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1  Introduction
In WPCN, there is Access Point (AP) mechanism [1] which contains energy nodes (ENs), 
wireless devices (WDs) and access points (APs). First, energy nodes send energy to each 
wireless device. When ENs receive the energy, it sends information to the APs using the 
energy. That is, ENs send energy to the WDs, and these WDs send information to the 
APs. We can encapsulate an AP and an EN into a Hybrid Access Point (HAP) and so 
can describe HAP mechanism. In this mechanism, the HAP sends energy to each WD, 
and each WD sends information to the HAP. The HAP allocates time slots for sending 
energy to each WD and itself, and for sending information to each WD, so time alloca-
tion for itself and each WD is also an important issue.
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Because the distance between the HAP and each WD is different among each WD, 
there is an energy efficiency gap between the WDs caused by the difference of through-
put for each WD. That is, a WD near to the HAP receives more energy from the HAP 
and uses less energy to transmit information, and another WD far from the HAP 
receives less energy but uses more energy to transmit information. To solve this unfair-
ness problem, the worst case, a WD which receives the least energy and uses the most 
energy, is very important. In this case, we use the concept of common throughput which 
is the minimum value of throughput among the throughput values of each WD, and we 
concentrate on maximizing the common throughput value in the WPCN environment.

In [2], Bi and Zhang researched the placement optimization of energy and information 
access points in WPCN using the bi-section search method, Greedy algorithm, Trial-
and-error method and alternating method for joint AP-EN placement. There can be 
more than 1 HAPs in the supposed WPCN environment of this paper. Its methodology 
repeatedly adds HAPs and check if each WD satisfies conditions in the environment.

Normally, mathematical methodologies are suitable to solve optimization problems 
by minimizing relatively simple functions. On the other hand, deep learning is suitable 
to solve these problems by minimizing relatively complex functions. Some mathemati-
cal methods can be suitable to solve some relatively simple problems, and deep learning 
performs better when there are many and various cases of inputs and corresponding out-
puts. For this problem, because there are so many cases of how the devices are located 
in a WPCN environment, the computation and optimization of the common through-
put would be more complex if there are many devices, so mathematical methods have 
some limits to solving this kind of problem. So, although the method in [2] is suitable 
to solve this problem, it would be worth trying to apply the deep learning method here 
for comparative purposes. We can make many and various cases of data that the inputs 
are the vector or tensor with the location of devices, and the outputs are the common 
throughput for when the HAP is located at each point. So, the motivation of this paper 
is to introduce deep learning to optimize the placement of HAP in the relatively complex 
WPCN environment. This paper introduces a methodology to place an HAP in a WPCN 
environment to maximize common throughput when time allocation is optimized, by 
using deep learning, and shows that this methodology has a meaningful contribution to 
solving this problem and shows better performance than the mathematical methodology 
already studied, such as [2].

Section  3 describes our HAP placement model, data preparation and algorithm for 
training, and how to find the best HAP placement. Section 4 describes our design and 
an environment for the experiments and the experimental results of our model. Sec-
tion 5 describes our analysis of the results. Finally, Sect. 6 describes the conclusion of 
this paper.

2 � Related works
Our system has only one HAP, and the goal of our system is to maximize the com-
mon throughput of devices. Considering the system, Song et al., Lee, Kim et al., Kwan 
and Fapojuwo and Thomas and Malarvizhi [3–7] have an HAP and many devices with 
their systems as same as this research. In detail, the HAP and devices in the system 
of [3] have antennas. In [4], the spectrum of HAP and devices for both DL WET and 
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UL WIT are the same. The system of [5] consists of a primary WIT and a secondary 
WPCN system, and the HAP and the devices are in the latter. The system of [6] uses 
radio frequency (RF) to harvest energy. The system of [7] consists of not only HTT 
(harvest-then-transmit) but also backscatter mode. Tang et  al. [8] have many UAV 
(unmanned aerial vehicle)s and many devices, Hwan et al. [9] have many HAPs and 
many devices, Xie et  al. [10] have a UAV and many devices, Biason and Zorzi [11] 
have an AP(access point) and two devices recharged by the AP, Cao [12] have a relay 
communication system and many devices. Chi et al. [13] compares the performance 
of TDMA- and NOMA-based WPCN for EP (energy provision) minimization prob-
lem with network throughput constraints, Kwan and Fapojuwo [14] tries to maximize 
the sum throughput of the wireless sensor network using three protocols, and [15] 
tries to optimize time allocation for backscatter-assisted WPCN to maximize total 
throughput. Considering the objective functions and constraints of variables, Tang 
et al., Xie et al. and Biason and Zorzi [8, 10, 11] try to maximize common through-
put, in another word, minimum throughput and [11] tries to maximize long-term 
minimum throughput. Hwan et al. [9] tries to maximize the sum-rate performance. 
Song et al., Lee, Kim et al. Kwan and Fapojuwo, Thomas and Malarvizhi, Cao, Kwan 
and Fapojuwo and Ramezani and Jamalipour  [3–7, 12, 14, 15] try to maximize sum 
throughput. In detail, Song et  al. and Kim et  al. [3, 5] also use transmit covariance 
matrix for DL-WET. Lee [4] defines the problem as maximizing the sum throughput 
for U-CWPCN and O-CWPCN (two overlay-based cognitive WPCN models). Kwan 
and Fapojuwo [6, 14] uses bandwidth allocation to optimize it. Chi et  al. [13] tries 
to minimize EP of H-sink. Cao [12] have 3 divided time slots as variables with con-
straints. Ramezani and Jamalipour [15] uses the achievable throughput of both the 
users and EIRs in two phases. Thomas and Malarvizhi [7] define the sum throughput 
of all users as the sum of the throughput of two modes, HTT and backscatter mode. 
Therefore, our research can be compared with [10] because both the system model 
and the variable to maximize (or minimize) are the same.

Considering the methods, Song et al., Lee, Kim et al., Xie et al., Cao and Chi et al. 
[3–5, 10, 12, 13] just applied mathematical optimization methods using convex opti-
mization methods like CVX [16] and transforming non-convex problems to convex 
problems. In detail, Song et al. and Kim et al. and Chi et al. [3, 5, 13] use golden sec-
tion method, and [4] uses Newton’s method for time allocation. Kim et  al. and Xie 
et al. [5, 10] use Lagrange dual method and subgradient-based methods such as the 
ellipsoid method. Chi et  al. [13] also uses the bisection method for time allocation, 
and [5] also uses a line search method. Cao [12] uses SDP (Semi-Definite Program-
ming) relaxation to derive the optimal solution. Tang et  al. [8] used Multi-agent 
deep Q learning (DQL), Hwan et al. [9] used multi-agent deep reinforcement learn-
ing (MADRL) and distributed reinforcement learning, Biason and Zorzi [11] used 
Markov Chain and Markov Decision Process, Kwan and Fapojuwo [14] used its own 
three protocols, and [6] used MS-BABF/Hybrid-STF method. The method applied to 
[15] is similar to the mathematical optimization methods used in [3–5, 10, 12, 13] but 
combined with Block Coordinate Descent (BCD) method. Thomas and Malarvizhi [7] 
describe no particular methods for finding the solution.
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Consequently, the research that can be compared with ours, Xie et al. [10], does not 
use machine learning methods. So, we can apply machine learning methods to solve this 
problem, and this can be an improved method to find the optimal placement of the HAP.

3 � Methods: using HAP placement model
3.1 � Overview

Figure 1 describes the system architecture of the model. Let us explain our model using 
the definitions above. Mobile HAP can be placed at any location in the environment and 
can move to any other location in the environment. The goal is to maximize common 
throughput that is defined as the minimum throughput between the HAP and each WD 
by optimizing the HAP placement. So, the HAP needs to move to the location where 
the minimum throughput is maximized. So, in WDs placement map, the HAP can be 
located at any grid in the map and should be located at the best throughput point. The 
rightmost figure of Fig. 1 describes computed minimum throughput for each grid when 
the HAP is located at the grid and the best throughput point.

Figure  2 is the flow chart of the HAP placement model. The model is composed of 
three phases. First, “making data” is to create training and test data. Next, “training using 
data” is to process the data to convert to training and test data for the deep learning 
model, and train using the model. Last, “finding the best point” is to find the best HAP 
placement point using the throughput map derived from this model.

In this paper, we map the physical wireless channel environment into a 2-dimensional 
array. As in [1], we assume that the environment is located in the free space, so the path 
loss follows the rule for the free space. Just one exception for this is, for each WD, when 
the distance between the HAP and the WD is less than a specific value, we compute the 
throughput as when the distance is the value. Detailed discussion about it will be dis-
cussed in the Sect. 3.2.

From now on, we use the definitions here. WDs placement map means the grid map 
representing the environment, as in Fig. 1. N and M mean the number of rows and 
columns of the WDs placement map, respectively, and K means the number of wire-
less devices in the WDs placement map. Block means each grid in the WDs placement 

Fig. 1  The system architecture of our model. Wireless devices are placed in the environment, and we can 
represent the location of WDs as a WDs placement map. A mobile HAP is placed in the environment, and the 
throughput value of the environment is calculated and represented as a throughput map
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map, so there are N×M blocks in the WDs placement map with N rows and M col-
umns. K blocks among these N×M blocks in the map, randomly set at the training 
stage, contain a WD. None of the pairs of two WDs out of all the WDs occupy the 
same block in the map. From now on, we call the i-th wireless placement map with N 
rows and M columns WDPMi(N , M, K ) . Throughput map means the grid map with 
N rows and M columns, and each block contains the throughput value where the HAP 
is located in this block of WDPMi(N , M, K ) . From now on, we call the throughput 
map corresponding to WDPMi(N , M, K ) TMi(N , M) . Best throughput point means 
the position of HAP that maximizes throughput value in TMi(N , M) , derived from 
our model, so it could be not a real position that maximizes the throughput value. We 
will call the best throughput point corresponding to TMi(N , M) BTPi(N , M).

3.2 � Making data

We computed and used Eq. (1) by combining Eqs. (7) and (8) in [17] for the through-
put. To make WDPMi(N , M, K )′s, i = 0, . . . , mtotal−1 , where mtotal is the sum of the 
number of training and test maps, first define a grid map with N rows and M col-
umns, N×M blocks in total. Then repeat placing a WD on randomly selected point 
without a HAP K times. To make TMi(N , M)′s, i = 0, . . . , mtotal−1 using these 
WDPMi(N , M, K )′s , place HAP at each point in WDPMi(N , M, K )′s and compute 
throughput for the location of HAP and each WD using Algorithm  1 because the 
throughput is computed using (1). Procedure getThrput finds optimal time allocation 
given WDPMi(N , M, K ) . Because we supposed that ζ= 1.0, hi = 0.001p2i d

−αdwhere 
αd = 2.0, gi = 0.001p2i d

−αu , αu = 2.0, pi = 1.0, PA = 20.0, Ŵ = 9.8 and σ = 0.001 
where d is the distance from the HAP and each WD, this formula can be converted 
into (2). To prevent divide by 0 error and consider the limit of throughput, we sup-
posed that distance is 1.0 when actual distance is less than 1.0.

Fig. 2  Flow chart of HAP placement model. Note that the number after the description of each phase means 
the order of the stage whose data are used in this stage
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Then, because WDPMi(N , M, K )′s and TMi(N , M)′s are saved as text files, the model 
must read them before using them.

(1)Ri(τ ) = τilog2

(

1+
ζhigiPA

Ŵσ 2

τ0

τi

)

, i = 1, . . . ,K

(2)Ri(τ ) = τilog2

(

1+
100p4i

49×max(d, 1)4
τ0

τi

)

, i = 1, . . . ,K
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3.3 � Training

First, make input data for training and testing based on WDPMi(N , M, K ),

i = 0, . . . ,m1 +m2 − 1 , supposing that the number of training and testing data is 
m1 and m2 each. The model considers first m1 maps as training data and next m2 
maps as test data. The input data are the N ×M map whose value at each block 
of the map is -1 when a WD is on this block and 0 otherwise. Then make out-
put data for training based on TMi(N , M)′s, i = 0, . . . , m1 − 1 corresponding to 
WDPMi(N , M, K )′s, i = 0, . . . , m1 − 1.

The output data are the N ×M map whose value at each block, whose 
row index is n, and column index is m that is V i′′

n,m , defined below. We define 
V i
n,m, i = 0, . . . ,m1 − 1, n = 0, . . . ,N − 1, m = 0, . . . ,M − 1 , where the value 

at the block at the intersection of n-th row and m-th column of the map is 
the maximum throughput where HAP is placed at this block, and the wire-
less devices are placed as WDPMi(N , M, K ), i = 0, . . . ,m1 − 1 . The fol-
lowing is the procedure to compute V i′′

n,m . First, find maximum common 
throughput value max

(

Vi
n,m

)

, n = 0, . . . ,N − 1, m = 0, . . . ,M − 1 for each train-
ing output map i = 0, . . . ,m1 − 1 using Algorithm  1, and then divide each value 
V i
n,m , i = 0, . . . ,m1 − 1, n = 0, . . . ,N − 1, m = 0, . . . ,M − 1 by max

(

Vi
n,m

)

 . Last, 
transform each value V i

n,m at each block using (3).

In (3), sigmoid(x) is defined as 1/(1+ exp(−x)) . Then train using input data 
WDPMi(N , M, K )′s, i = 0, . . . ,m1 − 1 and corresponding m1 output data made based 
on TMi(N , M)′s, i = 0, . . . , m1 − 1 using the deep learning model described in Fig.  3 
with Adam optimizer [18] with learning rate 0.0001 and 1000 epochs.

3.4 � Finding the best points

Using test input data, the model finds best point for HAP placement. For each test 
input data created using WDPMi(N , M, K ), i = m1, . . . ,m1 +m2 − 1 , input 
these data into the model trained in Sect.  3.3 and get output maps corresponding to 
TMi(N , M), i = m1, . . . ,m1 +m2 − 1 . For each value V i′

n,m= sigmoid
(

2Vi
n,m − 1

)

 at 
each block in each output map is converted by (4) using the inverse function of the sigmoid 

(3)V i′
n,m = sigmoid

(

2Vi
n,m − 1

)

Fig. 3  Architecture of deep learning model for common throughput maximization: we use convolutional 
neural network (CNN) [19] for our methodology
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function, to convert them from the form of V i′
n,m= sigmoid

(

2Vi
n,m − 1

)

 into the form of 
V i′′
n,m = 2V i

n,m − 1 form, where V i
n,m is the estimated common throughput value.

In (4), invSigmoid(x) is the inverse function of sigmoid(x) and defined as ln(x/(1− x)) . 
Then, for each output map, the model finds the maximum value among values in blocks 
of this map. Let’s call row and column axis of this value in the map nM and mM , respec-
tively, and call the maximum value V i′′

nM,mM
 . Then the row axis noptimal and column axis 

moptimal of optimal HAP location are computed by (5) and (6) each, and BTPi(N , M) is 
computed by (7), described in Fig. 4.

If V i′′
nM+1, mM

 is greater than V i′′
nM−1, mM

 , noptimal moves down from original position, and 
otherwise, it moves up. Similarly, if V i′′

nM, mM+1 is greater than V i′′
nM, mM−1 , moptimal moves 

right, and otherwise, it moves left. Because original common throughput V i
n,m and 

2V i
n,m − 1 can be converted into each other by just a linear transmission, there is no dif-

ference of noptimal and moptimal between when converted V i′′
n,m into V i

n,m and do not con-
vert V i′′

n,m into any other form.

4 � Experiments and results
4.1 � Experiment design and test metrics

Figure 5 is the flow chart for our experiment. For each estimated optimal HAP placement 
point for each test map BTPi(N , M) =

(

noptimal, moptimal

)

, i = m1, . . . ,m1 +m2 − 1 
derived by Sect.  3.4, corresponding to TMi(N , M)′s, i = m1, . . . , m1 +m2 − 1 , first 
compute common throughput value Ci, i = m1, . . . ,m1 +m2 − 1 using this point. 
Because we use TMi(N , M)′s, i = m1, . . . , m1 +m2 − 1 only for computing the differ-
ence when testing, the throughput maps as generated using the output of the model, called 
TM′

i(N , M)′s, i = m1, . . . , m1 +m2 − 1 in this section, are not equal to correspond-
ing TMi(N , M)′s, i = m1, . . . , m1 +m2 − 1 . Then compare the throughput value with 
MCi, i = m1, . . . ,m1 +m2 − 1 , the maximum common throughput value among all points 
(n, m), n = 0, . . . ,N − 1, m = 0, . . . ,M − 1 in corresponding TMi(N , M) . Then the test 
metrics are defined as and computed using (8), (9) and (10).

(4)V i′′
n,m = invSigmoid

(

Vi′
n,m

)

(5)noptimal = nM +
V i′′
nM+1, mM

− V i′′
nM−1, mM

V i′′
nM−1, mM

+ V i′′
nM, mM

+ V i′′
nM+1, mM

(6)moptimal = mM +
V i′′
nM, mM+1 − V i′′

nM, mM−1

V i′′
nM, mM−1 + V i′′

nM, mM
+ V i′′

nM, mM+1

(7)BTPi(N , M) =
(

noptimal, moptimal

)

(8)CT.AVERAGE =
∑m1+m2−1

i=m1
Ci

m2
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CT.AVERAGE means average common throughput for each test map with correspond-
ing BTPi(N , M), i = m1, . . . ,m1 +m2 − 1 , and CT.AVGMAX means maximum com-
mon throughput value for each throughput map corresponding to each test map, and 
CT.RATE means the rate between the sum of Ci and the sum of MCi for all test maps. It 
also means the rate between CT.AVERAGE and CT.AVGMAX . We also define perfor-
mance rate PR as (11) meaning how well our methodology is compared to the methodol-
ogy used in the original paper, and the original paper in (11) means [2].

In (11), M1 is our methodology, and M0 is the methodology in the original paper. 
CT.RATE can be larger than 1.0 because CT.AVGMAX means the average of largest 
value among the value at discrete blocks from corresponding TMi , but CT.AVERAGE 
means the average of common throughput value with non-discrete HAP location.

4.2 � Experimental environment

The computer system information for our experiment is as the following. The operating 
system is Window 10 Pro 64bit (10.0, build 18363), system manufacturer is LG Electron-
ics, the system model is 17ZD90N-VX5BK, the BIOS is C2ZE0160 X64, the processor 
is Intel(R) Core i5-1035G7 CPU @ 1.20 GHz (8 CPUs), ∼1.5 GHz, and the memory is 
16384MB RAM. The programming language is Python 3.7.4, and used NumPy [20], 

(9)CT.AVGMAX =
∑m1+m2−1

i=m1
MCi

m2

(10)CT.RATE =
∑m1+m2−1

i=m1
Ci

∑m1+m2−1
i=m1

MCi

(11)PR =
(CT.AVERAGE of M1)

(CT.AVERAGE of M0)

Fig. 4  Decision algorithm for noptimal and moptimal . For each picture on the left and right, nM − 1 , nM , nM + 1 , 
mM−1 , mM and mM + 1 means the Y and X-axis of the environment, respectively. Each rectangle with the 
value means the common throughput value at the point of these Y and X-axis
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Tensorflow [21] and Keras as libraries. You can download the experiment code from 
https://github.com/WannaBeSuperteur/2020/tree/master/WPCN.

4.3 � Experimental results

Table  1 describes CT.RATE (%) and CT.AVERAGE values for our methodology and  
the methodology in the original paper. We used fd= 9.15×108, P0 = 1.0, Ad = 3.0,

η = 0.51, dD = 2.2, δ= 20, σ=10−6 and β = Ad

(

3×108

4π fd

)dD
 with π = 3.141592654 for the 

methodology in [2], and the algorithm to solve (20) in [2]is described in Algorithm 2. For 
our methodology, CT.RATE value increases when the number of WDs increases and 
decreases when the size of maps increases, and CT.AVERAGE decreases when both the 
number of WDs and the size of maps increases. For the methodology in the original paper, 
CT.RATE increases when the size of maps increases, but has no significant correlation with 
the number of WDs. Table 2 shows the values of CT.AVGMAX and PR for each size and 
number of WDs. The unit for size is one block, as mentioned in Sect. 3. For example, the 
size of 12× 12 means that the environment contains 12 rows, and each row contains 12 
blocks. CT.AVGMAX decreases when both the number of WDs and the size of maps 
increases and PR decreases when the size of maps increases, but has no significant correla-
tion with the number of WDs. For smaller sizes, our methodology shows significantly better 
performance ( PR > 1 ) than the methodology in the original paper, but for 12× 12 size, 
these two methods show almost the same performance. ( PR ≈ 1 ), and for 16× 16 size, our 
methodology shows worse performance. ( PR < 1 ) Fig. 6. is the line chart representation of 

Fig. 5  Flow chart of design of testing. Note that 1-1 after the description of stage 1-2 means the data of 
stage 1-1 is used in stage 1-2
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Tables  1 and 2, and Fig.  7. is the bar chart for comparison of our methodology and the 
methodology in the original paper.

5 � Discussion
Our method shows higher CT.RATE for smaller maps, and the methodology in the original 
paper shows higher CT.RATE for larger maps. The reason for the former is, first, that com-
mon throughput usually depends on the WDs near the boundary of the environment, and 
these WDs usually enlarge the minimum value of the maximum possible distance between 
the HAP and each WD. For larger maps, the influence on the learning of the blocks with 
these WDs decreases, because the number of blocks influencing the learning is larger, so 
the influence of each block on the learning decreases. Second, there are fewer possible cases 
for smaller maps because the number of blocks is fewer for them, so our model could be 
more accurate. The reason for the latter is that the locations of WDs are not realistic for 
smaller maps because both x and y-axis of them are always an integer, so the methodology 
in the original paper is not so accurate.

Tables  3, 4 and 5 describes the average, standard deviation and 95% confidence inter-
val of some variables from the experimental result using 100 test dataset samples, that is, 
WDPMi(N , M, K ) and TMi(N , M, K ) , i = m1, . . . ,m1 +m2 − 1 where m1=900 and m2

=100. When the value of ’rows’ is r , it means the size of the grid map is r×r . We computed 
the confidence interval using (12) where X̄ and σ is average (refer to Table  3 to check the 
values) and standard deviation (refer to Table 4 to check the values) of the sample values, 
respectively, and n is the number of samples for each case, that is 100 for the experiment.

According to Table 5, the portion of time allocated to the HAP (HAPtime) has a positive 
correlation with the size of the grid map. The values of Y/size and X/size when the size 

(12)(95% confidence interval) =
[

NX − 1.96×
σ
√
n
,NX + 1.96×

σ
√
n

]
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of the grid map is 8× 8 is smaller than those of when the size is larger, but these values 
when the size of the grid map is 12× 12 and 16× 16 are not so different.

If the size of the grid map is r × r , both Y and X-axis values of the center of the top-
left cell are 0.0, and the ones of the center of the bottom right cell are r − 1 . Because 
we randomly put wireless devices on the grid map, the average values of both Y and 

Fig. 7  Comparison of CT.RATE(%) of our methodology and the methodology in the original paper. Our 
methodology shows better performance than the methodology in the original paper for size 8× 8 , but 
the two methods show nearly the same performance for size 12× 12 , and our methodology shows worse 
performance for size 16× 16

Table 1  CT.RATE and CT.AVERAGE values of our methodology and the methodology in the original 
paper

The upper table is about our methodology, and lower table represents CT.RATE and CT.AVERAGE about the methodology in 
the original paper. Size means the size of the board representing the environment of WPCN

Size / WDs CT.RATE (%) CT.AVERAGE

6 WDs 10 WDs 6 WDs 10 WDs

Our methodology

8× 8 94.2787 100.4858 0.010222 0.006884

12× 12 86.9357 92.1310 0.002565 0.001648

16× 16 79.4420 90.4991 0.000790 0.000530

Methodology in the original paper

8× 8 65.5779 71.9627 0.007110 0.004930

12× 12 89.1676 90.3931 0.002631 0.001617

16× 16 100.6565 96.8606 0.001001 0.00568

Table 2  The values of CT.AVGMAX and PR

The table on the left and on the right represents CT.AVGMAX and PR, respectively, for each option (size and the number of 
WDs). There can be some errors for PR values because the values of CT.AVGMAX have less significant figures than 6

CT.AVGMAX PR

Size/WDs 6 WDs 10 WDs Size/WDs 6 WDs 10 WDs

8× 8 0.010842 0.006851 8× 8 1.437660 1.396360

12× 12 0.002951 0.001789 12× 12 0.974970 1.019226

16× 16 0.000994 0.000586 16× 16 0.789239 0.934323
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X-axis maximizing the common throughput should be (r − 1)/2 . In Table 5, one can 
see that all the confidence intervals for both Y and X-axis values include (r − 1)/2 
for all the cases with r = 8 , r = 12 and r = 16 . Y/rows and X/rows should have posi-
tive correlation with r where r means the number of rows, because Y/r and X/r = 
((r − 1)/2)/r = (r − 1)/2r increases when the value of r increases. In Table 5, one can 
see that it is true and when comparing the cases for rows = 8 and rows = 16 , the con-
fidence intervals is not overlapped for the cases that WDs = 10 . These guarantee that 
our method randomly put wireless devices on the grid maps for test data. In addi-
tion, One can see that the portion of time allocated to HAP (HAPtime) has a posi-
tive correlation with the number of rows in the grid map (rows), and in Table 5, the 
confidence intervals are always not overlapped when the number of rows differs. It 

Table 3  Average values for each variable

This table describes the average value of some variables from the experimental result using 100 test dataset samples. For 
each sample WDPMi(N, M, K) and TMi(N, M, K) , i = 900, . . . , 999 in the test dataset, rows, WDs, Y, X, HAPtime, Y/rows 
and X/rows means the number of rows and wireless devices in WDPMi(N, M, K) , the value of noptimal and moptimal , the 
portion of time allocated to HAP computed with GETTHRPUT function in Algorithm 1 with HAPpoint as [ noptimal , moptimal ], 
the value of noptimal/rows and moptimal/rows, respectively

Rows WDs Y X HAPtime Y/rows X/rows

8 6 3.5351 3.4875 0.9330 0.4419 0.4359

8 10 3.4885 3.4285 0.9201 0.4361 0.4286

12 6 5.5705 5.3169 0.9566 0.4642 0.4431

12 10 5.5630 5.5734 0.9503 0.4636 0.4645

16 6 7.4428 7.4439 0.9685 0.4652 0.4652

16 10 7.4846 7.5141 0.9627 0.4678 0.4696

Table 4  Standard deviation for each variable

This table describes the standard deviation of some variables from the experimental results using test dataset, are same to 
as Table 3.

Rows WDs Y X HAPtime Y/rows X/rows

8 6 0.5937 0.7304 0.0122 0.0742 0.0913

8 10 0.4670 0.4403 0.0113 0.0584 0.0550

12 6 1.0814 0.9942 0.0068 0.0901 0.0828

12 10 0.6123 0.7403 0.0073 0.0510 0.0617

16 6 1.3271 1.6320 0.0042 0.0829 0.1020

16 10 0.8325 0.8926 0.0035 0.0520 0.0558

Table 5  95% Confidence interval for each variable

This table describes the 95% confidence interval of some variables from the experimental results using test dataset, are 
same to as Tables 3 and 4

Rows WDs Y X HAPtime Y/rows X/rows

8 6 [3.4187, 3.6514] [3.3443, 3.6307] [0.9306, 0.9354] [0.4273, 0.4564] [0.4180, 0.4538]

8 10 [3.3970, 3.5800] [3.3422, 3.5148] [0.9179, 0.9223] [0.4246, 0.4475] [0.4178, 0.4393]

12 6 [5.3586, 5.7825] [5.1221, 5.5118] [0.9552, 0.9579] [0.4465, 0.4819] [0.4268, 0.4593]

12 10 [5.4430, 5.6830] [5.4283, 5.7185] [0.9489, 0.9518] [0.4536, 0.4736] [0.4524, 0.4765]

16 6 [7.1827, 7.7029] [7.1240, 7.7638] [0.9677, 0.9694] [0.4489, 0.4814] [0.4453, 0.4852]

16 10 [7.3214, 7.6478] [7.3392, 7.6891] [0.9620, 0.9634] [0.4576, 0.4780] [0.4587, 0.4806]
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indicates that when the number of rows in the grid map increases, the portion of time 
allocated to HAP also increases.

6 � Conclusion
We showed that our deep learning-based method shows better performance than the 
mathematical method in the original paper [2] when the size is smaller than 12× 12 . 
Although our method may show worse performance if the size is larger than 12× 12 , our 
approach to find the optimal placement and time allocation for HAP using deep-learn-
ing is meaningful because there is no attempt to apply deep-learning to this problem 
yet. In addition, we found that with HAP locations derived by our method, the portion 
of time allocated to HAP has a positive correlation with the size of the grid map ( 8× 8 , 
12× 12 and 16× 16 ). There are some limits to our study. First, our study has an advan-
tageous point for our method that it uses only 1 HAP which is fitted to the experimen-
tal environment, but the method in the original paper may and commonly uses more 
than 1 HAPs. Second, we studied with just a few conditions, 3 options for map size and 
2 options for the number of WDs. So, some future research should be done for many 
options in terms of the map size and the number of WDs, and the number of HAPs.
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