matching results. Meanwhile, 
it will update the corresponding element in M′

1,j and M′
j,1 to be “1.” Otherwise, S will 

generate simulate tokens and operate random oracle to get the results as shown in the 
first query procedure.

Due to the pseudo-randomness of secure PRF, A cannot differentiate the outputs of the 
simulated experiment from the real one. � �

5.2 � Forward security analysis

As described in Sect. 4, we combine keyword state information stored on table S on the 
smart contract and a chaining index table stored on the cloud server to preserve our 
scheme to achieve forward security. Because the search trapdoor of keyword w is gen-
erated from the latest state of S associated with w, and this state updates once a new 
keyword/document pair (w, id) is added to the database. Meanwhile, each newly added 
entry needs to be encrypted by using fresh random masks generated from the latest state 
information. Cloud server does not know which already searched/updated keyword that 
current document contains. And it does not know newly updated search trapdoor of 
keyword w until next query of keyword w. Based on the construction of the chain-based 
index, the cloud server can recover neither the matched document id embedded with 
newly added key-value pair without the updated search trapdoor, nor learn whether the 
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newly added entry is generated from the same keyword as that of those previously added 
entries without knowing the newly updated state information.

6 � Experimental evaluation
6.1 � Prototype implementation

We implement the proposed system prototype in C++ and perform the evaluation on 
Amazon Web Services. We create the AWS “C5.xlarge” instances with 4 vcores (3 GHz 
Intel Xeon� Platinum 8124M), and 8 GB RAM. In this experiment, we generate a Redis 
(v3.2.0) cluster that consists of 9 AWS “C5.xlarge” instances as data nodes of the data-
base server and 4 AWS “C5.xlarge” instances as the multi-client of data applications. All 
instances are installed on Ubuntu server 14.04. We use Apache Thrift (v0.9.2) to imple-
ment the remote procedure call (RPC).

For cryptographic primitives, we use OpenSSL to implement the symmetric encryp-
tion via AES-128 and the pseudo-random function via HMAC-256. Our keyword-match 
indexes are integrated into the implementation of the distributed index framework pro-
posed in [12]. In total, the prototype consists of more than 8500 lines of C++ code.

6.2 � Performance evaluation

In our experimental evaluation, we target several practical aspects including initializa-
tion time, memory cost, query performance, and bandwidth overhead.

Index evaluation: We first assess the space consumption of keyword-match index 
(kwd-match) in Table 2. For the keyword-match index, we use AES-128 encryption algo-
rithm to generate building blocks. Thus, the size of each key-value pair 〈α,β〉 is 256 bits. 
As shown in Table 2, the index size of keyword-match increases linearly from 4.88MB 
(20K index entries) to 19.53MB (80K index entries).

Figure  3 presents the time cost of building the encrypted indexes at the client side. 
The time cost increases linearly with the number of index entries. For instance, it takes 
around 1.2s to generate 40K index entries, which is roughly half of the time cost when 
encrypting 80K keyword indexes.

Query evaluation To assess the system efficiency and security overhead, we measure 
the query throughput, the process latency under different workload, and the cost of 
record insertion and deletion. In this evaluation, we preload totally 160K data records to 
assess the practicality of our design for large-scale deployment.

To evaluate the scalability of our system, we first report the throughput for encrypted 
keyword match. By using different numbers of data nodes, we capture the total number 
of handled queries for a duration of 100s to obtain the throughput when each of the 
nodes is fully loaded. As shown in Fig.  4, we can find that the total number of index 
entries processed per second increases with the number of cores. When there are nine 
nodes at the cloud server, the keyword-match queries can achieve up to 157K entries per 
second. The overhead comes from the cost of secure PRF during keyword-match com-
parison. The results confirm that our design performs satisfactorily at scale.

To gain a deeper understanding on the query performance of our proposed design, 
we further evaluate the query latency for encrypted keyword-match. It worth to 
note that our encrypted index chain can map duplicates to single chain reference 
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and locates them all in a scan. Overall, our evaluation shows that the query latency 
decreases with the increasing number of nodes. As shown in Fig. 5, the query latency 
of keyword-match decreases from about 2.4s to 0.8s as the number of nodes increases 
from 3 to 9 when returning 32K data records.

Figure  6 also compares the keyword-match query performance with the scheme 
proposed in [31] denoted as Sophos when returning a fixed number of results. Our 
scheme achieves better performance than Sophos because their construction requires 
heavy cryptographic primitives and RSA encryption, which incurs considerable bur-
den for query performance. Overall, we can confirm that our design benefits from the 
local index framework and can effectively process queries in parallel.

In this experiment, we also evaluate the incremental scalability by measuring the 
time cost for keyword-match index insertion. We note that the time cost includes the 
network transmission cost for each newly added entry; thus, it is much higher than 
the index building time as shown in Fig. 3. When the number of newly added entries 
is 32K, Fig.  7 shows that it just takes around 6.6s to add these index entries to the 
encrypted index chain. Meanwhile, we also evaluate the efficiency of delete algorithm 
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Fig. 3  Keyword-match index build

Table 2  Space consumption of encrypted index

# Entries 20K 40K 80K 160K

Keyword index 4.88 (MB) 9.77 (MB) 19.53 (MB) 39.06 (MB)
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in Fig. 8. As mentioned in Sect. 4, the process of delete operation is exactly the same 
as the insert operation so that the efficiency of the add and delete algorithm is almost 
the same. Specifically, it only takes 7.4s to delete 32K records.

Bandwidth evaluation Recall that the distributed index framework requires the cli-
ent to generate query tokens for each node. To understand the bandwidth overhead, 
Fig. 9 shows the ratio between the query token size and result size. The result indicates 
that the bandwidth ratio of keyword-match decreases gradually with the increased 
size of results. When there are 50 nodes at the cloud side, the bandwidth ratio drops 
from about 2.50% to approximately 0.16% when the number of retrieved result values 
rises from 2K to 32K. On the other hand, the result shows that the increasing number 
of nodes can render a rise in the bandwidth. The ratio of 8K result size increases from 
about 0.125% to 0.625% as the number of nodes increases from 10 to 50. Nevertheless, 
the bandwidth overhead is still negligible to the size of results.

7 � Related work
7.1 � Searchable symmetric encryption

Keyword search over encrypted data has been an active research area in the past 
decade. With encrypted search, it allows an untrusted server to conduct a secure 
comparison between the encrypted indexes and the trapdoors without leaking the 
searched keywords [32–38]. In 2000, Song et al. first introduced the notion of search-
able encryption [39]. In [40], the security notion of Searchable Symmetric Encryp-
tion (SSE) is formalized. The notion of dynamic SSE was further formalized in [7]. 
To improve I/O efficiency, Cash et al. [5] developed a dynamic scheme optimized for 
large datasets. However, the existing dynamic SSE schemes would leak the updated 
keyword in the newly added documents. In [41], Stefanov et al. presented the notion 
of forward security and proposed an ORAM-like index by using a hierarchical struc-
ture, but the overhead of ORAM is too high for a practical use of the SSE scheme. 
The motivation for studying forward security came from file injection attacks on 
SSE by Zhang  et al. [42]. Bost  et al. formally defined forward security in [31] and 
designed an insertion-only SSE scheme with optimal search and update complexity, 
based on asymmetric cryptography (i.e., trapdoor permutations). But, this construc-
tion requires heavy public key encryption operations, which leads to performance 
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degradation. Moreover, the above work on encrypted search are mostly designed for 
centralized systems.

7.2 � Multi‑client access in searchable encryption

In [40], Curtmola  et al. proposed the first construction for multi-user SSE based on 
broadcast encryption. Jarecki  et al. [43] leveraged oblivious PRF to enhance the access 
policies. In [44], Sun proposed for Boolean queries make existing multi-client query pro-
tocols non-interactive so as to reduce the communication overhead. The schemes [45, 
46] considered the multi-client setting in distributed key-value stores. Unfortunately, 
neither designs can achieve forward security.

(a) The first simulation (b) The second simulation

(c) The third simulation (d) The fourth simulation

(e) The fifth simulation (f) The sixth simulation
Fig. 6  Query latency comparison
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(a) The first simulation (b) The second simulation

(c) The third simulation (d) The fourth simulation

(e) The fifth simulation (f) The sixth simulation
Fig. 7  Secure insertion latency
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8 � Results and discussion
Our blockchain-assisted secure data sharing framework has three advantages:

It is secure Since users’ data and file indexes are all encrypted, both blockchain nodes 
and storage server are not able to obtain any information from the stored data, search 
queries, or search results.

It is efficient Data indexes are collocated with the data and stored at storage server, 
which makes the blockchain lightweighted and the search operations more efficient. 
Besides, by leveraging the smart contract to construct query tokens, a data owner can 
authorize query permission without extra round interaction.

It is fairness Query authorization is maintained at the smart contract, which ensures 
the data sharing services non-deniable without involving any third-party authority.

As future work, we plan to explore advanced searchable encryption schemes to sup-
port other SQL query services, such as range queries and join operations. Meanwhile, 
we leave how to detect malicious data owner who submit invalid data to intentionally 
disrupt the system as our future work.

9 � Conclusion
In this paper, we present a completely new system architecture enabling secure multi-
client queries in distributed database systems. We propose to leverage the smart con-
tract of blockchain as a trusted party for secure query authorization and integrate 
dynamic SSE scheme with bilinear pairings, achieving forward privacy for the update 
operation. Extensive experiments show that it preserves advantages in existing dis-
tributed database systems such as high throughput, low latency, incremental scalabil-
ity, and fine availability.
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