RESEARCH Open Access ## Check for updates # Performance analysis of congestion-aware secure broadcast channels Antonia Arvanitaki^{1*}, Nikolaos Pappas², Niklas Carlsson¹, Parthajit Mohapatra³ and Oleg Burdakov⁴ *Correspondence: antonia.arvanitaki@liu.se ¹ Department of Computer and Information Science, Linköping University, Linköping, Sweden Full list of author information is available at the end of the #### **Abstract** Congestion-aware scheduling in case of downlink cellular communication has ignored the distribution of diverse content to different clients with heterogeneous secrecy requirements. Other possible application areas that encounter the preceding issue are secure offloading in mobile-edge computing, and vehicular communication. In this paper, we extend the work in Arvanitaki et al. (SN Comput Sci 1(1):53, 2019) by taking into consideration congestion and random access. Specifically, we study a two-user congestion-aware broadcast channel with heterogeneous traffic and different security requirements. We consider two randomized policies for selecting which packets to transmit, one is congestion-aware by taking into consideration the queue size, whereas the other one is congestion-agnostic. We analyse the throughput and the delay performance under two decoding schemes at the receivers, and provide insights into their relative security performance and into how congestion control at the queue holding confidential information can help decrease the average delay per packet. We show that the congestion-aware policy provides better delay, throughput, and secrecy performance for large arrival packet probabilities at the queue holding the confidential information. The derived results also take account of the self-interference caused at the receiver for whom confidential data is intended due to its full-duplex operation while jamming the communication at the other user. Finally, for two decoding schemes, we formulate our problems in terms of multi-objective optimization, which allows for finding a trade-off between the average packet delay for packets intended for the legitimate user and the throughput for the other user under congestion-aware policy. **Keywords:** Broadcast channel, Queueing, Congestion control, Secrecy, Multi-objective optimization #### 1 Introduction In many wireless networks such as cellular network and Internet of Things (IoT), it is required to serve users with different Quality Of Service (QoS). Congestion control has been used in the traditional network to improve the network performance such as delay and throughput. In this work, we consider a two-user broadcast channel with heterogeneous traffic characteristics and security requirements. This setup can capture the downlink scenario by a base station that serves simultaneously two different users, one with bursty traffic and security requirements and another one with delay tolerant traffic without secrecy constraints. Furthermore, the user who has secrecy requirements, has © The Author(s), 2021. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. also full-duplex capability and it can transmit jamming signals to increase its secrecy in the cost of self-interference. The work explores the impact of congestion on the performance of the broadcast channel with heterogeneous traffic with different secrecy requirements. The proposed system can be potentially used in applications such as secure offloading in mobile-edge computing scenarios, secure communication in vehicular networks, as well as secure downlink in cellular networks. #### 1.1 Related works Most of the existing works in congestion control ignore the security requirement of the users. Physical layer secrecy has emerged as a promising approach for security in wireless communications [2]. The work in [3] has been instrumental in the development of various results in physical layer secrecy. It considers the problem of secure communication in the presence of a passive eavesdropper, where the trade-off between the transmission rate and equivocation at the eavesdropper has been explored. The result in [3] was subsequently extended for the broadcast channel [4] with a common and a private message. In [5], the physical layer security performance of a wireless ad hoc network is studied, where pairs of transmitters and receivers communicate, and the latter transmit a jamming signal to a number of eavesdroppers to facilitate secure communication. Various other network setups under physical layer secrecy constraints have been studied in the literature [6–9]. However, these results assume that users always have data to send and in such scenarios, stable throughput or stability region is a more meaningful metric to measure the performance of the system rather than secrecy capacity or secrecy rate. The work in [10] characterizes the stability region of the broadcast channel under different decoding schemes when there is no secrecy constraint at the receivers. The impact of secrecy constraint on the stability region has also been explored in [11]. In [1], the average packet delay in a two-user broadcast channel for different decoding schemes has been characterized with secrecy constraint at the receiver. In [12], the authors studied the problem of secure communication under different malicious attacks in the physical layer in a cognitive radio network, and they used Q-learning to adjust the transmission power of the secondary user. In [13], the authors investigated the problem of security in Internet of Vehicles (IoV) networks by proposing an intelligent edge-chain enabled access control framework to hinder compromised IoV devices from having access to centralized cloud and improve communication issues caused due to mobility of the IoV devices. In such modern and complex wireless communication systems, there are dependencies among metrics. Therefore, the designer has to make a choice to favour one metric over another, depending on the application. Multi-objective optimization focuses on optimizing multiple objective functions and showing the trade-off among the metrics [14, 15]. The multi-objective approaches are successfully used in designing communication systems. For instance, in [16], the authors used multi-objective optimization to study the trade-off between the spectrum selection and the resource management in a cognitive radio network. In [17], a multi-objective optimization problem was formulated for optimizing the power control and the QoS components in a CDMA wireless communication system. The authors of [18] obtained a trade-off between the data rate and the transmission power in a cellular communication system. To the best of our knowledge, the effect of secrecy on the congestion is not well understood and needs to be explored. The performance of queue holding the confidential data can degrade due to congestion and it is important to understand the impact of congestion on the secrecy performance. To explore this, we consider a two-user broadcast channel where one of the receivers having full-duplex capability need to be served with confidential data that are of bursty nature. The main contributions of the paper are described below. #### 1.2 Contribution In this paper, we study a congestion-aware broadcast channel with random selection between two queues with different secrecy requirements under different decoding schemes at the receivers. The transmitter has two queues and it serves two users with different secrecy requirements: one queue has confidential data whereas the second queue has non-confidential data. The receiver to which confidential data needs to be served has full-duplex capability, and it transmits a jamming signal to hinder eavesdropping of its data at the other user. The queue holding the confidential can grow large due to congestion. Congestion occurs when the queue grows above a threshold. The contributions are summarized as follows. We consider two schemes, a congestion-agnostic randomized policy, and a congestion-aware one for the selection of the packets that are transmitted by the source. When the source selects one packet from each queue, it applies superposition coding to transmit the two packets with a single transmission. In this case, we consider two decoding schemes at the receivers' side, treating interference as noise, and successive decoding. We then characterize the average queue size, and the average delay per packet. In addition, we characterize the throughput performance of the other user for both schemes. We numerically compare the impact of the transmission power and random access probability for packets intended for the legitimate user on the average packet delay for the sensitive traffic for different combinations of the decoding schemes. We show that congestion control at the queue holding confidential information can decrease the average delay per packet. Finally, we present the Pareto sets for the average packet delay for packets intended for the legitimate user and the throughput for the other user under congestion-aware policy for two decoding schemes, where we show the trade-off between them. #### 1.3 Structure of the paper The rest of this paper is organized as follows. In Sect. 2, we present the system model and assumptions for the precedent stated problem. In Sect. 3, we provide the analysis for the congestion-agnostic and congestion-aware policies. In Sect. 4, we formulate two multi-objective optimization problems, where we study the trade-off between two performance metrics in case of congestion-aware policy. In Sect. 5, we provide numerical results, where we show the impact of different parameters on performance metrics for three different combinations of decoding schemes at the legitimate receiver and the eavesdropper. We also present the trade-off between the performance metrics with Pareto sets. In Sect. 6, we summarize our study. #### 2 System model #### 2.1 Network model We consider a two-user broadcast channel (BC), where a single source S is equipped with two queues Q_i that contain traffic intended for two users (receivers) D_i , where i = 1, 2, as shown in Fig. 1. Here, Q_i represents both the queue length of the queue that has packets for receiver D_i , and the queue itself. Q_1 stores packets intended for receiver D_1 and they have to be kept confidential from receiver D_2 . Queue Q_2 has packets intended for receiver D_2 . Time is assumed to be slotted. The confidential data is intended for the legitimate receiver and the non-confidential data is intended for the other receiver (Table 1). We assume that the arrival process at queue Q_1 is Bernoulli with mean λ_1 , so a packet arrives with probability λ_1 during a time slot. Queue Q_2 is assumed saturated, i.e., it never empties, this captures a delay tolerant traffic scenario, where $Pr(Q_2=0)\approx 0$; thus it overestimates the interference that is caused to the other transmission. When queue Q_1 is non-empty, and queues Q_1 and Q_2 are selected with probabilities q_1 and q_2 respectively, source S sends two messages in a single transmission using superposition coding, allocating power P_1 and P_2 for the packets from the first and the second queue respectively. The total power budget is P_{max} , which means that $P_1 + P_2 = P_{\text{max}}$. When Q_1 is empty, source S sends with probability 1 the packet intended for receiver D_2 , with a power P_2 .\(^1\) We assume that there is no packet dropping and Q_1 has infinite size. Furthermore, packets will be re-transmitted until they are received by their intended destination. During one time slot, a bursty queue can be in one of the following states: empty state, non-empty and active state, non-empty and inactive state. By active state we mean that a packet is selected to be transmitted. When the queue is non-empty, but the source does not select a packet from that queue, then the queue is inactive. Packet transmissions occur at the beginning of the time slot, while packet arrivals happen at the In an extension of this work we will consider power control schemes adapting to the state of the queues. **Table 1** List of notations | Notation | Definition | | | |------------------|-------------------------------------------------------------|--|--| | $\overline{Q_1}$ | Queue holding the confidential information | | | | Q_2 | Queue holding the non-confidential information | | | | 91 | Random access probability for packets in queue Q_1 | | | | 92 | Random access probability for packets in queue Q_2 | | | | В | Congestion limit for queue Q_1 | | | | α | Path loss exponent | | | | γ 1 | SNR/SINR threshold for the legitimate receiver | | | | γ2 | SNR/SINR threshold for receiver D ₂ | | | | P_1 | Power transmission for the legitimate receiver | | | | P_2 | Power transmission for receiver D_2 | | | | PJ | Jamming power | | | | g | Residual self-interference | | | | d_1 | Distance between the source S and the legitimate receiver | | | | d_2 | Distance between the source S and receiver D_2 | | | | d_{12} | Distance between the legitimate receiver and receiver D_2 | | | | P_{max} | Total power budget | | | end of the time slot. We assume that the transmission of acknowledgments (ACKs) are instantaneous and error-free. #### 2.2 Physical layer model We assume that the legitimate receiver D_1 has full-duplex capability. This means it can receive and transmit packets at the same time, when necessary. In this work, SNR/SINR based physical layer based secrecy is considered to capture the confidential aspects of data associated with users [3–9, 11]. The SNR or SINR based secrecy metric allows the decoding ability of the unauthorized users in decoding confidential data. The full-duplex ability of the receiver D_1 can hinder the decoding of its intended message at receiver D_2 by sending a jamming signal. The receiver D_1 sends a jamming signal when $Q_1 > 0$, otherwise it is silent. The simultaneous transmission and reception at receiver D_1 causes self-interference. We assume that D_1 has imperfect self-interference cancellation, and the residual self-interference is modelled as a scalar g, where $g \in [0, 1]$. When g = 0, we have perfect self-interference cancellation, while there is no cancellation at receiver D_1 when g = 1 [19, 20]. The self-interference reduces the probability of packet reception by the legitimate receiver. We assume Rayleigh fading for the channel between S and receiver D_i , and between D_1 and D_2 as well. When queue Q_1 is non-empty and active, and queue Q_2 is active, source S sends the signal $x[t] = x_1[t] + x_2[t]$. Then, D_1 and D_2 receive the signals $y_1[t]$ and $y_2[t]$ respectively at time slot t, given by $$y_1[t] = h_1 x[t] + g x_J[t] + z_1[t],$$ $$y_2[t] = h_2 x[t] + h_{12} x_J[t] + z_2[t],$$ (1) where z_i (i = 1, 2) is additive white Gaussian noise with zero mean and unit variance, h_i is the channel gain from S to D_i , h_{12} is the channel gain from D_1 to D_2 , x_i is the signal that the source S transmits to the receiver D_i . x_i is the jamming signal, and g is the self-interference cancellation coefficient. When queue Q_1 is empty, or non-empty and non-active, the transmitted signal is $x[t] = x_2[t]$. A receiver can decode its intended packet even when both queues are active, and two packets are transmitted in a time slot based on the received Signal-to-Interference and Noise Ratio (SINR)/Signal-to-Noise Ratio (SNR). We consider two different decoding schemes at receivers D_1 and D_2 . Namely, treating interference as noise (TIN), and successive decoding (SD). When a receiver performs treating interference as noise, it decodes only the packet intended for it, while discarding the other packet. Successive decoding is a decoding scheme, where the receiver decodes first the packet not intended for it and then cancels its effect; then it decodes the intended packet. We assume different combinations of decoding schemes for each receiver apart from the case where both receivers perform successive decoding, because this case is not feasible. The success probability that receiver D_1 can successfully decode packets from queue Q_1 , while receiver D_2 cannot decode the packet (remains secret) is denoted by $P(D_{1/T}^s)$, where T denotes the set of active queues, and s indicates that a message is confidential. Furthermore, $P(D_{2/T})$ represents the success probability that the other user can successfully decode packets from queue Q_2 . The aforementioned probabilities differ for each decoding scheme are omitted here due to space limitations but they can be found in [11]. The purpose of this work is to utilize these probabilities to study the effect of a congestion-aware scheme on throughput and delay for the considered setup under different secrecy requirements. #### 3 Methods In this section, we introduce two congestion policies for the two-user broadcast channel, the congestion agnostic and the congestion-aware policy and present the analysis for each of them. ### 3.1 Congestion-agnostic randomized policy We provide the analysis for the throughput when the source randomly selects a packet from a non-empty queue as we discussed in the previous section (recall that Q_2 is assumed to be saturated here). Thus, Q_2 never empties and we have the following two cases. - 1. $Q_1 = 0$: In this case, the source transmits a packet from queue Q_2 with probability 1. We denote the success probability for that transmission $P(D_{2/2})$. - 2. $Q_1 > 0$: In this case, the source selects a packet from each queue with probability q_1q_2 . Then, the success probability with secrecy requirement for D_1 is $P(D_{1/1,2}^s)$, and the success probability for D_2 is $P(D_{2/1,2})$. With probability $q_1(1-q_2)$, a packet is selected only from Q_1 and the success probability is $P(D_{1/1}^s)$. With $q_2(1-q_1)$, the source transmits a packet only from Q_2 . Now, we can write the average service probability μ_1 and the throughput μ_2 as given below $$\mu_1 = q_1 q_2 P(D_{1/1,2}^s) + q_1 (1 - q_2) P(D_{1/1}^s), \tag{2}$$ $$\mu_2 = q_2(1 - q_1)P(Q_1 > 0)P(D_{2/2}) + q_1q_2P(Q_1 > 0)P(D_{2/1,2}) + P(Q_1 = 0)P(D_{2/2}).$$ (3) Since the traffic at Q_1 is bursty, the term μ_1 denotes the service probability of that queue. If the queue is stable, $\lambda_1 < \mu_1$, then the throughput is λ_1 , otherwise the throughput is μ_1 . Note that the stability condition $\lambda_1 < \mu_1$ can be rewritten as $$q_1 > \frac{\lambda_1}{q_2 P(D_{1/1,2}^s) + (1 - q_2) P(D_{1/1}^s)}. (4)$$ On the other hand, since Q_2 is saturated, μ_2 is the throughput. Since Q_1 can be seen as a Geo/Geo/1 queue with arrival probability λ_1 and service probability μ_1 , we have that $P(Q_1 > 0) = \frac{\lambda_1}{\mu_1}$. Thus, (3) after some calculations can be written as $$\mu_2 = P(D_{2/2}) - \frac{[1 - q_2(1 - q_1)]P(D_{2/2}) - q_1q_2P(D_{2/1,2})}{q_1q_2P(D_{1/1,2}^s) + q_1(1 - q_2)P(D_{1/1}^s)}\lambda_1.$$ (5) Note that if Q_1 is unstable, then the throughput for the D_2 is given by $$\mu_2 = q_2(1 - q_1)P(D_{2/2}) + q_1q_2P(D_{2/1,2}). \tag{6}$$ #### 3.2 Congestion-aware randomized policy In this section, we introduce a congestion-aware protocol that takes into account the queue size at Q_1 . A similar protocol was introduced in [21, 22], but in a different system setup. We consider a congestion limit B for queue Q_1 , B affects the operation of the randomized policy described in the previous section as explained below. - If $Q_1 = 0$: In this case, no packet from queue Q_1 is sent, and the source transmits a packet from queue Q_2 with probability 1. The saturated throughput is given by $\mu'_2 = P(D_{2/2})$. - If $1 \le Q_1 \le B$: The source transmits a packet from queue Q_i with a probability q_i , where i = 1, 2. The service probability for queue Q_1 is given by (2). The saturated throughput is given by $$\mu_2'' = q_1 q_2 P(D_{2/1,2}) + q_2 (1 - q_1) P(D_{2/2}). \tag{7}$$ • When $Q_1 > B$: The source transmits a packet only from queue Q_1 with probability 1. The service probability for queue Q_1 is given by $$\mu_1' = P(D_{1/1}^s). (8)$$ Given the probabilities of the above respective cases, the average service probability for Q_1 , $\bar{\mu}_1$, is given by $$\bar{\mu}_1 = \frac{P(1 \le Q_1 \le B)\mu_1 + P(Q_1 > B)\mu_1'}{P(1 \le Q_1 \le B) + P(Q_1 > B)},\tag{9}$$ where μ_1 and μ'_1 are given by (2) and (8), respectively. **Fig. 2** The Discrete Time Markov Chain (DTMC) that models the evolution of Q_1 . The service probabilities μ_1 and μ'_1 are given by (2) and (8), respectively The average throughout seen at receiver D_2 can be written as $$\mu_2 = P(Q_1 = 0)P(D_{2/2}) + P(1 \le Q_1 \le B)\mu_2'',$$ (10) where μ_2'' is given by (7). As stated earlier in Sect. 2.2, the success probabilities $P(D_{1/\mathcal{T}}^s)$ and $P(D_{2/\mathcal{T}})$, where \mathcal{T} consists of the set of active queues, are given in [11]. In order to fully characterize the average service probability and the throughput, we proceed by modeling the evolution of Q_1 by a discrete time Markov chain (DTMC) in order to calculate the probabilities $P(Q_1 = 0)$, $P(1 \le Q_1 \le B)$, and $P(Q_1 > B)$. #### 3.2.1 Markov chain for the congestion control protocol The DTMC that models the evolution of Q_1 is depicted in Fig. 2. The number of the state denotes the amount of packets in the queue. The steady-state distribution of the DTMC can be obtained by solving the flow-conservation equations along the lines of [22] and is given by $$\pi_{i} = \begin{cases} \frac{(\mu_{1} - \lambda_{1})(\mu'_{1} - \lambda_{1})}{\mu_{1}\mu'_{1} - \lambda_{1}\mu_{1} - \lambda_{1} \left[\frac{\lambda_{1}(1 - \mu_{1})}{(1 - \lambda_{1})\mu_{1}}\right]^{B}(\mu'_{1} - \mu_{1})}, & i = 0, \\ \frac{\lambda_{1}^{i}(1 - \mu_{1})}{(1 - \lambda_{1})^{i}\mu_{1}^{i}}\pi_{0}, & 1 \leq i \leq B, \\ \frac{\lambda_{1}^{B+1}(1 - \mu_{1})^{B}(1 - \mu'_{1})^{i-1}}{(1 - \lambda_{1})^{B+i}\mu_{1}^{B}\mu_{1}^{i}}\pi_{0}, & i > B. \end{cases} (11)$$ Thus, $P(1 \le Q_1 \le B) = \sum_{i=1}^{B} \pi_i$ is given by $$P(1 \le Q_1 \le B) = \frac{\lambda_1 \left(1 - \xi^B \right) (\mu_1' - \lambda_1)}{\mu_1 \mu_1' - \lambda_1 \mu_1 - \lambda_1 \xi^B (\mu_1' - \mu_1)}$$ (12) where μ_1 is given by (2), μ'_1 is given by (8), and $\xi = \frac{\lambda_1(1-\mu_1)}{(1-\lambda_1)\mu_1}$. After replacing (12) in (10), we obtain the expression for the throughput of D_2 . The expression $P(Q_1 = 0)$ is given by (11) and $$P(Q_1 > B) = 1 - P(Q_1 = 0) - P(1 \le Q_1 \le B).$$ (13) The average queue length under congestion control is $E[Q_1] = \sum_{i=1}^{\infty} i\pi_i$, after some calculations, we obtain $$E[Q_1] = \frac{N_1 + N_2}{\mu_1 \mu_1' - \lambda_1 \mu_1 - \lambda_1 \xi^B(\mu_1' - \mu_1)},$$ (14) where $$N_1 = \lambda_1 (1 - \lambda_1) \mu_1 \frac{\mu'_1 - \lambda_1}{\mu_1 - \lambda_1} \Big[B \xi^{B+1} - \xi^B (B+1) + 1 \Big],$$ and $N_2 = \xi^B \lambda_1 (\mu_1 - \lambda_1) \Big[B + \frac{(1 - \lambda_1) \mu'_1}{\mu'_1 - \lambda_1} \Big].$ The average queue length for Q_1 without the congestion-aware protocol is given by $$E[Q_1] = \frac{\lambda_1}{\mu_1 - \lambda_1} (1 - \lambda_1). \tag{15}$$ #### 3.2.2 Delay Analysis for the legitimate user Here, we characterize the delay performance of the legitimate user for the cases without congestion control and with congestion control as described earlier. The average delay per packet consists of the queueing delay, \bar{D}_{O_1} , and the transmission delay, \bar{D}_T . The average transmission delay that a packet from Q_1 faces is given by $$\bar{D}_T = \frac{1}{\bar{\mu}_1},\tag{16}$$ where $\bar{\mu}_1$ is the probability of departure (or service probability) for the packet waiting in the head of the queue Q_1 . For the case of congestion control, $\bar{\mu}_1$ is given by (9). In congestion control, the average queue length is given by (14). The average queueing delay in Q_1 is given by $$\bar{D}_{Q_1} = \frac{E[Q_1]}{\lambda_1},\tag{17}$$ where $E[Q_1]$ is given by (14). The average packet delay for receiver D_1 is given by $$\bar{D}_1 = \bar{D}_{O_1} + \bar{D}_T. \tag{18}$$ Similarly, we obtain the average delay per packet for the simple randomized policy described in Sect. 3.1. #### 4 Optimization problem Here we consider the performance optimization problem for two-user broadcast channel from the viewpoint of multi-objective optimization. It is obviously desirable to have the average packet delay as small as possible and the average throughput for the eavesdropper as large as possible. However, these desires are in conflict because the two metrics, called as objective functions, depend on a join set of design parameters, referred to as decision variables. The multi-objective optimization allows for obtaining the so-called Pareto set. Every Pareto optimal solution, by definition, is not dominated by any other solution simultaneously in all objectives. The network designer can use the Pareto set for choosing specific parameter values which provides a trade-off between the objectives. We proceed now to formulating two bi-objective optimization problems which are solved in a decentralized way by source S and receiver D_1 . First, we consider a bi-objective optimization problem, where two metrics, the throughput of the eavesdropper and the average packet delay for packets intended for receiver D_1 are jointly optimized. The throughput for the eavesdropper, given by (10), is defined as the service probability for queue Q_2 when congestion control is used for queue Q_1 , and it is desired to be maximized. The average packet delay for the legitimate receiver given by (18) is desired to be minimized. These two metrics are to be optimized by source S. Here the decision variables are P_1 , P_2 , q_1 , and q_2 . Since $P_1 + P_2 = P_{\text{max}}$, they can be reduced to P_1 , q_1 , and q_2 . The success probabilities in (18) and (10) can be found in [11]. The optimization problem is then defined as $$\min_{P_{1},q_{1},q_{2}} (\bar{D}_{1}, -\mu_{2})$$ s.t $P(Q_{1} > B) \leq P_{\text{con}},$ $$P_{\min} \leq P_{1} \leq P_{\max},$$ $$0 < q_{1} \leq 1,$$ $$0 < q_{2} \leq 1,$$ (19) where $P(Q_1 > B)$ is given by (13), P_{con} is the upper threshold for $P(Q_1 > B)$, P_1 is the transmission power for packets transmitted from queue Q_1 , P_{max} is a power threshold for P_1 , and q_i is the probability that the source selects a packet from queue Q_i , where i = 1, 2. Next, we formulate a second bi-objective optimization problem, which is solved by receiver D_1 . The objective functions are the same as in the previous formulation, but here we have only P_J as a decision variable, which is the jamming power that receiver D_1 uses to send the jamming signal to receiver D_2 . The corresponding optimization problem is formulated as $$\min_{P_J} \qquad (\bar{D}_1, -\mu_2) \text{s.t} \qquad 0 \le P_J \le P'_{\text{max}},$$ (20) where P'_{max} is a power threshold for P_J . #### 5 Results and discussion In this section, we evaluate numerically the analytical results presented in the previous sections. The metrics used to evaluate our proposed system are the average packet delay $(\bar{D_1})$, the saturated throughput (μ_2) , and the secrecy loss tolerance defined in [1]. The secrecy loss tolerance metric describes the trade-off between throughput and secrecy. For the congestion-agnostic policy, it is given by $$f_{\rm ag} = 1 - \frac{\mu_1}{\dot{\mu_1}},$$ (21) where $\dot{\mu_1} = q_1 q_2 P(D_{1/1,2}) + q_1 (1 - q_2) P(D_{1/1})$, and μ_1 is given by (2). For the congestion-aware policy, the secrecy loss tolerance is given by **Fig. 3** (\bar{D}_1 , function f_{aw}) vs. (q_1 , P_1), under congestion-aware randomized policy in TIN-TIN. The rest of the parameters are the following: $\lambda_1=0.1$, $\gamma_1=-4.2$ dB, $\gamma_2=-6.4$ dB, $\alpha=2.2$, $\beta=41$ dB, $P_J=23$ dB, $q_2=0.4$, $\beta=6$ packets, $P_{max}=23$ dB, $d_2=14.6$ m, and $d_{12}=10$ m. In TIN-TIN, $d_1=8.2$ m $$f_{\rm aw} = 1 - \frac{\bar{\mu_1}}{\hat{\mu_1}},\tag{22}$$ where $\bar{\mu_1}$ is given by (9), and $\hat{\mu}_1$ is given by $$\hat{\mu}_1 = \frac{P(1 \le Q_1 \le B)\mu_{1_{\not +}} + P(Q_1 > B)\mu'_{1_{\not +}}}{P(1 \le Q_1 \le B) + P(Q_1 > B)},\tag{23}$$ where $\mu_{1_{\delta}} = q_1 q_2 P(D_{1/1,2}) + q_1 (1 - q_2) P(D_{1/1})$, and $\mu'_{1_{\delta}} = P(D_{1/1})$. We solve the optimization problems in (19) and (20) by using PYMOO [23]. In the framework of PYMOO, we used NSGA-II [24], a multiobjective genetic algorithm. The parameters of our system are the following: $\lambda_1 \in [0.1,0.9]$ is the probability of a packet arrival in a time slot. $\alpha \in [2,4]$ is the path loss exponent, where $\alpha=2$ corresponds to free space and $\alpha=4$ corresponds to lossy environments. $\gamma_1, \gamma_2 \in [-10 \, \mathrm{db}, +10 \, \mathrm{db}]$ are the SINR thresholds for receivers D_1 and D_2 . $d_1, d_2, d_3 \in [0,100\mathrm{m}]$ are the distances between the source and each receiver, and the distance between the two receivers. $g \in [0,1]$ is the residual self-interference, where g=0, corresponds to perfect self-interference cancellation, and when g=1 corresponds to no cancellation at receiver D_1 ($\beta \triangleq -10\log g^2$ in dB). $P_j \in [0,23\,\mathrm{dB}]$ is the jamming power. $B \in [1,20]$ is the congestion threshold in packets. $q_i \in [0,1]$ is the random access probability for packets, where i=1 refers to confidential data, and i=2 refers to non-confidential data. $P_1 \in [0,23\mathrm{db}]$ is the transmission power for confidential packets. The parameters for our results are presented in the caption of Figs. 3, 4, 5, 6, 7 and 8. In summary, the key points from the numerical results are the following. - With the congestion-aware policy, P_1 affects the secrecy performance more than λ_1 and q_1 do. Function $f_{\rm aw}$ is unaffected by B in TIN-TIN and SD-TIN. In TIN-SD, higher B leads to less secrecy. - The congestion-aware policy provides better delay performance in TIN-TIN and SD-TIN for large λ_1 , but for small λ_1 the two policies perform the same. IN TIN- **Fig. 4** (\bar{D}_1 , function $f_{\rm aw}$) versus (q_1, P_1), under congestion-aware randomized policy in SD-TIN. The rest of the parameters are the following: $\lambda_1=0.1$, $\gamma_1=-4.2$ dB, $\gamma_2=-6.4$ dB, $\alpha=2.2$, $\beta=41$ dB, $P_J=23$ dB, $q_2=0.4$, $\beta=6$ packets, $P_{\rm max}=23$ dB, $d_2=14.6$ m, and $d_{12}=10$ m. In SD-TIN, $d_1=8.2$ m **Fig. 5** (\bar{D}_1 function $f_{\rm aw}$) versus (q_1 , P_1), under congestion-aware randomized policy in TIN-SD. The rest of the parameters are the following: $\lambda_1=0.1$, $\gamma_1=-4.2$ dB, $\gamma_2=-6.4$ dB, $\alpha=2.2$, $\beta=41$ dB, $P_J=23$ dB, $q_2=0.4$, $\beta=6$ packets, $P_{\rm max}=23$ dB, $d_2=14.6$ m, and $d_{12}=10$ m. In TIN-SD, $d_1=17.4$ m **Fig. 6** (μ_2 , function f_{aw}) versus (q_1 , P_1), under congestion-aware randomized policy in TIN-TIN. The rest of the parameters are the following: $\lambda_1=0.1$, $\gamma_1=-4.2$ dB, $\gamma_2=-6.4$ dB, $\alpha=2.2$, $\beta=41$ dB, $P_J=23$ dB, $q_2=0.4$, $\beta=6$ packets, $P_{max}=23$ dB, $d_2=14.6$ m, and $d_{12}=10$ m. In TIN-TIN, $d_1=8.2$ m SD, the delay performance is better in the congestion-aware policy for any λ_1 . In the congestion-aware policy, $\bar{D_1}$ increases as B increases in TIN-TIN and SD-TIN **Fig. 7** (μ_2 , function f_{aw}) versus (q_1 , P_1), under congestion-aware randomized policy in SD-TIN. The rest of the parameters are the following: $\lambda_1 = 0.1$, $\gamma_1 = -4.2$ dB, $\gamma_2 = -6.4$ dB, $\alpha = 2.2$, $\beta = 41$ dB, $P_J = 23$ dB, $Q_2 = 0.4$, $Q_2 = 0.4$, $Q_3 = 0.4$, $Q_4 = 0.4$, $Q_5 0$ **Fig. 8** (μ_2 , function f_{aw}) versus (q_1, P_1), under congestion-aware randomized policy in TIN-SD. The rest of the parameters are the following: $\lambda_1 = 0.1$, $\gamma_1 = -4.2$ dB, $\gamma_2 = -6.4$ dB, $\alpha = 2.2$, $\beta = 41$ dB, $P_J = 23$ dB, $q_2 = 0.4$, $\beta = 6$ packets, $P_{max} = 23$ dB, $q_2 = 14.6$ m, and $q_1 = 10$ m. In TIN-SD, $q_2 = 17.4$ m for small B. For large B, $\bar{D_1}$ is constant in TIN-TIN and SD-TIN. In TIN-SD, $\bar{D_1}$ keeps increasing as B increases. - The throughput performance is noticeably better in congestion-aware policy for TIN-TIN and SD-TIN. In TIN-SD, the congestion-aware policy performs better for small λ_1 , but for larger λ_1 , the congestion-agnostic policy achieves better results. The throughput performance remains unaffected when changing B in TIN-TIN and SD-TIN. In TIN-SD, μ_2 decreases for large B. - The secrecy is less in congestion-aware policy in TIN-TIN and SD-TIN for large λ_1 and for any λ_1 in TIN-SD. - We can achieve higher throughput performance and lower delay performance in SD-TIN as shown by the Pareto set for the optimization problem in (19) under congestion-aware policy. To illustrate these findings, Figs. 3, 4, 5, 6, 7 and 8 present example results selected from a broader set of results. In particular, Figs. 3, 4 and 5 show how \bar{D}_1 and function $f_{\rm aw}$ change when we change P_1 and q_1 for three combinations of decoding schemes: TIN-TIN, SD-TIN, and TIN-SD. Here, we set $q_2 = 0.4$ and we change q_1 in the range [0, 1]. We also change P_1 in the range [0 dB, 23 dB]. The values of q_1 and P_1 that cause instability at queue Q_1 are not shown in the figure. Thus, the source transmits packets from both queues with the aforementioned probabilities, according to the congestion-aware randomized policy. We observe that \bar{D}_1 increases as q_1 decreases, because the average queuing delay is higher since more packets remain in queue Q_1 . We also see that \overline{D}_1 decreases as P_1 increases in TIN-TIN and TIN-SD, because higher transmission power leads to higher probability of successful packet reception. In SD-TIN, D_1 decreases as P_1 increases up to $P_1 = 20.5$ dB, and then it starts increasing, due to delay imposed by the successive decoding for decoding the packets. The values of P_1 not shown in the figure cause instability of queue Q_1 , as explained earlier. We note that function f_{aw} is affected more by P_1 than q_1 . Specifically, function f_{aw} increases when P_1 increases, meaning that higher P_1 leads to less secrecy of the system since the signal is stronger and the probability that the other user receives the signal is higher. We also observe that function f_{aw} has the lowest value in SD-TIN, which means that we have more secrecy in this case. The reason is that the service probability is higher in SD-TIN, due to the proximity of receiver D_1 to the source. Figures 6, 7 and 8 depict how P_1 and q_1 affect μ_2 and function $f_{\rm aw}$ for the cases of TIN-TIN, SD-TIN, and TIN-SD. We observe that μ_2 decreases as P_1 increases, because μ_1 is higher and receiver D_1 transmits a jamming signal with higher probability. We see that μ_2 has the lowest value in TIN-SD for the aforementioned reason. When q_1 increases, μ_2 also increases. This happens because μ_2 depends on q_1 as shown in (7) and (10). This means that μ_2 increases when queue Q_1 is non-empty, and both queues are selected with probabilities q_1 and q_2 respectively under the congestion-aware randomized policy. The values of P_1 and q_1 not shown in the figure lead to instability of queue Q_1 , as described earlier. We also observe that function $f_{\rm aw}$ increases as P_1 increases for the same aforementioned reason as in Figs. 3, 4 and 5. Function $f_{\rm aw}$ has the lowest value in the case of SD-TIN (higher secrecy), because μ_1 is higher due to better communication channel between the source and receiver D_1 . In Table 2, we see how D_1 , μ_2 , and functions f_{aw} and f_{ag} are affected by λ_1 and P_1 under two congestion policies for the cases of TIN-TIN, SD-TIN, and TIN-SD. We observe that the congestion-aware policy is significantly effective for large λ_1 in all aforementioned cases. For small λ_1 , the delays for the two congestion policies are the same for TIN-TIN and SD-TIN. For TIN-SD, the delays are very close, but the congestion-aware policy has a better delay performance. The congestion-aware policy leads to more secrecy (low function f_{aw}) when λ_1 is large in TIN-TIN, but for small λ_1 , the secrecy is the same for the two policies. As P_1 increases, \overline{D}_1 decreases for both policies. The same observations apply for SD-TIN, but higher P_1 leads to larger $\bar{D_1}$ for small q_1 when no congestion-aware policy is used in SD-TIN. In TIN-SD, we see that the congestion-aware policy leads to more secrecy for small q_1 , because $\bar{\mu_1}$ is higher than μ_1 . The congestion-aware policy results in higher μ_2 compared with μ_2 in the congestion-agnostic aware policy. When P_1 increases, μ_2 decreases in a significant volume. This happens because as P₁ increases, more packets are successfully received by receiver D_1 , which transmits a jamming signal with higher probability to receiver D_2 to hinder successful confidential packet reception by the latter. As λ_1 increases in 0.10 0.12 0.12 0.14 0.14 22.12 21.93 22 12 21.93 22.12 20.98 27.00 24 68 32.09 29.17 With congestion policy No congestion policy Decoding λ_1 f_{aw} f_{ag} (in dB) (in timeslots) (in packets/ (in timeslots) (in packets/ timeslot) timeslot) TIN-TIN 0.10 19.29 5.42 0.54 0.06 5.42 0.39 0.06 0.19 0.16 0.10 21.58 4.22 0.26 0.16 4.22 0.20 19.29 6.36 0.40 0.06 6.38 0.30 0.06 0.20 21.58 4.63 0.20 0.16 4.63 0.15 0.16 19.29 8.37 0.26 0.05 9.15 0.20 0.06 0.30 5.41 0.14 0.16 5.44 0.10 0.16 0.30 21.58 0.06 19.29 11.90 0.17 0.03 128.26 0.11 0.40 0.40 21.58 7.10 0.09 0.15 7.83 0.06 0.16 SD-TIN 0.10 19.29 4.43 0.56 0.05 4.43 0.41 0.05 0.17 0.10 21.58 5.44 0.25 0.17 5.44 0.18 0.20 19.29 4.91 0.44 0.05 4.91 0.33 0.05 21.58 0.17 0.17 6.41 0.13 0.17 0.20 6.38 0.05 0.30 19.29 5.86 0.32 5.92 0.25 0.05 9.23 0.07 0.30 21.58 8.37 0.10 0.16 0.17 19.29 8.03 0.21 0.04 9.38 0.17 0.05 0.400.40 21.58 11.60 0.05 0.12 166.05 0.02 0.17 TIN-SD 0.26 0.20 0.27 0.10 21.93 22.74 0.21 24.67 **Table 2** Performance under different congestion policies TIN-TIN and SD-TIN, μ_2 also decreases, because the probability of jamming is higher when receiver D_1 receives more packets. 0.19 0.21 0.19 0.19 019 0.28 0.25 0.27 0.22 0.25 22.27 36.01 30.38 92.78 57.99 0.18 0.21 0.19 0.21 0.21 0.29 0.27 0.29 0.27 0.29 Table 3 presents the impact of P_1 , B, and $f_{\rm aw}$ on $\bar{D_1}$ in TIN-TIN, SD-TIN, and TIN-SD. As shown, B does not affect μ_2 , neither function $f_{\rm aw}$ in TIN-TIN and SD-TIN. In TIN-SD, μ_2 decreases as B increases when P_1 is small. When P_1 is large, μ_2 increases as B increases, because large B implies that the congestion policy adapts much later. We also note that function $f_{\rm aw}$ increases as B increases. In TIN-TIN, SD-TIN and TIN-SD, $\bar{D_1}$ increases when B is small because the queuing delay increases. As B increases, $\bar{D_1}$ increases but it is stable in TIN-TIN and SD-TIN for large B, whereas $\bar{D_1}$ increases as B increases in TIN-SD. Figures 9, 10 and 11 show the Pareto set for the optimization problem in (19) for the cases of TIN-TIN, SD-TIN, and TIN-SD. In SD-TIN, $-\mu_2$ has the highest value and $\bar{D_1}$ has the minimum value compared to TIN-TIN and TIN-SD due to the topology requirement of the successive decoding. We also observe that TIN-SD has the worst performance since both $-\mu_2$ and $\bar{D_1}$ have the lowest value compared to TIN-TIN and SD-TIN for the aforementioned reason. Table 4 presents the solution for the optimization problem in (20). It has only one solution for each combination of decoding schemes, namely, $P_J^* = P_{\text{max}}$. Comparing the optimal values of D_1^* , TIN-TIN has the lowest value of D_1^* , whereas TIN-SD has the **Table 3** Performance in congestion-aware randomized policy when changing B and P_1 | Decoding | β
(in packets) | P ₁
(in dB) | $ar{D}_1$ (in timeslots) | μ_2 (in packets/timeslot) | f_{aw} | |----------|-------------------|---------------------------|--------------------------|-------------------------------|----------| | TIN-TIN | 2 | 18.33 | 7.52 | 0.54 | 0.04 | | | 2 | 21.88 | 4.21 | 0.19 | 0.18 | | | 6 | 18.33 | 8.03 | 0.54 | 0.04 | | | 6 | 21.88 | 4.23 | 0.19 | 0.18 | | | 10 | 18.33 | 8.03 | 0.54 | 0.04 | | | 10 | 21.88 | 4.23 | 0.19 | 0.18 | | SD-TIN | 2 | 18.33 | 4.90 | 0.61 | 0.03 | | | 2 | 21.88 | 6.53 | 0.17 | 0.19 | | | 6 | 18.33 | 4.95 | 0.61 | 0.03 | | | 6 | 21.88 | 6.85 | 0.17 | 0.19 | | | 10 | 18.33 | 4.95 | 0.61 | 0.03 | | | 10 | 21.88 | 6.85 | 0.17 | 0.19 | | TIN-SD | 2 | 21.04 | 26.00 | 0.26 | 0.13 | | | 2 | 22.12 | 16.69 | 0.17 | 0.25 | | | 6 | 21.04 | 39.29 | 0.26 | 0.14 | | | 6 | 22.12 | 21.10 | 0.19 | 0.28 | | | 10 | 21.04 | 49.80 | 0.25 | 0.16 | | | 10 | 22.12 | 22.18 | 0.19 | 0.29 | **Table 4** Pareto optimal solution of the optimization problem in (20) for different decoding schemes | Decoding | P*
(in dB) | D_1^* (in timeslots) | $-\mu_2^*$ (in packets/ timeslot) | |----------|---------------|------------------------|-----------------------------------| | TIN-TIN | 23.00 | 4.24 | - 0.15 | | SD-TIN | 23.00 | 7.83 | - 0.12 | | TIN-SD | 23.00 | 21.81 | - 0.20 | **Fig. 9** Pareto set for (19) in TIN-TIN. The rest of the parameters are the following: $\lambda_1=0.1, \gamma_1=-4.2$ dB, $\gamma_2=-6.4$ dB, $\gamma_2=-6.4$ dB, $\gamma_2=-6.4$ dB, $\gamma_2=-6.4$ dB, $\gamma_3=-6.4$ dB, $\gamma_4=-6.4$ dB, $\gamma_5=-6.4$ **Fig. 10** Pareto set for (19) in SD-TIN. The rest of the parameters are the following: $\lambda_1=0.1$, $\gamma_1=-4.2$ dB, $\gamma_2=-6.4$ dB, $\alpha=2.2$, $\beta=41$ dB, $P_J=23$ dB, $\beta=6$ packets, $P_{\text{max}}=23$ dB, $d_2=14.6$ m, and $d_{12}=10$ m. In SD-TIN, $d_1=8.2$ m largest value of D_1^* . Regarding $-\mu_2$, SD-TIN has the lowest value, whereas TIN-SD has $\gamma_2 = -6.4 \, \text{dB}, \alpha = 2.2, \beta = 41 \, \text{dB}, P_J = 23 \, \text{dB}, B = 6 \, \text{packets}, P_{\text{max}} = 23 \, \text{dB}, d_2 = 14.6 \, \text{m}, \text{and } d_{12} = 10 \, \text{m}. \, \text{In}$ #### 6 Summary the largest value. TIN-SD, $d_1 = 17.4 \,\text{m}$ Congestion can deteriorate the performance of communication networks leading to high packet delay. To address the problem of congestion in a two-user broadcast channel with contrasting traffic and security characteristics, we characterized the average packet delay for confidential traffic, and the throughput of the other user, and we proposed a congestion-aware randomized scheme. We showed that the proposed scheme can significantly improve the performance for the legitimate user. #### Acknowledgements This work was supported in part by Department of Science and Technology (DST), India—Swedish Research Council (VR Sweden). #### Authors' contributions AA carried out the analysis, evaluated numerically the results and drafted the manuscript. NP helped in the analysis and drafting the manuscript. NC and PM helped in drafting the manuscript. OB helped in the formulation of the multi-objective problem and drafting the manuscript. All authors read and approved the final manuscript. #### Funding Open access funding provided by Linköping University. CUGS (National Graduate School in Computer Science), IDA, Linköping University. #### Availability of data and materials Not applicable since no datasets were generated or analysed in the current article. #### **Declarations** #### Competing interests The authors declare that they have no competing interests. ¹Department of Computer and Information Science, Linköping University, Linköping, Sweden, ²Department of Science and Technology, Linköping University, Norrköping, Sweden. ³Department of Electrical Engineering, Indian Institute of Technology, Tirupati, India. ⁴Department of Mathematics, Linköping University, Linköping, Sweden. Received: 27 April 2021 Accepted: 22 August 2021 Published online: 25 September 2021 #### References - 1. A. Arvanitaki, N. Pappas, P. Mohapatra, N. Carlsson, Delay performance of a two-user broadcast channel with security constraints. SN Comput. Sci. 1(1), 53 (2019) - A. Mukherjee, S.A.A. Fakoorian, J. Huang, A.L. Swindlehurst, Principles of physical layer security in multiuser wireless networks: A survey. IEEE Commun. Surv. Tutor. 16(3), 1550–1573 (2014) - A.D. Wyner, The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975) - I. Csiszár, J. Körner, Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978) - T. Zheng, H. Wang, J. Yuan, Z. Han, M.H. Lee, Physical layer security in wireless ad hoc networks under a hybrid full-/ half-duplex receiver deployment strategy. IEEE Trans. Wirel. Commun. 16(6), 3827-3839 (2017) - P.K. Gopala, L. Lai, H. El Gamal, On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory 54(10), 4687–4698 - 7. X. Zhou, M.R. McKay, B. Maham, A. Hjørungnes, Rethinking the secrecy outage formulation: a secure transmission design perspective. IEEE Commun. Lett. 15(3), 302-304 (2011) - 8. L. Zhang, H. Zhang, D. Wu, D. Yuan, Improving physical layer security for miso systems via using artificial noise, in IEEE Global Communications Conference (GLOBECOM), vol. 2015 (2015), p. 1-6 - K. Chopra, R. Bose, A. Joshi, Secrecy outage of threshold-based cooperative relay network with and without direct links. EURASIP J. Inf. Secur. 2018(1), 7 (2018). https://doi.org/10.1186/s13635-018-0077-8 - 10. N. Pappas, M. Kountouris, A. Ephremides, V. Angelakis, Stable throughput region of the two-user broadcast channel. IEEE Trans. Commun. 66(10), 4611-4621 (2018) - 11. P. Mohapatra, N. Pappas, J. Lee, T.Q.S. Quek, V. Angelakis, Secure communications for the two-user broadcast channel with random traffic, IEEE Trans, Inf. Forensics Secur. 13(9), 2294-2309 (2018) - 12. S. Lai, J. Xia, D. Zou, L. Fan, Intelligent secure communication for cognitive networks with multiple primary transmit power. IEEE Access 8, 37 343-37 351 (2020) - 13. Y. Liu, M. Xiao, S. Chen, F. Bai, J. Pan and D. Zhang, An intelligent edge-chain-enabled access control mechanism for ioV,in IEEE Internet of Things Journal, vol. 8, no. 15, pp. 12231-12241. (2021). https://doi.org/10.1109/JIOT.2021.30614 - 14. K. Miettinen, Nonlinear Multiobjective Optimization (1999) - 15. M. Ehrgott, Multicriteria Optimization (2005) - 16. R. Samano-Robles, A. Gameiro, Joint spectrum selection and radio resource management based on multi-objective portfolio optimization for cognitive radio networks, in The First International Conference on Future Generation Communication Technologies (2012), p. 22-27 - 17. M. Elmusrati, R. Jantti, H.N. Koivo, Multiobjective distributed power control algorithm for CDMA wireless communication systems. IEEE Trans. Veh. Technol. 56(2), 779-788 (2007) - 18. M. Elmusrati, H. El-Sallabi, H. Koivo, Applications of multi-objective optimization techniques in radio resource scheduling of cellular communication systems. IEEE Trans. Wirel. Commun. 7(1), 343–353 (2008) - 19. Z. Tong, M. Haenggi, Throughput analysis for full-duplex wireless networks with imperfect self-interference cancellation. IEEE Trans. Commun. 63(11), 4490-4500 (2015) - 20. N. Pappas, M. Kountouris, A. Ephremides, A. Traganitis, Relay-assisted multiple access with full-duplex multi-packet reception. IEEE Trans. Wirel. Commun. 14(7), 3544-3558 (2015) - 21. K. Jagannathan, E. Modiano, L. Zheng, On the role of queue length information in network control. IEEE Trans. Inf. Theory **57**(9), 5884–5896 (2011) - 22. N. Pappas, M. Kountouris, Throughput of a cognitive radio network under congestion constraints: a network-level study, in 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM) (2014), p. 162-166 - 23. J. Blank, K. Deb. Pymoo: multi-objective optimization in python, IEEE Access 8, 89 497-89 509 (2020) - 24. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002) ### **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.