
A blockchain‑assisted framework for secure
and reliable data sharing in distributed systems
Yu Guo1, Shenling Wang1* and Jianhui Huang2 

1  Introduction
To accommodate the explosive growth of big data, distributed data stores have become
the main solution for many public cloud services. Toward such a trend, many emerg-
ing database systems such as Redis [1], RAMCloud [2], and DynamoDB [3] are being
increasingly deployed at the public cloud, due to their strength of performance, scalabil-
ity, and fault tolerance.

Despite being promising, outsourcing data processing in the public cloud would also
raise new challenges for its privacy and support for flexible types of data operations.
Public cloud might be vulnerable to security breaches, and privacy concerns are becom-
ing more serious with recent incidents of massive data disclosures [4]. Although stand-
ard encryption technology could guarantee data privacy, it would explicitly invalidate
textual search functions over encrypted data. Accordingly, in the literature, there have

Abstract 

The explosive growth of big data is pushing forward the paradigm of cloud-based
data store today. Among other, distributed storage systems are widely adopted due to
their superior performance and continuous availability. However, due to the poten-
tially wide attacking surfaces of the public cloud, outsourcing data store inevitably
raises new concerns on user privacy exposure and unauthorized data access. Besides,
directly introducing a centralized third-party authority for query authorization manage-
ment does not work because it still can be compromised. In this paper, we propose a
blockchain-assisted framework that can support trustworthy data sharing services. In
particular, data owners allow to outsource their sensitive data to distributed systems
in encrypted form. By leveraging smart contracts of blockchain, a data owner can
distribute secret keys for authorized users without extra round interaction to generate
the permitted search tokens. Meanwhile, such blockchain-assisted framework naturally
solves the trust issues of query authorization. Besides, we devise a secure local index
framework to support encrypted keyword search with forward privacy and mitigate
blockchain overhead. To validate our design, we implement the prototype and deploy
it at Amazon Cloud. Extensive experiments demonstrate the security, efficiency, and
effectiveness of the blockchain-assisted design.

Keywords:  Dynamic searchable encryption, Distributed data storage, Forward
security, Smart contract, Blockchain

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Guo et al. J Wireless Com Network (2021) 2021:169
https://doi.org/10.1186/s13638-021-02041-y

*Correspondence:
slwang@bnu.edu.cn
1 School of Artificial
Intelligence, Beijing Normal
University, Beijing, China
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-02041-y&domain=pdf

Page 2 of 19Guo et al. J Wireless Com Network (2021) 2021:169

been recent endeavors on investigating how to enhance data privacy while preserving
data operation privileges, such as searchable symmetric encryption (SSE) for encrypted
keyword search [5–7]. By leveraging these cryptographic primitives, a line of work on
encrypted database systems have been proposed and implemented [8–10]. Yet, most of
them focus on centralized database servers, which are not specifically designed for dis-
tributed systems.

In the literature, only a few recent works [11–14] have started to study secure data
retrieval in distributed systems. These works can be viewed as valuable start points in
the design space, but there are still some challenging issues to be solved. First, most of
exiting solutions only focus on a single-user setting that allows encrypted queries from
a single user holding the secret key. However, in practical database systems, there will
be multi-users accessing the database. To this end, existing solutions either introduce a
third-party authority for query authorization management or leveraging the data owner
to generate query token for each authorized user [15]. However, the former will be suf-
fered from the problem of untrusted authority (e.g., Denial-of-service attack), while the
latter is difficult to realize in reality because the data owner must be online consistently.
Second, update operation needs to be treated carefully for encrypted database systems.
Simply adding new records or removing idle records will allow the cloud server to learn
the associations between newly updated entries and those search results. Recent leak-
age-abuse attacks [16] have shown that this additional leakage can be exploited to learn
sensitive information about the query requests or data contents. Thus, it is desirable to
devise a new system framework for secure and reliable data sharing.

In this work, we design and implement a blockchain-assisted framework for secure
and reliable data sharing in distributed database systems. Getting rid of a central third-
party authority, outsourcing query authorization to the smart contract of blockchain
yields a reliable data sharing service, and no longer need the data owner to be always
online for token generation. Besides, we devise a forward-privacy index construction to
handle the problem of update operation in encrypted data storage. Specifically, we store
the encrypted state of each keyword at the smart contract and ask the data owner to
use fresh random masks generated from the latest state to encrypt newly added entries.
Thus, the cloud server cannot learn whether a newly added entry contains a keyword
used in a previous search token. Besides, our proposed index construction can support
efficient data deletion. We implement the system prototype and provide a formal secu-
rity analysis. Extensive experiments demonstrate the practicality of the design. In sum-
mary, our contributions are listed as follows:

•	 We propose a blockchain-assisted framework that enables secure and reliable data
sharing in a multi-user setting. A data owner can efficiently authorize multiple users
to access the encrypted data store, or revoking users’ authorization.

•	 Our proposed index construction can protect against persistent adversaries and
guarantees forward security. Specifically, it can support secure delete operation effi-
ciently, unlike the other forward-privacy schemes that only support insertion-only
operations.

•	 We implement our system prototype and deploy it on Amazon Cloud. The experi-
mental results show that it preserves linear scalability of distributed data stores with

Page 3 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

respect to their performance. And the performance is significantly improved when
comparing to previous works.

2 � Overview
2.1 � System Architecture

Figure 1 presents our system architecture, containing four entities: the data owner, data
users, the blockchain, and a number of distributed data stores. Our design serves the
client who wishes to outsource their sensitive data to the public cloud and offers secure
query services to authorized users. Specifically, the data owner performs data encryp-
tion, encrypted index construction, data update operation, as well as users’ authoriza-
tion. The owner holds the master key which is used to derive different private keys for
the function above. The rule of the blockchain is to trace the state information of each
keyword and maintain authorized users’ information. Meanwhile, it maintains a small-
sized consistent hashing ring to route the encrypted documents across all distributed
data stores. A data node in the cloud handles query requests from authorized users. It
processes search token over its secure local indexes and returns the matched results to
the user.

From a high-level point of view, our system includes the following procedure to
provide secure and efficient data sharing services. Initially, the data owner builds the
encrypted index and stores it with corresponding encrypted documents to the distrib-
uted database. Meanwhile, the data owner needs to upload the encrypted state to the
blockchain for query token generation. After user registration, the authorized user can
obtain his query key from the data owner via the blockchain. To enable the secure query
with forward security, the user first generates the query token by using his query key
and sends it to the blockchain. After that, the blockchain computes the latest trapdoor
based on the received token and the keyword state. Finally, the data node processes the

Distributed data stores

Block

Blockchain

Block Block

Data users Data owner

Enc. doc.

Query token

Enc. doc. + Enc. Index

State info + user key

TrapdoorUser key

Fig. 1  System architecture

Page 4 of 19Guo et al. J Wireless Com Network (2021) 2021:169

token over the encrypted local index and returns the documents that contain the exactly
matched keywords.

In our architecture, we resort to the smart contract of blockchain to achieve secure
and efficient data sharing. It can not only assist with data insertion with forward privacy
guarantees, but also enforce access control policy for data sharing. Besides, after one
time interaction, authorized users can always generate the search token by using smart
contract without the interaction with the data owner any more. Thus, there is no need
for the data owner to stay online.

2.2 � Threat model

Consistent with prior studies on search over encrypted data [6, 10], our security goal is
to protect data owners’ database. Specifically, we consider the threats from semi-honest
(aka honest-but-curious) adversaries on the data servers, who faithfully follows the pre-
scribed protocols but may intend to learn the information of data and queries by observ-
ing the query token, accessed index entries, and encrypted results. The attackers cannot
access the private keys stored at the users, but they could dump the entire contents of
the datasets from the server. We consider that data users are secure and trusted. It will
not expose the keys to cloud servers, and private keys are securely stored on the client
side.

2.3 � Design goals

We note that the blockchain actually is a trusted platform for correctness and avail-
ability, but does not provide protection of users’ privacy. Therefore, our design goal is
to provide the strongest possible protection on the data privacy while simultaneously
maintaining the service efficiency and quality. Our design goals are listed as follows:

Data confidentiality It should ensure strong protection of data owner’s files, state
information, and users’ query content during the service flow. It is the most basic secu-
rity feature in general searchable encryption schemes.

Forward security Forward security is a strong security requirement for dynamic SSE
schemes, which requires newly inserted entries are unlinkable to previous query results.

Multi-client support After user registration, authorized users can execute permitted
query processing by using separate keys without extra round interaction with the data
owner.

Query efficiency The complexity of the proposed secure query protocol should be sub-
linear, and the query latency and bandwidth should be bounded.

3 � Background knowledge
3.1 � Cryptographic primitives

Searchable symmetric encryption A searchable symmetric encryption scheme is a set of
three polynomial time algorithms � = (KGen,Enc,Dec) : The key generation algorithm
KGen takes a security parameter k as input and outputs a secret key K; the encryption
algorithm Enc takes a key K and a value v ∈ {0, 1}∗ as inputs and outputs a ciphertext
v∗ ∈ {0, 1}∗ ; The decryption algorithm Dec takes a key K and a ciphertext v∗ as inputs
and returns v.

Page 5 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

Pseudo-random function (PRF) Define a pseudo-random function
F : K × X → R , if for all probabilistic polynomial-time distinguishers Y,
|Pr[Y F(k ,·) = 1|k ← K] − Pr[Y g = 1|g ← {Func : X → R}]| < negl(k) , where negl(k) is
a negligible function in k.

Bilinear pairings Let G1 , G2 and GT be three bilinear groups of prime order p,
with generators g1 ∈ G1 and g2 ∈ G2 , respectively. A bilinear pairing is a map
ê : G1 × G2 → GT with the three properties: 1) Bilinearity: for all u ∈ G1 , v ∈ G2 and
a, b ∈ Zp , ê(ua, vb) = ê(u, v)ab . 2) Non-degeneracy: ê(g1, g2) �= 1. 3) Computability:
ê(u, v) can be efficiently computed for any u ∈ G1 , v ∈ G2.

3.2 � Blockchain and KV store

Blockchain In general, the blockchain [17–27] can be treated as a distributed data
store that records all the transactions that have occurred in the peer-to-peer network.
All participants in the network hold the same copy of the data record, and there is
no central authority or single node can control the entire network. Compared to the
original Bitcoin system [28], a new blockchain framework [29] is proposed, which
allows users to create, deploy, and run smart contracts [29] (predefined computer
program) on the blockchain. Once the contract is deployed, it can be automatically
executed according to the agreed logic of smart contracts and verified to demonstrate
the effectiveness of the contract operation [30]. In this work, we use the blockchain as
a trusted platform for key sharing, permission grant, and trapdoor generation.

Encrypted key-value store We follow the construction of encrypted key-value stores
proposed in [11], where the document can be stored as an encrypted key-value pair.
Assume that the data owner has a document f to be outsourced in the data node,
and it has a unique document identifier id. Then, the document f is encrypted with
the above symmetric encryption scheme Enc, and its identifier id is protected with
PRF (i.e., Pseudo-random function) P. Specifically, each key-value pair is defined as:
〈

k , v
〉

=
〈

P(kid , id),Enc(kf , f)
〉

 , where kid and kf are the private keys (Table 1).

4 � The proposed system
In this section, we present our blockchain-assisted design to support multi-client que-
ries in an encrypted KV store with forward privacy. Encrypted search protocol, on-chain
query authorization and secure update protocol are also presented in this section.

Table 1  Glossary

Acronym Definition

G1, G2 Pseudo-random functions

h Hash function

w , {id1, .., idn} Keyword-file IDs pairs

α,β Encrypted Keyword-file IDs pairs

{I1, .., Im} Encrypted indexes

ê(u, v) Bilinear pairing operation

S On-chain keyword state table

U On-chain authority table

Page 6 of 19Guo et al. J Wireless Com Network (2021) 2021:169

4.1 � Encrypted Index design

The detailed algorithm to index file IDs {id1, .., idn} for a given keyword w is shown in
Algorithm 1. This procedure is executed at the data owner side. First, the data owner
generates a query token tw via computing ê(h(w), γ)kw , where h(w) ∈ g1 and γ ∈ g2 . Then,
the owner finds the target node j for tw based on the position on the consistent hashing
ring. After that, for the ith entry idi , it generates encrypted index pairs via secure PRF,
i.e., αi = G1kα (tw , i) and βi = G2kiβ

(αi−1||k
i−1
β , idi) , where αi−1 is the address of previous

index entry and ki−1
β is the corresponding encryption key. Finally, the owner sends the

state table S and index pairs 〈α,β〉 to the smart contract and the data node, respectively.
The encrypted index above holds the security notion of SSE. The index size is

known to the data node. Without querying, no other information about the underly-
ing content is learned. This property is achieved by embedding the unique keyword
state into the index entry. Thus, the associations between keywords in different docu-
ment IDs can be well protected.

Page 7 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

4.2 � Multi‑client authorization

To register a new user u, the data owner first generates a pair of query keys {k1u , k2u} ,
where k1u × k2u = kw . Then, the query key k1u and the authorized user table U are sent to
the user and the smart contract, respectively, as shown in Algorithm 2. Correspond-
ingly, it also presents how to revoke an authorized user. Given the user id u, the smart
contract just needs to remove the entry (u, γ k2u) from U. After that, the user u can
no longer query the encrypted data because the smart contract cannot generate the
query token. By introducing the access permission table U at the smart contract, our
design enforces the access control without the extensive interaction between owner
and authorized users.

4.3 � Secure keyword‑match protocol

Based on the index construction, we present secure query protocol in details in Algo-
rithm 3. Given a query keyword w, the authorized user u wants to find all document IDs
containing the keyword. First, the data user generates the keyword token tuw by using its
query key k1u , where tuw = h(w)k

1
u . After receiving the user id u and token tuw , the smart

contract first checks its access permission at table U and then computes the query token
tw via bilinear pairing, i.e., ê(h(w)k1u , γ k2u) = ê(h(w), γ)kw = tw . After that, the smart con-
tract generates the token αn by embedding the latest state n securely via secure PRF, i.e.,
αn = G1kα (tw , n) . Given the current token αn for keyword w, the data node can retrieve all
IDs from the chaining index. In particular, each matched entry is unmasked via decryption
to get the document ID and the next entry address till no entry is returned.

During the query procedure, the keyword and document IDs are strongly protected.
Each node only learns the query token, accessed index entries, and the encrypted result
set. Note that an authorized user only needs to spend O(1) time to generate the token
for a keyword, and each data node spends O(n) time to fetch document IDs in parallel,
where n is the number of documents matching the query condition.

Page 8 of 19Guo et al. J Wireless Com Network (2021) 2021:169

4.4 � Secure record insertion

To enable dynamic search over encrypted data with forward security, we integrate the latest
state value for a given keyword into the newly added index entry. Thus, the data node can-
not learn whether the newly added index contains the keyword queried before. We now
present the details of our proposed insertion protocol in Algorithm 4. Given the keyword w
and the newly added document ID idnew , the data owner first obtains the current state n
from table S and then updates it to build the newly added index entry, as shown from Line 4
to line 6 in Algorithm 4. Meanwhile, the previous index address αn and encryption key knβ
are re-masked with idnew by using a fresh key kn

′

β  , i.e., βn′ = G2
kn

′
β
(αn||k

n
β , idnew) . Since the

newly added index entry is generated from the latest state and a fresh key, the association
between the searched keyword and the newly added document is fully protected. Formal
security analysis will later be conducted in “Security analysis” section.

Page 9 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

4.5 � Secure record deletion

The corresponding record deletion protocol following the index construction is pre-
sented in Algorithm 5. The core idea of the deletion algorithm is to reconnect the secure
index chain after removing the deleted entry. Specifically, a data node first executes the
secure query protocol as shown in Algorithm 3 and locates all matched entries over the
encrypted index chain. Then, each matched entry is unmasked to obtain the underlying
document ID. After ID checking and deletion, the data node will reconnect the index
chain by re-encrypting the previous entry βi+1 with the next entry’s contents. If the doc-
ument ID idn of the first index entry αn matches the deleted ID iddel , the smart contract
also needs to update the state and the private key.

4.6 � Encrypted keyword search example

To better understand the encrypted keyword search protocol of our blockchain-
assisted framework, Fig. 2 uses an example to show how it works to search all file
IDs matching the keyword “war.” Specifically, the example of the MongoDB query is
db.col.find(“movie′′ : “war′′) , which can select from “col′′ collection all documents where
the keyword “movie′′ equals “war′′ . The authorized user with ID “UID01” first generates
the query token tk = h(“war′′)k1 based on the query condition and sends it to the smart
contact as a query transaction. Upon receiving the token from the client, the smart con-
tract first checks its access permission via the user table and generates the keyword
token tkwar = e(tk , rk2) . After that, the smart contract creates the latest index entry
α20 = G1(tkwar , 20) with the keyword state 20 and sends it to the corresponding data
node. Each data node processes these tokens in parallel. Specifically, all matched entries α
are located via the index chain with the tokens and the document IDs id are revealed after
decryption. Finally, the encrypted documents are returned to the client from the data node.

5 � Security analysis
In this section, we will conduct rigorous security analysis of our proposed scheme. Specifi-
cally, we evaluate the security strength of secure keyword-match queries. Then, we discuss
how our scheme can achieve forward security during the update operation.

5.1 � Security on encrypted keyword search

The keyword-match index design is built on the framework of SSE scheme proposed in [5].
Once the data owner uploads the encrypted index to the data server, the size of indexes
will be learned. During the query procedure, there will be the leakage of access pattern and
query pattern. Explicitly, the access pattern indicates the search results; the query pattern is
the repeated query tokens. Following the security notion of SSE, we first define the leakage
functions for exact-match index initialization as follows:

where K is the set of keywords, m is the number of data nodes, Zi is the node i’s key-
word-match index size, and �|α|, |β|� are the index lengths of key-value pairs. After pro-
cessing a keyword search request, we define the following leakage functions:

L
kwd
1 (K) = ({Zi}m, �|α|, |β|�)

Page 10 of 19Guo et al. J Wireless Com Network (2021) 2021:169

where K is the query keyword, tK is the query token, and {�α,β�, id}n are n query results
including the accessed index pairs and corresponding encrypted document IDs. In addi-
tion, we also define the leakage Lkwd

3
 to maintain repeated requests as follows:

where Q is q number of keyword search requests. Mq×q is the symmetric bit matrix
that maintains the repeated requests. Each element in the Mq×q is initialized as 0. For
i, j ∈ [1, q] , the elements of matrix Mi,j and Mj,i are equal to 1 if two tokens ti = tj . Given
above leakage definitions, we provide the simulation-based security definition of the
keyword-match scheme as follows:

Definition 1  Let �kwd = (KGen,Buildkwd,Querykwd) be our secure keyword-match
query scheme, and let Lkwd

1
 , Lkwd

2
 and Lkwd

3
 be the leakage functions. Given a probabil-

istic polynomial time (PPT) adversary A and a PPT simulator S , define the following
probabilistic games RealA(k) and IdealA,S(k):

RealA(k) : The data owner calls KGen(1k) to get a private key K. A selects a dataset D
and asks the owner to build {Ikwd

1
, · · · , Ikwdm } via Buildkwd . Then, A adaptively conducts a

polynomial number of q queries with the tokens and ciphertexts generated by the owner.
Finally, A returns a bit as the output.

IdealA,S(k) : A selects D , and S builds {I ′kwd
1

, · · · , I ′kwdm } for A based on Lkwd
1

 . Then, A
adaptively performs a polynomial number of q queries. From Lkwd

2
 and Lkwd

3
 in each

L
kwd
2 (K) = (tK , {�α,β�, id}n)

L
kwd
3 (Q) = (Mq×q)

Fig. 2  Blockchain-assisted keyword search illustration

Page 11 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

query, S generates the simulated tokens and ciphertexts, which are processed over
{I ′kwd
1

, · · · , I ′kwdm } . Finally, A returns a bit as the output.

�kwd is adaptively secure with (Lkwd
1

,Lkwd
2

,Lkwd
3

) if for all PPT adversaries A , there exists
a PPT simulator S such that: Pr[RealA(k) = 1] − Pr[IdealA,S(k) = 1] ≤ negl(k) , where
negl(k) is a negligible function in k.

Theorem 1  �kwd is adaptively secure with (Lkwd
1

 , Lkwd
2

 , Lkwd
3

) leakages under the ran-
dom-oracle model if G1, G2, and h are secure PRFs.

Proof  Given Lkwd
1

 , the simulator S simulates the encrypted keyword-match indexes
{I ′kwd
1

, · · · , I ′kwdm } for m nodes, which have the same size Z as the real encrypted indexes.
Each simulated entry contains |α|-bit and |β|-bit random string as a key-value pair, which
is indistinguishable from the real encrypted index entry.

From Lkwd
2

 , S can simulate the first query token and results. On the simulated index, S
randomly selects n entries, which are the same as the query request over the real one,
and assigns the resulting id to the simulated entries. The random masked key-value pair
can be simulated as α′

i = G1′(t ′, n),β ′ = G2′(α′
i−1

, id) , where i ∈ {1, n} and t ′ is a random
string as the simulated token, and id is identical to the one in the real keyword-match
queries. In particular, we use random oracles {G1′,G2′} as PRFs {G1,G2} . From Lkwd

3
 , S

updates M1,1 = 1 in a matrix Mq×q.

In the subsequent jth queries ( j ∈ {2, q} ), if the query appears repeatedly, S will choose
the same tokens simulated before, and return the repeated matching results. Meanwhile,
it will update the corresponding element in M′

1,j and M′
j,1 to be “1.” Otherwise, S will

generate simulate tokens and operate random oracle to get the results as shown in the
first query procedure.

Due to the pseudo-randomness of secure PRF, A cannot differentiate the outputs of the
simulated experiment from the real one. � �

5.2 � Forward security analysis

As described in Sect. 4, we combine keyword state information stored on table S on the
smart contract and a chaining index table stored on the cloud server to preserve our
scheme to achieve forward security. Because the search trapdoor of keyword w is gen-
erated from the latest state of S associated with w, and this state updates once a new
keyword/document pair (w, id) is added to the database. Meanwhile, each newly added
entry needs to be encrypted by using fresh random masks generated from the latest state
information. Cloud server does not know which already searched/updated keyword that
current document contains. And it does not know newly updated search trapdoor of
keyword w until next query of keyword w. Based on the construction of the chain-based
index, the cloud server can recover neither the matched document id embedded with
newly added key-value pair without the updated search trapdoor, nor learn whether the

Page 12 of 19Guo et al. J Wireless Com Network (2021) 2021:169

newly added entry is generated from the same keyword as that of those previously added
entries without knowing the newly updated state information.

6 � Experimental evaluation
6.1 � Prototype implementation

We implement the proposed system prototype in C++ and perform the evaluation on
Amazon Web Services. We create the AWS “C5.xlarge” instances with 4 vcores (3 GHz
Intel Xeon� Platinum 8124M), and 8 GB RAM. In this experiment, we generate a Redis
(v3.2.0) cluster that consists of 9 AWS “C5.xlarge” instances as data nodes of the data-
base server and 4 AWS “C5.xlarge” instances as the multi-client of data applications. All
instances are installed on Ubuntu server 14.04. We use Apache Thrift (v0.9.2) to imple-
ment the remote procedure call (RPC).

For cryptographic primitives, we use OpenSSL to implement the symmetric encryp-
tion via AES-128 and the pseudo-random function via HMAC-256. Our keyword-match
indexes are integrated into the implementation of the distributed index framework pro-
posed in [12]. In total, the prototype consists of more than 8500 lines of C++ code.

6.2 � Performance evaluation

In our experimental evaluation, we target several practical aspects including initializa-
tion time, memory cost, query performance, and bandwidth overhead.

Index evaluation: We first assess the space consumption of keyword-match index
(kwd-match) in Table 2. For the keyword-match index, we use AES-128 encryption algo-
rithm to generate building blocks. Thus, the size of each key-value pair 〈α,β〉 is 256 bits.
As shown in Table 2, the index size of keyword-match increases linearly from 4.88MB
(20K index entries) to 19.53MB (80K index entries).

Figure 3 presents the time cost of building the encrypted indexes at the client side.
The time cost increases linearly with the number of index entries. For instance, it takes
around 1.2s to generate 40K index entries, which is roughly half of the time cost when
encrypting 80K keyword indexes.

Query evaluation To assess the system efficiency and security overhead, we measure
the query throughput, the process latency under different workload, and the cost of
record insertion and deletion. In this evaluation, we preload totally 160K data records to
assess the practicality of our design for large-scale deployment.

To evaluate the scalability of our system, we first report the throughput for encrypted
keyword match. By using different numbers of data nodes, we capture the total number
of handled queries for a duration of 100s to obtain the throughput when each of the
nodes is fully loaded. As shown in Fig. 4, we can find that the total number of index
entries processed per second increases with the number of cores. When there are nine
nodes at the cloud server, the keyword-match queries can achieve up to 157K entries per
second. The overhead comes from the cost of secure PRF during keyword-match com-
parison. The results confirm that our design performs satisfactorily at scale.

To gain a deeper understanding on the query performance of our proposed design,
we further evaluate the query latency for encrypted keyword-match. It worth to
note that our encrypted index chain can map duplicates to single chain reference

Page 13 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

and locates them all in a scan. Overall, our evaluation shows that the query latency
decreases with the increasing number of nodes. As shown in Fig. 5, the query latency
of keyword-match decreases from about 2.4s to 0.8s as the number of nodes increases
from 3 to 9 when returning 32K data records.

Figure 6 also compares the keyword-match query performance with the scheme
proposed in [31] denoted as Sophos when returning a fixed number of results. Our
scheme achieves better performance than Sophos because their construction requires
heavy cryptographic primitives and RSA encryption, which incurs considerable bur-
den for query performance. Overall, we can confirm that our design benefits from the
local index framework and can effectively process queries in parallel.

In this experiment, we also evaluate the incremental scalability by measuring the
time cost for keyword-match index insertion. We note that the time cost includes the
network transmission cost for each newly added entry; thus, it is much higher than
the index building time as shown in Fig. 3. When the number of newly added entries
is 32K, Fig. 7 shows that it just takes around 6.6s to add these index entries to the
encrypted index chain. Meanwhile, we also evaluate the efficiency of delete algorithm

10K 20K 40K 80K 160K

Number of data values

0

1.0

2.0

3.0

4.0

5.0

T
im

e
co

st
 (

s)

kwd-match index

Fig. 3  Keyword-match index build

Table 2  Space consumption of encrypted index

Entries 20K 40K 80K 160K

Keyword index 4.88 (MB) 9.77 (MB) 19.53 (MB) 39.06 (MB)

12 16 20 24 28 32 36

Number of cores

0

40K

80K

120K

160K

200K

E
nt

ri
es

 /s

krd-match index

Fig. 4  Keyword-match throughput

Page 14 of 19Guo et al. J Wireless Com Network (2021) 2021:169

in Fig. 8. As mentioned in Sect. 4, the process of delete operation is exactly the same
as the insert operation so that the efficiency of the add and delete algorithm is almost
the same. Specifically, it only takes 7.4s to delete 32K records.

Bandwidth evaluation Recall that the distributed index framework requires the cli-
ent to generate query tokens for each node. To understand the bandwidth overhead,
Fig. 9 shows the ratio between the query token size and result size. The result indicates
that the bandwidth ratio of keyword-match decreases gradually with the increased
size of results. When there are 50 nodes at the cloud side, the bandwidth ratio drops
from about 2.50% to approximately 0.16% when the number of retrieved result values
rises from 2K to 32K. On the other hand, the result shows that the increasing number
of nodes can render a rise in the bandwidth. The ratio of 8K result size increases from
about 0.125% to 0.625% as the number of nodes increases from 10 to 50. Nevertheless,
the bandwidth overhead is still negligible to the size of results.

7 � Related work
7.1 � Searchable symmetric encryption

Keyword search over encrypted data has been an active research area in the past
decade. With encrypted search, it allows an untrusted server to conduct a secure
comparison between the encrypted indexes and the trapdoors without leaking the
searched keywords [32–38]. In 2000, Song et al. first introduced the notion of search-
able encryption [39]. In [40], the security notion of Searchable Symmetric Encryp-
tion (SSE) is formalized. The notion of dynamic SSE was further formalized in [7].
To improve I/O efficiency, Cash et al. [5] developed a dynamic scheme optimized for
large datasets. However, the existing dynamic SSE schemes would leak the updated
keyword in the newly added documents. In [41], Stefanov et al. presented the notion
of forward security and proposed an ORAM-like index by using a hierarchical struc-
ture, but the overhead of ORAM is too high for a practical use of the SSE scheme.
The motivation for studying forward security came from file injection attacks on
SSE by Zhang et al. [42]. Bost et al. formally defined forward security in [31] and
designed an insertion-only SSE scheme with optimal search and update complexity,
based on asymmetric cryptography (i.e., trapdoor permutations). But, this construc-
tion requires heavy public key encryption operations, which leads to performance

12 16 20 24 28 32 36

Number of cores

0

0.6

1.2

1.8

2.4

3.0

T
im

e
co

st
 (

s)

8K
16K
32K

Fig. 5  Keyword-match latency

Page 15 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

degradation. Moreover, the above work on encrypted search are mostly designed for
centralized systems.

7.2 � Multi‑client access in searchable encryption

In [40], Curtmola et al. proposed the first construction for multi-user SSE based on
broadcast encryption. Jarecki et al. [43] leveraged oblivious PRF to enhance the access
policies. In [44], Sun proposed for Boolean queries make existing multi-client query pro-
tocols non-interactive so as to reduce the communication overhead. The schemes [45,
46] considered the multi-client setting in distributed key-value stores. Unfortunately,
neither designs can achieve forward security.

(a) The first simulation (b) The second simulation

(c) The third simulation (d) The fourth simulation

(e) The fifth simulation (f) The sixth simulation
Fig. 6  Query latency comparison

Page 16 of 19Guo et al. J Wireless Com Network (2021) 2021:169

(a) The first simulation (b) The second simulation

(c) The third simulation (d) The fourth simulation

(e) The fifth simulation (f) The sixth simulation
Fig. 7  Secure insertion latency

2K 4K 8K 16K 32K

Number of deleted values

0

2.0

4.0

6.0

8.0

10.0

T
im

e
co

st
 (

s)

kwd-match index

Fig. 8  Secure deletion latency

Page 17 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

8 � Results and discussion
Our blockchain-assisted secure data sharing framework has three advantages:

It is secure Since users’ data and file indexes are all encrypted, both blockchain nodes
and storage server are not able to obtain any information from the stored data, search
queries, or search results.

It is efficient Data indexes are collocated with the data and stored at storage server,
which makes the blockchain lightweighted and the search operations more efficient.
Besides, by leveraging the smart contract to construct query tokens, a data owner can
authorize query permission without extra round interaction.

It is fairness Query authorization is maintained at the smart contract, which ensures
the data sharing services non-deniable without involving any third-party authority.

As future work, we plan to explore advanced searchable encryption schemes to sup-
port other SQL query services, such as range queries and join operations. Meanwhile,
we leave how to detect malicious data owner who submit invalid data to intentionally
disrupt the system as our future work.

9 � Conclusion
In this paper, we present a completely new system architecture enabling secure multi-
client queries in distributed database systems. We propose to leverage the smart con-
tract of blockchain as a trusted party for secure query authorization and integrate
dynamic SSE scheme with bilinear pairings, achieving forward privacy for the update
operation. Extensive experiments show that it preserves advantages in existing dis-
tributed database systems such as high throughput, low latency, incremental scalabil-
ity, and fine availability.

Abbreviations
PRF:: Pseudo-random function.

Acknowledgements
This work was supported by the Fundamental Research Funds for the Central Universities under Grants 310421108 and
National Key R&D Program of China (No. 2019YFB2102600).

Author’s contribution
YG initiated this project and designed the framework. SW and JH have been involved in drafting the manuscript. All
authors read and approved the final manuscript.

2K 4K 8K 16K 32K

Number of result values

0

0.6%

1.2%

1.8%

2.4%

3.0%

R
at

io
 (

%
)

10 nodes
30 nodes
50 nodes

Fig. 9  Query token bandwidth overhead

Page 18 of 19Guo et al. J Wireless Com Network (2021) 2021:169

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Artificial Intelligence, Beijing Normal University, Beijing, China. 2 Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China.

Received: 16 December 2020 Accepted: 2 August 2021

References
	1.	 Redis: An Advanced Key-Value Cache and Store. Online at http://​redis.​io/ (2015)
	2.	 J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro, S.J. Park, H. Qin, M. Rosenblum

et al., The RAMCloud storage system. ACM TOCS 33(3), 7 (2015)
	3.	 G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W.

Vogels, Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)
	4.	 Information is Beautiful: World’s Biggest Data Breaches. Online at http://​www.​infor​matio​nisbe​autif​ul.​net/​visua​

lizat​ions/​worlds-​bigge​st-​data-​breac​hes-​hacks/ (2016)
	5.	 D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, M. Steiner, Dynamic searchable encryption in very

large databases: Data structures and implementation. In: Proc. of NDSS (2014)
	6.	 R. Curtmola, J.A. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric encryption: improved definitions and

efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)
	7.	 S. Kamara, C. Papamanthou, T. Roeder, Dynamic searchable symmetric encryption. In: Proceedings of ACM CCS

(2012)
	8.	 V. Pappas, B. Vo, F. Krell, S. Choi, V. Kolesnikov, A. Keromytis, T. Malkin, Blind Seer: A Scalable Private DBMS. In:

Proceedings of IEEE S&P (2014)
	9.	 S. Kamara, T. Moataz, SQL on Structurally-Encrypted Databases. Cryptology ePrint Archive, Report 2016/453.

http://​eprint.​iacr.​org/​2016/​453 (2016)
	10.	 R.A. Popa, C. Redfield, N. Zeldovich, H. Balakrishnan, CryptDB: protecting confidentiality with encrypted query

processing. In: Proceedings of ACM SOSP (2011)
	11.	 X. Yuan, X. Wang, C. Wang, C. Qian, J. Lin, Building an encrypted, distributed, and searchable key-value store. In:

Proceedings of ACM AsiaCCS (2016)
	12.	 X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, X. Jia, Enckv: An encrypted key-value store with rich queries. In: Proceed-

ings of ACM AsiaCCS (2017)
	13.	 R. Poddar, T. Boelter, R.A. Popa, Arx: A strongly encrypted database system. Cryptology ePrint Archive, Report

2016/591 (2016)
	14.	 Y. Guo, X. Yuan, X. Wang, C. Wang, B. Li, X. Jia, Enabling encrypted rich queries in distributed key-value stores.

IEEE TPDS 30(7), 1283–1297 (2018)
	15.	 Q. Wang, Y. Guo, H. Huang, X. Jia, Multi-user forward secure dynamic searchable symmetric encryption. In: Proceed-

ings of Conference on Network and System Security, pp. 125–140 (2018)
	16.	 Z. Yupeng, K. Jonathan, P. Charalampos, All your queries are belong to us: The power of file-injection attacks on

searchable encryption. In: Proceedings of USENIX (2016)
	17.	 G. Wood, Ethereum: A secure decentralised generalised transaction ledger. In: Ethereum Project Yellow Paper (2014)
	18.	 G. Wang, Z.J. Shi, M. Nixon, S. Han Sok: Sharding on blockchain. In: Proceedings of the 1st ACM Conference on

Advances in Financial Technologies, pp. 41–61 (2019)
	19.	 G. Wang, M. Nixon: Randchain: Practical scalable decentralized randomness attested by blockchain. In: 2020 IEEE

International Conference on Blockchain (Blockchain) (2020). IEEE
	20.	 H. Shi, S. Wang, Q. Hu, X. Cheng, J. Zhang, J. Yu, Fee-free pooled mining for countering pool-hopping attack in block-

chain. IEEE TDSC (2020)
	21.	 H. Shi, S. Wang, Y. Xiao, Queuing without patience: A novel transaction seletion mechanism in blockchain for iot

enhancement. IEEE IoT-J (2018)
	22.	 G. Wang, M. Nixon, M. Boudreaux, Toward cloud-assisted industrial iot platform for large-scale continuous condition

monitoring. Proc. IEEE 107(6), 1193–1205 (2019)
	23.	 G. Wang, Z. Shi, M. Nixon, S. Han, Chainsplitter: Towards blockchain-based industrial iot architecture for supporting

hierarchical storage. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 166–175 (2019). IEEE
	24.	 H. Shi, S. Wang, Q. Hu, X. Cheng, J. Zhang, J. Yu, Fee-free pooled mining for countering pool-hopping attack in block-

chain. IEEE TDSC (2020)
	25.	 H. Shi, S. Wang, Y. Xiao, Queuing without patience: A novel transaction seletion mechanism in blockchain for iot

enhancement. IEEE IoT-J 7(9), 7941–7948 (2020)
	26.	 S. Wang, C. Wang, Q. Hu, Corking by forking: Vunerability analysis of blockchain. In: INFOCOM (2019). IEEE
	27.	 Q. Hu, S. Wang, X. Cheng, A game theoretic analysis on block withholding attacks using the zero-determinant strat-

egy. In: IWQoS (2019). IEEE
	28.	 S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system. Online at https://​bitco.​in/​pdf/​bitco​in.​pdf

http://redis.io/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://eprint.iacr.org/2016/453
https://bitco.in/pdf/bitcoin.pdf

Page 19 of 19Guo et al. J Wireless Com Network (2021) 2021:169 	

	29.	 Ethereum: Ethereum blockchain app platform. Online at https://​www.​ether​eum.​org
	30.	 G. Wang, Z.J. Shi, M. Nixon, S. Han, Smchain: A scalable blockchain protocol for secure metering systems in distrib-

uted industrial plants. In: Proceedings of the International Conference on Internet of Things Design and Implemen-
tation, pp. 249–254 (2019)

	31.	 R. Bost: Sophos - Forward Secure Searchable Encryption. Cryptology ePrint Archive, Report 2016/728 (2016)
	32.	 Y. Guo, H. Xie, Y. Miao, C. Wang, X. Jia, Fedcrowd: A federated and privacy-preserving crowdsourcing platform on

blockchain. IEEE TSC (2020)
	33.	 H. Xie, Y. Guo, X. Jia, A privacy-preserving online ride-hailing system without involving a third trusted server. IEEE TIFS

(2021)
	34.	 Y. Guo, M. Wang, C. Wang, X. Yuan, X. Jia, Privacy-preserving packet header checking over in-the-cloud middleboxes.

IEEE IoT-J 7(6), 5359–5370 (2020)
	35.	 R. Kui, Y. Guo, J. Li, X. Jia, C. Wang, Y. Zhou, S. Wang, N. Cao, F. Li, Hybridx: New hybrid index for volume-hiding range

queries in data outsourcing services. In: Proceedings of IEEE ICDCS (2020)
	36.	 Y. Guo, C. Zhang, X. Jia, Verifiable and forward-secure encrypted search using blockchain techniques. In: Proceed-

ings of IEEE ICC (2020)
	37.	 C. Zhang, Y. Guo, X. Jia, C. Wang, H. Du, Enabling proxy-free privacy-preserving and federated crowdsourcing by

using blockchain. IEEE IoT-J (2020)
	38.	 Z. Chen, Y. Guo, H. Du, X. Jia, :Pfcrowd: Privacy-preserving and federated crowdsourcing framework by using block-

chain. In: Proceedings of IEEE IWQoS (2020)
	39.	 D. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted data. In: Proceedings of IEEE S&P (2000)
	40.	 R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric encryption: improved definitions and efficient

constructions. In: Proceedings of ACM CCS (2006)
	41.	 E. Stefanov, C. Papamanthou, E. Shi, Practical dynamic searchable symmetric encryption with small leakage. In:

Proceedings of NDSS (2014)
	42.	 J.K. Yupeng Zhang, C. Papamanthou, All your queries are belong to us: The power of file-injection attacks on search-

able encryption. In: Proceedings of USENIX Security (2016)
	43.	 S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, M. Steiner, Outsourced symmetric private information retrieval. In: Proceed-

ings of ACM CCS (2013)
	44.	 S.-F. Sun, J.K. Liu, A. Sakzad, R. Steinfeld, T.H. Yuen, :An efficient non-interactive multi-client searchable encryption

with support for Boolean queries. In: Proceedings ESORICS (2016)
	45.	 W. Lin, X. Yuan, B. Li, C. Wang Multi-client searchable encryption over distributed key-value stores. In: Proceedings of

SMARTCOMP (2017)
	46.	 X. Yuan, X. Yuan, B. Li, C. Wang, Secure multi-client data access with boolean queries in distributed key-value stores.

In: Proceedings of CNS (2017)

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ethereum.org

	A blockchain-assisted framework for secure and reliable data sharing in distributed systems
	Abstract
	1 Introduction
	2 Overview
	2.1 System Architecture
	2.2 Threat model
	2.3 Design goals

	3 Background knowledge
	3.1 Cryptographic primitives
	3.2 Blockchain and KV store

	4 The proposed system
	4.1 Encrypted Index design
	4.2 Multi-client authorization
	4.3 Secure keyword-match protocol
	4.4 Secure record insertion
	4.5 Secure record deletion
	4.6 Encrypted keyword search example

	5 Security analysis
	5.1 Security on encrypted keyword search
	5.2 Forward security analysis

	6 Experimental evaluation
	6.1 Prototype implementation
	6.2 Performance evaluation

	7 Related work
	7.1 Searchable symmetric encryption
	7.2 Multi-client access in searchable encryption

	8 Results and discussion
	9 Conclusion
	Acknowledgements
	References

