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1  Introduction
With the advent of the Internet of Things (IoT), wireless communication function is 
employed not only in the electronic devices but also in every ‘Things’ [1]. These devices 
are expected to have low-cost and low-power consumption characteristics to operate in 
IoT networks [2]. Also, since tons of devices are expected to be deployed in IoT net-
works, energy should be provided in a sustainable way to maintain long-lasting networks 
[3]. In this sense, energy will play an important role to provide seamless services with 
limited resource.

One of the viable solutions is to produce energy by devices for themselves or provide 
energy to devices wirelessly, i.e., energy-harvesting, which enables devices to obtain 
energy from various physical phenomena such as wind, sun-light, and Radio Frequency 
(RF) signal [4]. In a network with energy-harvesting devices, the status of data and 
energy in the devices may vary [5, 6]. Devices may have different amount of traffic to 
transmit. Some devices frequently report the status or send information to the network, 
while other devices have relatively sparse traffic. The energy sustainability of devices also 
fluctuates. If a device is located near the power beacon, it receives much energy with 
minimal loss. However, the nodes far from the power beacon obtain small amount of 

Abstract 

The efficient use of resources in wireless communications has always been a major 
issue. In the Internet of Things (IoT), the energy resource becomes more critical. The 
transmission policy with the aid of a coordinator is not a viable solution in an IoT 
network, since a node should report its state to the coordinator for scheduling and 
it causes serious signaling overhead. Machine learning algorithms can provide the 
optimal distributed transmission mechanism with little overhead. A node can learn by 
itself by utilizing the machine learning algorithm and make the optimal transmission 
decision on its own. In this paper, we propose a novel learning Medium Access Control 
(MAC) protocol with learning nodes. Nodes learn the optimal transmission policy, i.e., 
minimizing the data and energy queue levels, using the Q-learning algorithm. The 
performance evaluation shows that the proposed scheme enhances the queue states 
and throughput.

Keywords:  Energy-harvesting, Transmission policy, Q-learning, IoT

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Kim and Lee ﻿J Wireless Com Network        (2021) 2021:176  
https://doi.org/10.1186/s13638-021-02047-6

*Correspondence:   
tjlee@skku.edu 
College of Information 
and Communication 
Engineering, Sungkyunkwan 
University, 2066 Seobu‑Ro, 
Jangan‑Gu, Suwon, 
Gyeonggi‑Do 16419, 
Republic of Korea

http://orcid.org/0000-0002-3985-7808
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-02047-6&domain=pdf


Page 2 of 16Kim and Lee ﻿J Wireless Com Network        (2021) 2021:176 

energy. Without an appropriate data transmission strategy, the devices may suffer from 
shortage of energy to transmit or unnecessary charging, and accumulated data queue 
and packet loss. Therefore, depending on the status of devices, a desired transmission 
strategy is required.

Transmission policies for energy-harvesting devices have been researched. In [7, 8], 
the optimal packet scheduling policy for a single energy harvesting node is studied. The 
transmission power of a node related with the data rate is optimized to minimize the 
total transmission time of a node. The authors in [9, 10] present a transmission policy 
for point-to-point transmission in the fading channel. By controlling the time sequence, 
throughput is maximized and the total transmission time is minimized. In [11], a 
decentralized random access policy is studied to maximize the long-term network util-
ity. Using the game theory, nodes decide the policy to transmit, remain idle, or discard 
packets. The optimal new solution is found and the heuristic algorithm is provided. The 
authors in [12] studied the power management policies for the dual energy harvesting 
links, where transmitter and receiver are both energy harvesting-capable nodes. Con-
sidering the battery size and the retransmission index, the packet drop probability (PDP) 
is modeled. The battery size highly is shown to impact on the PDP performance as it 
helps to overcome the randomness of energy availability. Also, the optimal retransmis-
sion policy to minimize PDP is designed. In [13], the selective sampling, which decodes 
the packet with a certain length, is proposed to reduce energy consumption. The selec-
tive sampling information is further utilized by piggybacking for more efficient energy 
use at the receiver. Also, the retransmission strategy and the power allocation scheme to 
ensure lower PDP are introduced using Markov Decision Process (MDP).

Recently, machine learning has drawn much interest as a powerful tool to solve com-
plex problems, e.g., Google’s AlphaGo [14]. This adaptive learning capability can be 
applied to tackle complex problems. The transmission strategy for energy harvesting 
nodes by machine learning is an attractive research issue. In [15], adaptation of duty 
cycle for energy harvesting sensor nodes is studied. To achieve the balance between the 
energy supply and the Quality of Service (QoS) requirement, a modified MDP using 
reinforcement learning is introduced.

Reinforcement learning-based energy management policies for single [16] and mul-
tiple [17] nodes are studied. The energy harvesting node is modeled as continuously to 
create data and to gain energy from the energy source. Data can be transmitted using a 
certain amount of energy defined in a conversion function. For a single node, the authors 
in [16] utilize Q-learning to find the optimal policy for a general conversion function. 
An extra energy source node providing energy to multiple nodes is considered [17]. To 
minimize the average delay of transmitting nodes, an efficient energy sharing method 
is presented using the Q-learning algorithm. In [18], Q-learning-based Medium Access 
Control (MAC) protocol for underwater sensor networks is studied. Without extra 
message exchange, a node learns to optimize back-off slots to reduce collision through 
trial-and-error. By intelligently selects a back-off slot through Q-learning, low-signaling 
overhead and low complexity can be obtained. Also, the authors design the reward func-
tion updates from messages, especially to consider the level of collision from Negative 
Acknowledgment (NACK). The authors in [19] proposed a machine learning-enabled 
MAC framework for IoT nodes coexisting with WiFi users. During the rendezvous 
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phase, an intelligent gateway learns the type and expected amount of devices, i.e., WiFi 
and IoT nodes by monitoring the three-way handshake. Then, the gateway schedules fre-
quency channels to IoT and WiFi devices based on the learning result. In the transmis-
sion phase, IoT devices and WiFi users contend for data transmission. The gateway can 
dynamically adjust the superframe length to achieve enhanced throughput.

In this paper, we propose a new learning MAC protocol to learn a differentiated trans-
mission strategy method of a node in a network. We focus on the imbalance nature 
between the energy and the data in a node, which stems from the randomness of arrival 
rates of energy and data. We propose a MAC protocol with learning mechanism to miti-
gate the imbalance problem. The contributions of our work are:

•	 The ‘imbalance’ problem of energy and data management for energy-harvesting 
nodes in IoT networks is revealed.

•	 Based on the nature of nodes, we classify them into energy-dominant and data-dom-
inant nodes, and, for each type of node, the multi-slot and high-rate transmission 
strategies are proposed to mitigate the imbalance problem.

•	 We utilize Q-learning to automatically determine better choice when using multi-
slot and high-rate schemes. Nodes learn their best actions given the energy and data 
availability.

•	 Performance evaluation shows the learning behavior for stable queue states, and 
overall improved throughput.

We consider a more realistic environment in which the nodes have various data and 
energy profiles. Also, different transmission strategies, i.e., multi-slot and high-rate 
transmission, are proposed. Each node learns and selects a different transmission mech-
anism based on their evolutions of data and energy queue states. We utilize a Q-learning 
algorithm for individual nodes to learn the optimal parameters of the proposed learning 
MAC. As time evolves, a node learns the optimal transmission strategy, which can mini-
mize the data and energy queue levels, by itself so that the nodes in a network harmoni-
ously transmit data while boosting energy efficiency.

2 � Proposed learning MAC protocol
We consider a network of devices, in which devices report the collected information to 
the sink node. The nodes are capable of producing electricity by energy-harvesting. Har-
vested energy can be stored in the battery of a node and used to transmit data to the sink 
node. If the energy is not sufficient to transmit a packet of data, it is not transmitted and 
remains in the data queue. If there is no data to transmit, the harvested energy is stored 
in the battery until the next data transmission. Dynamic data traffic and energy states 
of nodes may create unbalanced use of energy and data. Thus, an optimal and balanced 
transmission strategy of nodes is required to minimize the data and energy queue levels. 
To react to the status of a node considering both energy and data, we define E-node and 
D-node for which different transmission strategies are employed.
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2.1 � Energy dominant and data dominant nodes

In an IoT network, different types of nodes coexist depending on their own jobs. 
Nodes can have different tasks to do and different performance of energy-harvesting. 
So, the energy and data packet arrival rates can vary to each of the nodes.

The arrival rates of energy can be higher than those of data in the nodes. They tend 
to have a small number of jobs compared to the amount of energy. We refer this kind 
of nodes as Energy dominant nodes (E-node). The nodes may locate near the power 
beacon or sparsely transmit data. E-nodes are likely to have sufficient amount of 
energy. However, some of the stored energy will not be used properly and wasted. To 
mitigate the energy waste, E-node is required to have a proper transmission scheme.

On the other hand, some nodes may have heavier data arrival rates than the energy 
generation rates. The nodes may be placed far from the wireless power source or 
shaded by obstacles and hardly gets the sufficient energy. We refer this kind of nodes 
as Data dominant nodes (D-node). These nodes suffer from the shortage of energy 
when they try to transmit data. Then, the nodes tend to wait until sufficient energy 
arrives and the length of data queue may be increased. To resolve the energy short-
age, an appropriate transmission policy to reduce energy consumption needs to be 
applied.

2.2 � Multi‑slot method for energy dominant nodes

We define E-node as the energy dominant node which has a larger arrival rate of 
energy than that of data traffic. The E-nodes are likely to have excessive energy and 
they tend to wait for the arrival of data traffic. With the conventional MAC, e.g., 
Frame Slotted ALOHA (FSA), the unused energy may keep accumulating in the 
energy queue. So, in order to increase the energy utilization, instead of storing exces-
sive energy, the node may need to increase the energy consumption by transmitting 
more data.

To use surplus energy efficiently, we propose to use multi-slot transmission. In the 
multi-slot contention mechanism, the node can select multiple slots for transmit-
ting data. Then, a node attempts to transmit data in selected time slots until the suc-
cessful data transmission. If data transmission succeeds in the middle of the selected 
time slots, the node quits the procedure. Figure 1 shows an example of the multi-slot 
transmission of a certain E-node. At first, an E-node selects 4 time slots according 
to the multi-slot transmission scheme. In the first and the second selected slots the 
E-node fails to send data due to collisions with other nodes. Data is sent at the third 
selected time slot and the E-node ends the data transmission and does not operate in 
the fourth selected time slot. Then, the node consumes 3 energy units to transmit one 
data packet. Since the E-node consumes more energy for the transmitted data unit, 
the imbalance difference between energy units and data units at the beginning of the 
E-node is mitigated from 3 to 2 (Fig. 1). However, the number of multiple slots to be 
selected should be carefully determined since the degree of balance between data and 
energy among the nodes is affected by that and a congestion problem may arise by the 
heavy multi-slot transmission mechanism.
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2.3 � High‑rate method for data dominant nodes

The D-node is defined as the data dominant node which generates more data traffic 
than energy traffic. For the D-node, data packets tend to accumulate in the data queue 
due to insufficient energy to use. So, D-nodes are likely to suffer from the energy 
shortage and arriving packets can wait long in the queue. In this case, it is desirable to 
transmit data packets with less energy.

To decrease the energy consumption, we propose high-rate transmission. High-rate 
transmission can be done by shortening the operation time to reduce the energy con-
sumption. The amount of energy consumed in the active state is known to be sig-
nificant. In high-rate transmission, the node boosts the data rate by changing the 
modulation scheme and sacrifices the reliability of transmission. Then, the node 
can pump out more data packets in a slot and the transmission time of a single data 
packet can be reduced. If a node succeeds in the random access, it attempts to trans-
mit as many data packets as possible in the data queue. Figure 2 shows an example of 
the high-rate transmission of a certain D-node. In the first frame, a D-node succeeds 
and the 3 data packets can be transmitted in a time slot. Then, the D-node unburden 
3 data packets using one energy unit. The imbalance nature of the D-node is resolved 
using the high-rate transmission. However, in the second frame, the D-node fails to 
transmit data due to a collision. As collision happens, the D-node quits the trans-
mission in a frame. Still, the D-node only consumes one third of the energy unit as 
it uses 3 times higher data rate. However, the data rate of a node should be carefully 
selected since the reliability of packet transmission decreases as the rate increases. 
Thus, appropriate selection of rate is required.

Fig. 1  Multi-slot operation and the effect of the E-node
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2.4 � Channel model

An IoT node utilizes Phase Shift Keying (PSK) for transmitting data to the sink node. We 
consider the Additive White Gaussian Noise (AWGN) channel during the data transmis-
sion. The noise is modeled as a white Gaussian random process with zero mean and Power 
Spectral Density (PSD) N0/2 . Due to channel error, transmitted data from a node might be 
lost at the sink node. We assume that the data transmission fails when IoT nodes collide in 
the same time slot due to high level of interference. So, only the noise can be reasonably 
considered to distinguish the successful transmission in the PHY layer. The Signal-to-Noise 
Ratio (SNR) can be defined

where Pr and B are the received power and the bandwidth. Total noise power within the 
bandwidth 2B is N = N0/2 · 2B = N0B . In terms of energy per bit ( Eb ) or energy per 
symbol ( Es ), the SNR can be

where Tb and T  are the bit time and symbol time.
We use a symbol error rate to determine the successful transmission of an IoT node. For 

an M-ary PSK, the symbol error rate can be modeled as [20]

(1)SNR =
Pr

N0B
,

(2)SNR =
Eb

N0BTb
=

Es

N0BTs
,

(3)pe ≈ 2Q
(

√

(2Es/N0) sin(π/2M)

)

,

Fig. 2  High-rate operation and the effect of the D-node



Page 7 of 16Kim and Lee ﻿J Wireless Com Network        (2021) 2021:176 	

where Q(·) is the Q-function. If a node wins the MAC layer contention and the trans-
mission is successful, the node gains the reward and it is reflected to the corresponding 
Q-value matrix.

2.5 � Proposed learning MAC

The proposed learning MAC utilizes both the multi-slot and high-rate schemes. In the 
learning MAC, nodes operate based on the frame broadcast by the sink node. Nodes 
select one of the method by comparing the energy and data queues. If the amount of 
energy is larger than the number of data packets in the queue, a node chooses multi-
slot scheme. Otherwise, a node selects the high-rate scheme for data transmission. Then, 
nodes are required to determine the parameters used in the multi-slot and the high-
rate scheme. In the multi-slot scheme, nodes need to decide the number of slots to be 
selected. On the other hand, in the high-rate scheme, the factor for boosting data rate 
is needed. The detailed process of parameter settings is described in Sect. 4. Using the 
methods and the parameters, nodes perform contention in the current frame. At the end 
of the frame, the energy and data queue states will be updated by the contention. In the 
next frame, the node operates based on the updated queue states.

Figure  1 shows an example of the proposed learning MAC protocol with multi-slot 
and high-rate transmissions. The nodes 1, 2, and 5 are the E-nodes while the nodes 3, 4, 
and 6 are the D-nodes. The E-nodes need to select multiple slots to utilize the surplus 
energy, while the D-nodes need to apply the high-rate strategy to reduce the transmis-
sion time of a node. The node 1 selects slots 1 and 7. Since the node 1 succeeds in slot 
1, it does not transmit in slot 7. Collision between node 2 and node 5 occurs in slot 5. 
Node 5 recovers from the collision in the second transmission attempt in slot 6. Nodes 
3, 4, and 6 terminate the successful high-rate data transfer to transmit more bits (three 
times) in slots 3, 4, and 7 to save the energy. As mentioned in the strategy, a node should 
select the transmission policy in a wise way. Considering dynamic arrival rates of energy 
and data of a node, it is desirable to track the optimal MAC parameters, i.e., number of 
multiple slots and transmission rate in a slot.

3 � Learning MAC with Q‑learning
The proposed learning MAC is affected by the parameters selected by the node. To do 
this, a central coordinator may collect the nodes’ status and make decision. However, the 
process of collecting and making decision may cause the signaling overhead. Also, the 
status of nodes varies over contention process instantaneously. So, the centralized coor-
dination scheme may not be a viable solution. As a solution, we apply Q-learning to each 
node to find its best strategy. Q-learning is a method to estimate the available actions by 
scoring based on the result caused by the actions. Based on its own previous choices, 
nodes find the optimal action. Using Q-learning, nodes can learn its current best param-
eters with the minimal interaction.

3.1 � Q‑learning

Q-learning is one of the reinforcement learning techniques that can be used to find 
the optimal action using the reward by learning. The agent, the learner, utilizes 
Q-learning to learn the optimal policy by interacting with its environment. Let S be 
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the possible states and A be the possible actions of the agent. The learner senses its 
state st ∈ S and chooses an action at ∈ A based on its state at time t. After the action 
taken, the agent moves to the new states st+1 with the probability of Pst ,st+1 . Then, the 
learner receives its reward r(s, a). The objective of the learner is to find the optimal 
policy π∗(s) , which maximizes the cumulative reward rt = r(sr, a) over time. In the 
considered network and problem setup, the optimal criterion is to minimize the data 
and energy queue levels of an IoT node.

The total discounted return over an infinite time is

where γ is the discount factor from 0 to 1. The value function V π (s) can be further 
expressed as [21]

where R(s,π(s)) is the expectation of r(s, a) and Ps,s′ is the transition probability from 
state s to s′ . Applying the Bellman optimality criterion [22], which shows the existence of 
at least one optimal strategy, the value function is

For a policy π , action a is taken at state s. Then, the expected return value, Q-value, is

When the optimal policy π∗ is applied, the Q-value can be defined as

Plugging Eq. (5) into Eq. (3), we get

Therefore, the optimal value function can be obtained from the maximized Q∗(s, a) . 
Using the result of Eq. (6), the Q-value can be expressed as

Let the learner performs action at in state st at time t. Then, the state changes to st+1 and 
the learner returns the immediate reward rt+1 . In the Q-learning process, the optimal 
action can be found iteratively. So, the learner updates the Q-values as follows.

(4)V π (s) = E

{

∞
∑

t

γ t r(st ,π(st))|s0 = s

}

,

(5)V π (s) = R(s,π(s))+ γ
∑

s′∈S

Ps,s′(π(s))V
π (s′),

(6)V ∗(s) = V π∗

(s) = max
a∈A

{

R(s, a)+ γ
∑

s′∈S

Ps,s′(a)V
∗(s′)

}

.

(7)Qπ (s, a) = R(s, a)+ γ
∑

s′∈S

Ps,s′(a)V
π (s′).

(8)Q∗(s, a) = Qπ∗

(s, a) = R(s, a)+ γ
∑

s′∈S

Ps,s′(a)V
π∗

(s′).

(9)V ∗(s) = max
a∈A

[Q∗(s, a)].

(10)Q∗(s, a) = R(s, a)+ γ
∑

s′∈S

{

Ps,s′(a)[max
a′∈A

Q∗(s′, a′)]

}

.
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where α and rt+1 are the learning rate and the reward observed after performing at in st . 
The learning rate affects the update rate while the discount factor controls the impor-
tance of the future values. It is known that the Q-value Q(st , at) converges to the optimal 
value Q∗(s, a) as the pairs of state-action are performed.

3.2 � Network model for Q‑learning

We consider a networks of N nodes. An energy-harvesting node is equipped with the 
energy queue and the data queue. Each queue stores the harvested energy and the data. The 
energy is assumed to be quantized to be buffered in the energy queue. For a basic data rate, 
a node requires unit energy to transmit a data packet.

3.2.1 � State

Let the state be the difference between the state of energy and that of data in the queues. 
High value of the difference denotes the severe unbalance between energy and data. At the 
beginning of each frame, nodes set their states as follows.

where Eq,t , Dq,t , and [·] refer to the energy queue, data queue states at the frame time t, 
and the nearest integer function. The state ranges from 0 to M, where M is the maximum 
capacity of each of the queues.

3.2.2 � Action

Depending on the state, a node can select an appropriate action. Since the E-node operates 
by multi-slot transmission, the number of slots to be selected becomes the available actions. 
The available actions of an E-node can be written as

where l and lmax are the number of slots and the maximum number of slots to be 
selected. The D-node uses high-rate transmission. Then, the available actions of the 
D-node can be defined as the number of bits in a symbol to be used for transmission. 
The available actions of a D-node is defined as

where g and gmax are the number of bits in a symbol and the maximum number of bits in 
a symbol to be used in the high-rate transmission. The transmission rate is g multiples of 
the unit rate.

(11)Q(st , at)←−Q(st , at)+α

(

rt+1+γ max
a

Q(st+1, a)−Q(st , at)
)

(12)xE,t =[Eq,t − Dq,t ],

(13)xD,t =[Dq,t − Eq,t ],

(14)aE,t = l, l ∈ {0, 1, 2, ..., lmax}

(15)aD,t = g , g ∈ {0, 1, 2, ..., gmax}
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3.2.3 � Reward

We define the reward as the change of difference after a contention. If the difference 
decreases after a contention, it can be concluded that the node is moving toward an 
appropriate direction. The reward induced from action a at the state xt is

where r1 and r2 indicate the weights of the first and the second term. The first term 
accounts for the change of the difference between energy and data. Decreasing the 
unbalance between energy and data contributes to the positive reward. The second term 
is for the overall queue states of a node. As the queues build up, the reward decreases.

3.2.4 � Next state

After the contention in a frame, the queue states of nodes may change. If a node suc-
ceeds in contention, both energy and data queue states decrease. In the multi-slot policy, 
the amount of energy consumption depends on the number of transmission attempts. 
For high-rate nodes, the energy consumption varies according to the selected number of 
bits in a symbol.

3.3 � Proposed Q‑learning mechanism

The nodes construct the state-action matrix to manage the Q-values. The rows of the 
matrix indicate the current states and the columns of the matrix indicate the actions. If 
a node is an E-node, it uses a multi-slot Q-value matrix QE and if a node is a D-node, it 
uses a high-rate Q-value matrix QD . Using the state-action matrix, the nodes retrieve the 
Q-values.

where uij and vij denote the expected Q-value when the action is taken to change state 
from i to j. For example, when a node tries to access the channel, it first checks the dif-
ference between the energy level and the data queue length. If a node has more energy 
than data, it become an E-node and utilizes QE matrix. Otherwise, a node is treated as a 
D-node and it uses QD matrix. Then, the optimal action (MAC parameter assignment) in 
a frame is determined by

where ⌊·⌋ is the floor function. Since a node can transmit within the current energy state 
( Eq,t ), the number of slots to be selected is limited by the current energy level.

(16)
rE,t+1 = r1

(

xE,t − xE,t+1

)

− r2(Dq,t+1 + Eq,t+1),

rD,t+1 = r1
(

xD,t − xD,t+1

)

− r2(Dq,t+1 + Eq,t+1),

(17)QE=







u11 . . . u1lmax

...
. . .

...
uM1 . . .uMlmax






, QD=







v11 . . . v1gmax

...
. . .

...
vM1 . . .vMgmax






,

(18)aE,t = min( argmax
l∈{0,...,lmax}

{QE(xE,t , l)}, ⌊Eq,t⌋ ),

(19)aD,t =

{

argmax
g∈{0,...,gmax}

{QD(xD,t , g)} , Eq,t ≧ 1,

0, Eq,t < 1.
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With the achieved MAC parameter, the nodes perform contention with the selected 
mode. After each frame, the energy and data queue states of the nodes change by the 
learning actions. Based on the changed queue states, the nodes update the state-action 
matrix as follows.

The nodes then learn the optimal action at each state by updating the state-action 
matrix. After a certain learning time, nodes can choose the best action and the data and 
energy queue states are expected to be balanced (Fig. 3).

(20)
QE(xE,t+1, k) = QE(xE,t , k)+ α

(

rE,t+1

+γ max
l

QE(xE,t+1, l)− QE(xE,t , k)

)

,

(21)
QD(xD,t+1, k) = QD(xD,t , k)+ α

(

rD,t+1

+γ max
g

QD(xD,t+1, g)− QD(xD,t , k)

)

.

Fig. 3  Operation of the proposed learning MAC protocol

Table 1  Simulation parameters

Parameter Value

Number of nodes (N) 20–80

Duration of a time slot 1 ms

Maximum queue capacity (M) 50

Maximum number of multi-slots ( lmax) 5 slots

Maximum number of bits in a symbol ( gmax) 5

Data arrival rate 0.5–3 packets/frame

Energy arrival rate 0.5–3 units/frame

Learning rate ( α) 0.7

Discount factor ( γ) 0.1

Weights ( r1, r2) 10, 1

Signal-to-noise ratio 20 dB
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4 � Results and discussion
We conduct simulations to verify the performance enhancement of our transmission 
strategy for learning nodes. In simulations, nodes have random arrival rates of data and 
energy in a predefined range (see Table 1). At the beginning of a frame, a node deter-
mines the action based on the Q-matrix and performs channel access. During the con-
tention in a frame, newly arrived data and energy are put into the queues. Then, the 
Q-matrix is updated according to the queue status of the current and the previous frame. 
The conventional FSA protocol is chosen as a comparative scheme. In FSA, nodes per-
form channel access if at least one energy and data unit exist. Otherwise, they operate in 
the sleep mode. Simulations are conducted for 10,000 frames. The parameters used in 
the simulation are shown in Table 1.

Figure 4 shows the change of the difference between the energy queue and the data 
queue for Q-learning iterations (frames). Figure  4a indicates the node with similar 
energy arrival rate and data arrival rate. As the Q-learning mechanism evolves, the 
difference between the queues fluctuates over time. Since nodes perform contentions, 

(a)

(b)

(c)

Fig. 4  Change of the difference between the energy and data of queues for evolving Q-learning iterations
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the difference may suddenly rise up sometimes due to the randomness. However, the 
node recovers below a certain level by utilizing the proposed method. Figure 4b refers 
to the D-node, in which the arrival rate of energy is bigger than the arrival rate of 
data. The difference is alleviated after 200 Q-learning iterations. After that, the dif-
ference of the queue states, becomes under control. By transmitting more data with 
reduced amount of energy, the imbalance problem is mitigated. Finally, Fig. 4c stands 
for the E-node, with larger data arrival rate than the energy arrival rate. At first, the 
difference starts with the small amount of imbalance. When the difference becomes 
larger, the degree of imbalance is mitigated after 250 Q-learning iterations (from 150 
to 400). By inducing the consumption of excess energy to transmit data, multi-slot 
schemes resolve the imbalance problem. The fluctuation of difference swings more 
than that of the case (b). As the multi-slot method largely depends on the contention 
result, the effect of resolving imbalance is weaker than that in the high-rate method.

Figure 5 shows the energy and data queue states of the individual nodes. The data 
and energy arrival rates are randomly chosen from 1 to 1.5. In the FSA, the frame 
size is the same as the number of nodes ( N = 20 ) while the frame size is set to 4 
times to the number of nodes in the proposed scheme due to the multi-slot opera-
tion. For the proposed learning MAC, the queue states of the nodes are distributed 
along the diagonal line. With the learning capability, the nodes take actions to balance 
the energy and data. Depending on the arrival rates of energy and data, the balancing 
point is appropriately determined. The proposed scheme mitigates the imbalance and 
the queue build-up problem. However, in the FSA scheme, queue states are shown 
to be deployed in the upper right corner area. Since the nodes suffer from the imbal-
ance problem, the data packets and energy are unnecessarily built-up in the queues. 
At first, the data queue states are higher than the energy queue states. Energy can be 
consumed by successful transmissions, but that is not the case due to collisions and 
energy starts to accumulate. Then both energy and data queues become almost full.
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Fig. 5  Energy and data of queue states of the individual nodes (N = 20)
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Figure 6 shows the saturation throughput for varying frame size. It is shown that the 
throughput of proposed learning MAC outperforms than that of the FSA. Since the 
multi-slot transmission improves the success probability in the contention, the number 
of packets transmitted in a certain time increases. Also, the high-rate transmission con-
tributes to the throughput improvement by saving the transmission time of the nodes. 
In the proposed learning MAC, the optimal frame size changes for different data and 
energy rate conditions. As the data arrival rate increases, the use of multi-slot is needed 
and the optimal frame size increases.

Figure 7 indicates the throughput performance for varying numbers of nodes. In this 
simulation the frame size is set to 60. To implement different percentage of D-nodes and 
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Fig. 6  The performance of FSA and the proposed learning MAC (N = 30) for different arrival rates
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E-nodes, we generate different energy and data arrival rates. For example, in the D-node 
dominant case we set the higher data arrival rate. As the number of nodes increases, the 
throughputs improve since the proposed MAC manages various imbalances. Also, the 
E-node dominant case shows the better performance than the other cases. Since nodes 
are expected to use multi-slot scheme, the transmitted data increases. When D-nodes 
are dominant, nodes are likely to utilize high-rate method. Then, the channel error rate 
might be increased since the transmission is performed with the reduced amount of bit 
energy.

5 � Conclusion
We have proposed a new learning MAC protocol for energy-harvesting nodes to 
resolve the imbalance between energy and data. For E-nodes, multi-slot policy is used 
to enhance the success probability and energy efficiency. High-rate policy is utilized for 
D-nodes to decrease the energy consumption. The optimal MAC parameters depending 
on the data and energy queue states are automatically learned by the nodes using the 
Q-learning mechanism. Thus nodes learn the optimal actions for every queue states. The 
performance evaluation shows that our new learning MAC protocol with learning nodes 
outperforms in terms of the queue sizes and the network throughput. Nodes are shown 
to appropriately flush out data and energy in the queues and to achieve better through-
put and lower packet drop rate.
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