
Reduced‑complexity decoding
implementation of QC‑LDPC codes
with modified shuffling
Alireza Hasani1,2*  , Lukasz Lopacinski1 and Rolf Kraemer1,2 

1  Introduction
Forward error correction (FEC) methods are one of the vital elements of next-generation
wireless networks tasked to provide the required level of reliability. Nevertheless, power-
ful capacity-achieving FEC techniques like low-density parity-check (LDPC), turbo or
polar codes have the downside of higher complexity and power consumption compared
with traditional coding techniques. Among these codes, LDPC codes have been incor-
porated into several previous technologies and are seen as the potential candidate for
the new standards like Fifth Generation (5G) and IEEE 802.11ax.

Belief propagation (BP) algorithm is commonly used as the decoding method for
LDPC codes, as the parity-check matrix (PCM) of these codes is sparse and their Tan-
ner graph representation lacks short cycles of length 4. One important issue with regard

Abstract 

Layered decoding (LD) facilitates a partially parallel architecture for performing belief
propagation (BP) algorithm for decoding low-density parity-check (LDPC) codes.
Such a schedule for LDPC codes has, in general, reduced implementation complexity
compared to a fully parallel architecture and higher convergence rate compared to
both serial and parallel architectures, regardless of the codeword length or code-rate.
In this paper, we introduce a modified shuffling method which shuffles the rows of
the parity-check matrix (PCM) of a quasi-cyclic LDPC (QC-LDPC) code, yielding a PCM
in which each layer can be produced by the circulation of its above layer one symbol
to the right. The proposed shuffling scheme additionally guarantees the columns of a
layer of the shuffled PCM to be either zero weight or single weight. This condition has
a key role in further decreasing LD complexity. We show that due to these two proper-
ties, the number of occupied look-up tables (LUTs) on a field programmable gate array
(FPGA) reduces by about 93% and consumed on-chip power by nearly 80%, while the
bit error rate (BER) performance is maintained. The only drawback of the shuffling is the
degradation of decoding throughput, which is negligible for low values of Eb/N0 until
the BER of 1e−6.

Keywords:  Quasi-cyclic low-density parity-check code, Layered decoding, Decoding
complexity

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Hasani et al. J Wireless Com Network (2021) 2021:183
https://doi.org/10.1186/s13638-021-02056-5

*Correspondence:
hasani@ihp-microelectronics.com
2 Department of Electrical
and Computer Engineering,
Brandenburg University
of Technology, Cottbus-
Senftenberg, Cottbus, Germany
Full list of author information is
available at the end of the article

http://orcid.org/0000-0002-0946-0324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-02056-5&domain=pdf

Page 2 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

to BP decoding is the schedule of the algorithm, i.e., the order in which the reliability
messages are exchanged between the nodes of the Tanner graph. BP schedule is directly
associated with the implementation architecture of the decoding method, and it falls
into three main categories:

1	 Fully parallel architecture which is realized by flood schedule [1] in which all the var-
iable nodes (VNs) and check nodes (CNs) in the Tanner graph pass messages con-
currently to their neighbors in every iterations of the algorithm. Although yielding
a high throughput, this schedule requires a large silicon area with high interconnect
complexity [2]. This architecture is facilitated due to the inherent parallelizable fea-
ture of BP algorithm, which is in contrast to turbo codes whose decoding algorithms
are inherently serial. However, several works have devised fully parallel architectures
for decoding turbo codes [3–6].

2	 Serial architecture in which a smaller number of functional units are re-used several
times to perform each decoder iteration. In this way, decoding complexity is lowered,
although at the price of reduced decoding throughput.

3	 Partially parallel architecture which is a good trade-off between hardware complex-
ity and decoding throughput and it is best accomplished by layered decoding (LD)
schedule [7–33].

In LD schedule, the rows of PCM are divided into a number of layers, and each iteration
of the BP algorithm is likewise split into the same number of sub-iterations. Each sub-
iteration runs over one layer of the PCM, during which the CNs of that layer exchange
reliability messages with their neighbor VNs. At the end of a sub-iteration, updated reli-
ability messages are delivered to the next layer. Accordingly, in each sub-iteration, only a
subset of CNs, i.e., as many as the number of rows in each layer, participate in the decod-
ing process, causing a reduced hardware utilization of LD compared to flood schedule.
Furthermore, LD schedule achieves a better convergence performance than the flood
schedule due to the fact that the latest variable-to-check (VTC) messages are always
used to update the check-to-variable (CTV) messages during a sub-iteration.

For the sake of LD complexity, it is highly desirable that the number of ones in each
column of a layer be either one or zero. Quasi-cyclic LDPC (QC-LDPC) codes have
inherently a layered structure with such a property, thus making them an appropriate
candidate for LD. QC-LDPC codes are a special type of LDPC codes possessing a cyclic
property which simplifies the encoding and decoding process of them, while preserving
comparable performance to random (or unstructured) LDPC codes [34, 35].

2 � Related work and contributions
Shuffling idea proposed in [15] shuffles the rows of the PCM of a QC-LDPC code prior
to decoding, in the sense that the order of the rows of the PCM is totally changed. After
shuffling, each layer can be produced by circulating its above layer one symbol to the
right, leading to a simplified LD and sped-up convergence rate. In particular, due to the
cyclic property, it is enough to realize only the first layer of a PCM in hardware rather
than the whole PCM. The downside of this shuffling is that it may spoil the primary
property of single weight columns in the PCM.

Page 3 of 14Hasani et al. J Wireless Com Network (2021) 2021:183 	

To workaround this shortcoming, we outlined a modified shuffling idea in our pre-
vious work [36] which results in a shuffled PCM that retains the desired property of
single weight columns, and possesses the cyclic property too. This was accomplished
by introducing a set of offset values prior to performing the shuffling. In this paper,
this modified shuffling idea is further investigated. To be specific

1	 The logic behind offset values applied for shuffling is clarified, aiming to elaborate
how the offset values come into effect. The procedure for determining the offset val-
ues is also outlined.

2	 Since [36] lacks implementation results to verify the improvements promised by the
modified shuffling method, we provide in this work the implementation results for
LD of several QC-LDPC codes when shuffled with the proposed technique. Improve-
ments in terms of number of occupied look-up tables (LUTs) on a field programma-
ble gate array (FPGA) and also power consumption are observed when compared
with the case of non-shuffled LD. These improvements are achieved without sacri-
ficing bit error rate (BER) performance. Although the decoding throughput deterio-
rates as Eb/N0 rises, our analysis shows that if BER of 1e−6 is chosen as the target,
throughput degradation will be insubstantial.

The organization of the paper is as follows. Section 3 presents necessary fundamen-
tals of QC-LDPC codes and LD. Section 4 is devoted to assessment of the novel shuf-
fling method and its attributes. Implementation and simulation results together with
necessary analysis come in Sect. 5. Final conclusions are made in Sect. 6.

3 � Preliminaries
3.1 � QC‑LDPC codes

The PCM of a QC-LDPC code is comprised of Circulant Permutation Matrices
(CPMs) and zero matrices, wherein a CPM is a shifted identity matrix. Such a PCM
could be represented as

in which c ≤ t and Ai,j s are either b× b CPMs or b× b zero matrices. A codeword v
is of length t.b comprising t sections v = (v1, v2, · · · , vt) with each section vi, 1 ≤ i ≤ t
of length b. Codewords of a QC-LDPC code have sectionized cyclic structure, in the
sense that with cyclic shifting of the t sections in a codeword, another valid codeword
is obtained [37]. A compact way for representing PCM of a QC-LDPC code is known as
the base matrix, denoted by W . In W , non-negative integers specify the shifting value
with respect to an identity matrix in the corresponding CPM, and other entries, usually
chosen to be − 1, represent zero matrices in the PCM. Fig. 1 shows the base matrices for
the QC-LDPC codes utilized in IEEE 802.15.3c standard, and Fig. 2 shows the 1/2-rate

(1)Hqc =









A1

A2

...

Ac









=









A1,1 A1,2 . . . A1,t

A2,1 A2,2 . . . A2,t

...
...

. . .
...

Ac,1 Ac,2 . . . Ac,t









,

Page 4 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

(2304,1152)-QC-LDPC code used in IEEE 802.16e. In these two figures, empty places
are the locations of zero matrices.

Tanner graph representation of a PCM is an important means to comprehend
BP algorithm. It consists of two sets of nodes, where one set represents CNs, i.e.,

0 5 18 16 3 6 10 0 7 5 4 4 10 5 7 19
6 7 2 9 20 4 19 10

18 0 10 16 9 12 4 17
5 0 18 16 6 3 0 10 5 7 4 4 5 10 19 7

6 7 2 9 20 4 19 10
18 0 10 16 9 12 4 17

5 0 16 18 3 6 0 10 5 7 4 4 5 10 19 7
6 7 2 9 20 4 19 10

18 0 10 16 9 12 4 17
5 0 18 16 3 6 0 10 7 5 4 4 10 5 7 19

6 7 2 9 20 4 19 10
18 0 10 16 9 12 4 17

(b)

0 5 18 16 3 6 10 0 7 5 4 4 10 5
18 6 7 0 10 2 16 9 20 9 4 12 4 19

5 0 18 16 6 3 0 10 5 7 4 4 5 10 19
18 6 0 7 10 2 16 9 20 9 4 12 4 19 10

5 0 16 18 3 6 0 10 5 7 4 4 5
6 18 0 7 10 2 9 16 9 20 4 12 19

5 0 18 16 3 6 0 10 7 5 4 4 10 5 7 19
18 6 0 7 2 10 16 9 9 20 12 4 19 4 17 10

(c)

0 18 6 5 7 18 16 0 10 2 3 6 10 16 9 0 20 7 9 5 4 12 4 4 4 10 19 5 10
5 0 18 6 0 7 18 16 6 10 2 3 0 10 16 9 5 20 7 9 4 4 12 4 5 4 10 19 19 10
6 5 0 18 16 0 7 18 3 6 10 2 9 0 10 16 9 5 20 7 4 4 4 12 19 5 4 10 17 19 10
18 6 5 0 18 16 0 7 2 3 6 10 16 9 0 10 7 9 5 20 12 4 4 4 10 19 5 4 7 17 19 10

(d)

5 18 3 10 5
0 16 6 0 7

6 7 2 9 20
18 0 10 16 9

5 18 3 10 5 4 5
0 16 6 0 7 4 10

6 7 2 9 20 4 19
18 0 10 16 9 12 4

5 18 3 10 5 4
0 16 6 0 7 4

6 7 2 9 20 4
18 0 10 16 9 12

5 18 3 10 5 4 5 7
0 16 6 0 7 4 10 19

6 7 2 9 20 4 19 10
18 0 10 16 9 12 4 17

(a)

Fig. 1  Base matrices of IEEE 802.15.3c QC-LDPC codes [39]: a (672,336)-LDPC code; b (672-425)-LDPC code; c
(672,504)-LDPC code; d (672,588)-LDPC code

94 73 55 83 7 0
27 22 79 9 12 0 0

24 22 81 33 0 0 0
61 47 65 25 0 0

39 84 41 72 0 0
46 40 82 79 0 0 0

95 53 14 18 0 0
11 73 2 47 0 0

12 83 24 43 51 0 0
94 59 70 72 0 0

7 65 39 49 0 0
43 66 41 26 7 0

Fig. 2  Base matrix of a 1/2-rate (2304,1152)-QC-LDPC code utilized in IEEE 802.16e

Page 5 of 14Hasani et al. J Wireless Com Network (2021) 2021:183 	

parity-check sums (equivalent to rows of H  ), and the other set represents VNs (equiv-
alent to columns of H  ). A CN in a Tanner graph is connected to a VN if and only if
the corresponding element of H is one.

3.2 � LD schedule

One appropriate schedule which facilitates partially parallel architecture for execution
of BP algorithm is LD. In this schedule, each iteration is split into several sub-iterations,
each corresponding to a layer of the PCM. In each sub-iteration, CNs of the corre-
sponding layer exchange reliability messages with VNs of that layer, and at the end, the
updated reliability messages are provided to the next layer. Accordingly, fewer number
of processing units for CNs and VNs are realized in hardware, and they are re-utilized in
successive sub-iterations for successive layers.

Let y = (y0, . . . , yn−1) be the soft-decision sequence at the output of the channel that
is to be decoded. The J rows of the PCM Hqc are divided into L layers each containing E
consecutive rows. Hence, the i-th layer H (i)

qc , 1 ≤ i ≤ L contains rows (i − 1)E + 1, . . . , i.E
of Hqc . The i-th sub-iteration of LD algorithm, associated with the i-th layer of the PCM,
is split into three steps:

1	 Vertical step: VTC messages are updated as

 where Yl , 0 ≤ l < n are A Posteriori Probability (APP) values of VNs initially set as
y , and L(i)j,l , 1 ≤ j ≤ E, 0 ≤ l < n, 1 ≤ i ≤ L are CTV messages corresponding to the
i-th layer initially set to zero for all the layers.

2	 Horizontal step: CTV messages are updated as

 where

 denotes the set of VNs neighbor to the CN h(i)j .
3	 Hard decision and early termination criterion: APP values are updated according to:

 with

 analogous to B(h(i)j) representing the set of CNs in layer i connected to vl.
In (3), min-sum scheme [38] has been used for computing CTV messages, wherein
sgn(x) is a sign function which is equal to 1 when x ≥ 0 and -1 otherwise.

(2)Z
(i)
j,l = Yl − L

(i)
j,l , 1 ≤ j ≤ E, 0 ≤ l < n,

(3)
L
(i)
j,l =

∏

l′∈B(h
(i)
j)\l

sgn(Z
(i)
j,l′)× min

l′∈B(h
(i)
j)\l

|Z
(i)
j,l′ |,

B(h
(i)
j) = {l : h

(i)
j,l = 1, 0 ≤ l < n}

(4)
Yl = yl +

∑

j∈A
(i)
l

L
(i)
j,l , 0 ≤ l < n.

A
(i)
l = {j : h

(i)
j,l = 1, 1 ≤ j ≤ E}

Page 6 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

At the end of each sub-iteration, some codeword bits are estimated based on the
updated APP values. In particular, v̂l = 1 if Yl > 0 and v̂l = 0 otherwise. If the check-sum
condition Hqcv̂

T = 0 is satisfied by the estimated codeword v̂ = (v̂0, . . . , v̂n−1) , it will be
declared as the valid codeword leading to the termination of the algorithm. Otherwise,
the algorithm continues starting from the vertical step of the next layer. The maximum
number of iterations is however limited by a threshold Imax . The algorithm declares a
failure if decoding is not converged to a valid codeword within Imax iterations.

4 � Modified shuffling of QC‑LDPC codes
4.1 � Modified shuffling

LD schedule is suitably tailored for decoding QC-LDPC codes, since each block-row
Ai, 1 ≤ i ≤ c in (1) can be regarded as a layer. Accordingly, the columns in each layer are
either single weight or zero weight. This property is useful for simplifying the decoding
implementation. First and foremost, the summation in (4) is simplified as it exists only a
single CTV message to be added to yl . Moreover, the implementation of both operations
in (2) and (3) are also simplified.

Shuffling is the act of swapping the rows of the PCM, in a manner that the complexity
of the decoding algorithm reduces, while the error correction performance is preserved.
[15] proposes to partition the J = c.b rows of Hqc between matrices H sh,(i)

qc , i = 1, . . . , b
each containing the rows i, i + b, i + 2b, . . . , i + (c − 1)b of Hqc . Accordingly, the shuf-
fled PCM, H sh

qc , has matrices H sh,(i)
qc , i = 1, . . . , b as its row-blocks:

An example of such a shuffling is depicted in Fig. 3, which has been performed on a
(12, 4)-QC-LDPC code. In H sh

qc, each layer H sh,(i)
qc is obtained by cyclically shifting its

above layer H sh,(i−1)
qc one symbol to the right, noting that the circulation must be per-

formed separately on the t individual sections of a layer. Due to this cyclic property
provided by shuffling, it is no longer needed to implement the whole PCM in the tar-
geted hardware (for example an FPGA) and define all the “1”-entries as connections in
it. Instead, it suffices to implement only H sh,(1)

qc  , the first layer of H sh
qc , and then perform

a circulation on the memory blocks containing updated APP values at the end of each
sub-iteration. This implementation benefit is further elaborated on in Sect. 4.2.

(5)H sh
qc =







H sh,(1)
qc

...

H sh,(b)
qc







=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 | 0 0 1 | 0 1 0 | 1 0 0
0 0 0 | 1 0 0 | 0 0 1 | 0 1 0
0 0 0 | 0 1 0 | 1 0 0 | 0 0 1
− − − − − − − − − − − − − − −
0 0 1 | 0 0 0 | 1 0 0 | 0 1 0
1 0 0 | 0 0 0 | 0 1 0 | 0 0 1
0 1 0 | 0 0 0 | 0 0 1 | 1 0 0
− − − − − − − − −− − − − − − −
0 1 0 | 1 0 0 | 0 0 0 | 0 0 1
0 0 1 | 0 1 0 | 0 0 0 | 1 0 0
1 0 0 | 0 0 1 | 0 0 0 | 0 1 0
− − − − − − − − − − − − − − −
1 0 0 | 0 1 0 | 0 0 1 | 0 0 0
0 1 0 | 0 0 1 | 1 0 0 | 0 0 0
0 0 1 | 1 0 0 | 0 1 0 | 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

→ ℎ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ℎ,(1)

ℎ,(2)

ℎ,(3)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 | 0 0 1 | 0 1 0 | 1 0 0
0 0 1 | 0 0 0 | 1 0 0 | 0 1 0
0 1 0 | 1 0 0 | 0 0 0 | 0 0 1
1 0 0 | 0 1 0 | 0 0 1 | 0 0 0
− − − − − − − − − − − − − − −
0 0 0 | 1 0 0 | 0 0 1 | 0 1 0
1 0 0 | 0 0 0 | 0 1 0 | 0 0 1
0 0 1 | 0 1 0 | 0 0 0 | 1 0 0
0 1 0 | 0 0 1 | 1 0 0 | 0 0 0
− − − − − − − − − − − − − − −
0 0 0 | 0 1 0 | 1 0 0 | 0 0 1
0 1 0 | 0 0 0 | 0 0 1 | 1 0 0
1 0 0 | 0 0 1 | 0 0 0 | 0 1 0
0 0 1 | 1 0 0 | 0 1 0 | 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(b)(a)
Fig. 3  a PCM of a (12, 4)-QC-LDPC code; b its shuffled version

Page 7 of 14Hasani et al. J Wireless Com Network (2021) 2021:183 	

The shortcoming with this shuffling method is that layers in the shuffled matrix may
no longer be comprised of single weight columns. In particular, if the base matrix of a
QC-LDPC code has repetitive numbers in a column, the corresponding block-column
in the shuffled matrix will have columns of weight bigger than one in each layer. For
instance, in Figs. 1 and 2, the shaded columns have repetitive numbers. Consequently,
after shuffling, they bring about columns of weight 2 or 3 in each layer of their own shuf-
fled matrix.

As a solution to this weakness of shuffling, we propose to employ a set of integer values
0 ≤ om < b, m = 1, . . . , c serving as an offset in order to modify the order of the rows of
Hqc which are put in the same layer in H sh

qc . Accordingly, the i-th layer of H sh
qc is made

up of rows {i + o1, b+ i + o2, . . . , (c − 1)b+ i + oc} of Hqc for 1 ≤ i ≤ b . oi s are carefully
selected so that in H sh

qc no column in a layer has the weight bigger than one. The offset
values can be regarded as a means to eliminate repetitive values in a column. In other
words, the modified shuffling technique with offset values is equivalent to the basic
shuffling method if performed on Hqc whose base matrix no longer contains repetitive
integers in a column because of the offset values. A possible offset set for each of our
example codes together with the resulting modified base matrices are shown in Fig. 4
and 5. As observed, with the introduced offset values in these examples, the shaded col-
umns no longer have repetitive integers.

+14 14 19 11 9 17 20 3 14 0 19 19 19 3 5 7 19
+2 8 9 4 11 1 6 0 12
+0 18 0 10 16 9 12 4 17
+0 5 0 18 16 6 3 0 10 5 7 4 4 5 10 19 7
+3 9 10 5 12 2 7 1 13
+0 18 0 10 16 9 12 4 17
+17 1 17 12 14 20 2 17 6 1 3 0 0 1 6 15 3
+3 9 10 5 12 2 7 1 13
+0 18 0 10 16 9 12 4 17
+0 5 0 18 16 3 6 0 10 7 5 4 4 10 5 7 19
+19 4 5 0 7 18 2 17 8
+0 18 0 10 16 9 12 4 17

(b)

 +0 0 5 18 16 3 6 10 0 7 5 4 4 10 5
+0 18 6 7 0 10 2 16 9 20 9 4 12 4 19
+1 6 1 19 17 7 4 1 11 6 8 5 5 6 11 20
+0 18 6 0 7 10 2 16 9 20 9 4 12 4 19 10
+10 15 0 5 7 13 16 10 20 15 17 14 14 15
+3 9 0 3 10 13 5 12 19 12 2 7 15 1
+19 3 19 16 14 1 4 19 8 5 3 2 2 8 3 5 17
+4 1 10 4 11 6 14 20 13 13 3 15 8 2 8 0 14

(c)

+0 5 18 3 10 5
+0 0 16 6 0 7
+0 6 7 2 9 20
+0 18 0 10 16 9
+9 14 6 12 19 14 13 14
+1 1 17 7 1 8 5 11
+2 8 9 4 11 1 6 0
+0 18 0 10 16 9 12 4
+0 5 18 3 10 5 4
+1 1 17 7 1 8 5
+2 8 9 4 11 1 6
+0 18 0 10 16 9 12
+0 5 18 3 10 5 4 5 7
+0 0 16 6 0 7 4 10 19
+0 6 7 2 9 20 4 19 10
+0 18 0 10 16 9 12 4 17

(a)

Fig. 4  Base matrices of IEEE 802.15.3c QC-LDPC codes with offset values: a (672,336)-LDPC code; b
(672-425)-LDPC code; c (672,504)-LDPC code

Page 8 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

This perspective of the modified shuffling gives us the way for finding appropriate off-
set values for a specific QC-LDPC code. The straight way is to try all the possible values
until finding the one that gives a base matrix in which all the integers in any column are
distinct. In general, for a QC-LDPC code, there are bc possible offset sets which must
be examined one by one until finding the one which results in a base matrix without
repetitive integers in a column. Once such an offset set is found, the search is halted.
It should be noted that in some cases, there may not exist a possible offset set, like the
(672, 588)-QC-LDPC code of Fig. 1-d. This indicates that the modified shuffling is not
necessarily applicable to all the QC-LDPC codes. It should also be emphasized that the
desired cyclic property of H sh

qc does exist in the case of modified shuffling as it does in
the basic shuffling method, and hence, each layer of H sh

qc can be produced from its previ-
ous layer by a circular shifting.

4.2 � LD implementation

The advantage of shuffling can be highlighted by an investigation of the implementation
methodology. Specifically, Fig. 6 illustrates the LD architecture for H sh

qc of Fig. 3. In this
figure, VN Processing Unit (VNPU) and CN Processing Unit (CNPU) stand for a pro-
cessing unit responsible for computing VTC and CTV messages in (2) and (3), respec-
tively. As illustrated, instead of having J = 12 CNPUs, c = 4 CNPUs delegating the
CNs of the first layer are sufficient for decoding and the connections between them are

94 73 55 83 7 0
28 23 80 10 13 1 1

24 22 81 33 0 0 0
62 48 66 26 1 1

39 84 41 72 0 0
47 41 83 80 1 1 1

95 53 14 18 0 0
12 74 3 48 1 1

12 83 24 43 51 0 0
95 60 71 73 1 1

7 65 39 49 0 0
44 67 42 27 8 1

()
Fig. 5  Base matrix of the 1/2-rate (2304,1152) IEEE 802.16e QC-LDPC code with offset values

VNPU-0 VNPU-1 VNPU-2 VNPU-3 VNPU-4 VNPU-5 VNPU-6 VNPU-7 VNPU-8 VNPU-9 VNPU-10 VNPU-11

CNPU-1 CNPU-4CNPU-3CNPU-2

APPU-0 APPU-1 APPU-2 APPU-3 APPU-4 APPU-5 APPU-6 APPU-7 APPU-8 APPU-9 APPU-10 APPU-11

Fig. 6  LD architecture for shuffled PCM of Figure 3

Page 9 of 14Hasani et al. J Wireless Com Network (2021) 2021:183 	

determined by the 1-entries of the first layer. At the end of each sub-iteration, the com-
puted APP values are cyclically shifted as shown by the figure. This circulation serves as
an alternative to redefining the connections between VNPUs and CNPUs, allowing the
current connections between VNPUs and CNPUs to remain valid and to start the next
sub-iteration immediately.

Fig. 7 shows the decoding flowchart for the algorithm outlined in section 3.2. As
shown, the last block in the decoding loop is a “circulate” operation performed on the
updated APP values in order to prepare them for the next sub-iteration processing. The
other blocks in the decoding loop are responsible for performing operations (2)–(4).

5 � Implementation and experimental results
We implemented both LD with shuffled PCM and LD with non-shuffled PCM for
the example codes of IEEE 802.16e and IEEE 802.15.3c standards. The utilized hard-
ware was a Xilinx VC709 evaluation board, shown in Fig. 8 which possesses a Virtex-7
XC7VX690T-2FFG1761C FPGA. The implementation was conducted with 6-bit quan-
tized messages and the synthesis tool was Vivado 2018.3.

No

Yes

Fetch a new
sequence

Satisfy?Compute parity-
check equations

Successful
decoding Failed decoding

InitializationUpdate VTC
messages

Update CTV
messages

Update APP
values

Circulate No. of iteration

Yes

NoDecoding loop

Soft-decision
sequence

Fig. 7  Flowchart of the LD algorithm

Fig. 8  Xilinx VC709 evaluation board with a Virtex-7 FPGA

Page 10 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

The acquired results in terms of utilized LUTs, on-chip power and maximum clock fre-
quency are shown in Table 1. The first two parameters are directly reported by the syn-
thesis tool and the maximum clock frequency is estimated from the parameter of worst
negative slack, also reported by the synthesis tool. As deduced from the figures in the table,
the design with shuffled PCM is considerably smaller, and the consumed power is notably
lower. For instance, the number of occupied LUTs reduces from 262122 to only 15299 in
the case of (672,336) code, equivalent to (1− 15299

262122
)× 100 ∼= 94% reduction in the num-

bers of LUTs on FPGA. Similarly, a (1− 0.84
6.693

)× 100 ∼= 87% reduction in consumed power
is also resulted. In summary, the superiority of the shuffling method in terms of hardware
area and consumed power is apparent from the implementation results. Note that the
design of the non-shuffled IEEE 802.16e is too big to fit in the FPGA, and hence, the results
are not available.

Figure 9 depicts the performance simulation of the three IEEE 802.15.3c codes, showing
that shuffling does not degrade the BER performance. Indeed, LD with (modified) shuffled
PCM performs as good as LD with non-shuffled PCM. Furthermore, the average num-
ber of iterations needed to achieve a specific BER performance depicted in Fig. 10 is quite
the same in two cases, further confirming the similar performance of the two modes. This
is due to the fact that shuffling just changes the order of the rows of the PCM, while the
overall PCM’s characteristics remain intact. In particular, the determining attributes of the
PCM such as distance property, cycles’ distribution and rows’ and columns’ weight do not
undergo any change.

Comparing the two cases in terms of throughput can also be of interest. The average
throughput for different codes is plotted in Fig. 11. Given that fclk is the clock frequency
specified in table 1, Nave_ite is the average number of sub-iterations and Nclk is the number
of clock cycles each sub-iteration needs, the average duration for decoding a sequence will
be then Nave_ite.Nclk

fclk
 , thus leading to the average throughput of

(6)τ =
k .fclk

Nave_ite.Nclk

.

-2 -1 0 1 2 3 4
Eb/N0 [dB]

10-10

10-8

10-6

10-4

10-2

100

B
E

R

(672,336), LD
(672,425), LD
(672,504), LD
(672,336), Shuffled LD
(672,425), Shuffled LD
(672,504), Shuffled LD

Fig. 9  BER performance for the example QC-LDPC codes

Page 11 of 14Hasani et al. J Wireless Com Network (2021) 2021:183 	

-2 -1 0 1 2 3 4
Eb/N0 [dB]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 n
o.

 it
er

at
io

ns

(672,336), LD
(672,425), LD
(672,504), LD
(672,336), Shuffled LD
(672,425), Shuffled LD
(672,504), Shuffled LD

Fig. 10  Average number of sub-iterations required for achieving the BER performance of Fig. 9

-2 -1 0 1 2 3 4
Eb/N0 [dB]

0

0.5

1

1.5

2

2.5

T
hr

ou
gh

pu
t [

G
b/

s]

(672,336), LD
(672,425), LD
(672,504), LD
(672,336), Shuffled LD
(672,425), Shuffled LD
(672,504), Shuffled LD

Fig. 11  Average throughput for the example QC-LDPC codes

Table 1  Implementation results of the example codes on a Xilinx Virtex-7 FPGA

Code Attributes LD, shuffled LD, non-shuffled

IEEE 802.15.3c
(672,336)

Clk freq. [MHz]
On-chip power [W]
Area (# LUTs)

209
0.840
15299

169
6.693
262122

IEEE 802.15.3c
(672,504)

Clk freq. [MHz]
On-chip power [W]
Area (# LUTs)

175
0.710
16007

144
5.461
218612

IEEE 802.15.3c
(672,425)

Clk freq. [MHz]
On-chip power [W]
Area (# LUTs)

200
0.900
14779

185
4.786
185478

IEEE 802.16.e
(2304,1152)

Clk freq. [MHz]
On-chip power [W]
Area (# LUTs)

114
2.640
185478

–
–
–

Page 12 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

In our implementation, Nclk = 8 and 7 for the case of shuffled and non-shuffled PCM,
respectively, noting that the one extra clock cycle in the former case is needed for cyclic
shifting of the computed APP values. The average throughput in the two cases over-
lap for low values of Eb/N0 , indicating that the additional number of sub-iterations is
compensated fully by the higher clock frequency. This is however not true when Eb/N0
grows. If BER = 1e -6 is chosen as the targeted BER performance, the throughput degra-
dation will be 0.1, 0.3, and 1.3 Gbps for the three codes, respectively. The degradation in
throughput stems from the fact that layering is different in the two cases. In the case of
non-shuffled PCM, the J rows are divided into c layers, each of b rows, while in the case
of shuffled PCM, they are divided into b layers, each of c rows. Since c is usually much
more smaller than b, in the first case, a bigger number of VNs are processed in a sub-
iteration and hence it needs fewer sub-iterations in total.

6 � Conclusion
The novel shuffling method proposed in this paper is basically a swapping of the rows of
the PCM of a QC-LDPC code with two objectives in mind. First, the columns in each layer
of the shuffled PCM must remain single weight or zero weight. Second, each layer must
be producible from the upper layer by a one-symbol circular shifting. Though simple, this
shuffling brings about considerable complexity reduction in the decoding implementation,
while preserving the error-correcting capability of the code and its decoding throughput for
BER values of up to 1e−6.

Abbreviations
APP: A Posteriori Probability; BER: Bit Error Rate; BP: Belief Propagation; CN: Check Node; CNPU: CN Processing Unit; CPM:
Circulant Permutation Matrix; CTV: Check-to-Variable; FEC: Forward Error Correction; FPGA: Field Programmable Gate
Array; LD: Layered Decoding; LDPC: Low-Density Parity-Check; LUT: Look-Up Table; PCM: Parity-Check Matrix; QC-LDPC:
Quasi-Cyclic LDPC; VN: Variable Node; VNPU: VN Processing Unit; VTC: Variable-to-Check; 5G: Fifth Generation.

Acknowledgements
This work was supported by the German Research Foundation (DFG) and conducted at IHP-microelectronics GmbH. The
authors are also thankful to the support of Brandenburg University of Technology (BTU) Cottbus-Senftenberg, Prof. Dr.
Jörg Nolte and Dr. Steffen Büchner.

Authors’ contributions
AH proposed and developed the new idea of the paper and drafted it. LL and RK have substantially revised it. All authors
approved the submitted version. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the German Research Foun-
dation (DFG) project PSSS-FEC, project no. 442607813.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

 Competing interests
The authors declare that they have no competing interests.

Author details
1 IHP - Leibniz-Institut für innovative Mikroelektronik, Frankfurt (Oder), Germany. 2 Department of Electrical and Computer
Engineering, Brandenburg University of Technology, Cottbus-Senftenberg, Cottbus, Germany.

Received: 1 September 2020 Accepted: 22 September 2021

Page 13 of 14Hasani et al. J Wireless Com Network (2021) 2021:183 	

References
	1.	 F.R. Kschischang, B.J. Frey, Iterative decoding of compound codes by probability propagation in graphical models.

IEEE J. Sel. Areas Commun. 16(2), 219–230 (1998)
	2.	 L. Liu, C.-J.R. Shi, Sliced message passing: High throughput overlapped decoding of high-rate low-density parity-

check codes. IEEE Trans. Circuits Syst. I Regul. Pap. 55(11), 3697–3710 (2008)
	3.	 R.G. Maunder, A fully-parallel turbo decoding algorithm. IEEE Trans. Commun. 63(8), 2762–2775 (2015)
	4.	 Y. Sun, J.R. Cavallaro, Efficient hardware implementation of a highly-parallel 3g pp LTE/LTE-advance turbo decoder.

Integration 44(4), 305–315 (2011)
	5.	 S.K. Chronopoulos, V. Christofilakis, G. Tatsis, P. Kostarakis, Preliminary BER study of a TC-OFDM system operating

under noisy conditions. J. Eng. Sci. Technol. Rev. 9(4), 13–16 (2016)
	6.	 S.K. Chronopoulos, V. Christofilakis, G. Tatsis, P. Kostarakis, Performance of turbo coded OFDM under the presence of

various noise types. Wirel. Pers. Commun. 87(4), 1319–1336 (2016)
	7.	 M.M. Mansour, N.R. Shanbhag. Turbo decoder architectures for low-density parity-check codes, in Global Telecom-

munications Conference. GLOBECOM’02. IEEE, vol. 2 (IEEE, 2002), pp. 1383–1388
	8.	 M.M. Mansour, N.R. Shanbhag, High-throughput LDPC decoders. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.

11(6), 976–996 (2003)
	9.	 H. Sankar, K.R. Narayanan, Memory-efficient sum-product decoding of LDPC codes. IEEE Trans. Commun. 52(8),

1225–1230 (2004)
	10.	 D.E. Hocevar. A reduced complexity decoder architecture via layered decoding of LDPC codes, in IEEE Workshop on

Signal Processing Systems, 2004. SIPS 2004 (IEEE, 2004) pp. 107–112
	11.	 M.M. Mansour, N.R. Shanbhag, A 640-mb/s 2048-bit programmable LDPC decoder chip. IEEE J. Solid-State Circuits

41(3), 684–698 (2006)
	12.	 Gunnam, K.K., Choi, G.S., Wang, W., Kim, E., Yeary, M.B.: Decoding of quasi-cyclic LDPC codes using an on-the-fly

computation, in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers (IEEE, 2006), pp. 1192–1199
	13.	 K. Gunnam, G. Choi, W. Wang, M. Yeary. Multi-rate layered decoder architecture for block LDPC codes of the IEEE

802.11 n wireless standard, in 2007 IEEE International Symposium on Circuits and Systems (IEEE, 2007), pp.1645–1648
	14.	 Rovini, M., Rossi, F., Ciao, P., L’Insalata, N., Fanucci, L.: Layered decoding of non-layered LDPC codes, in 9th EUROMICRO

Conference on Digital System Design (DSD’06) (IEEE, 2006), pp. 537–544
	15.	 Y.-L. Ueng, C.-C. Cheng. A fast-convergence decoding method and memory-efficient VLSI decoder architecture for

irregular LDPC codes in the IEEE 802.16 e standards, in 2007 IEEE 66th Vehicular Technology Conference (IEEE, 2007),
pp. 1255–1259

	16.	 P. Radosavljevic, A. de Baynast, J.R. Cavallaro. Optimized message passing schedules for LDPC decoding, in Confer-
ence Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, 2005 (IEEE, 2005), pp.591–595

	17.	 D. Yang, G. Yu, X. Zou, Y. Deng, J. Zhong. The design and verification of a novel LDPC decoder with high-efficiency, in
2014 International Symposium on Integrated Circuits (ISIC) (IEEE, 2014), pp. 256–259

	18.	 A. de Baynast, P. Radosavljevic, A. Sabharwal, J.R. Cavallaro. On turbo-schedules for LDPC decoding. IEEE Commun.
Lett. (2006)

	19.	 P. Radosavljevic, M. Karkooti, A. de Baynast, J.R. Cavallaro, Tradeoff analysis and architecture design of high through-
put irregular LDPC decoders. IEEE Trans. Circuits Syst. I: Regul. Pap. 1(1), 1 (2006)

	20.	 T. Brack, M. Alles, F. Kienle, N. When. A synthesizable IP core for WIMAX 802.16 e LDPC code decoding, in 2006 IEEE
17th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE, 2006), pp. 1–5

	21.	 G. Gentile, M. Rovini, L. Fanucci. Low-complexity architectures of a decoder for IEEE 802.16 e LDPC codes, in 10th
Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007) (IEEE, 2007), pp. 369–375

	22.	 K.K. Gunnam, G.S. Choi, M.B. Yeary, M. Atiquzzaman. VLSI architectures for layered decoding for irregular LDPC codes
of WIMAX, in 2007 IEEE International Conference on Communications (IEEE, 2007), pp. 4542–4547

	23.	 K. Zhang, X. Huang, Z. Wang, High-throughput layered decoder implementation for quasi-cyclic LDPC codes. IEEE J.
Sel. Areas Commun. 27(6), 985–994 (2009)

	24.	 J. Goldberger, H. Kfir, Serial schedules for belief-propagation: analysis of convergence time. IEEE Trans. Inf. Theory
54(3), 1316–1319 (2008)

	25.	 Y. Cui, X. Peng, Z. Chen, X. Zhao, Y. Lu, D. Zhou, S. Goto. Ultra low power qc-LDPC decoder with high parallelism, in
2011 IEEE International SOC Conference (IEEE, 2011), pp. 142–145

	26.	 J. Zhang, M.P. Fossorier, Shuffled iterative decoding. IEEE Trans. Commun. 53(2), 209–213 (2005)
	27.	 Y.-L. Ueng, C.-J. Yang, C.-J. Chen. A shuffled message-passing decoding method for memory-based LDPC decoders,

in 2009 IEEE International Symposium on Circuits and Systems (IEEE, 2009), pp. 892–895
	28.	 J. Zhang, M. Fossorier. Shuffled belief propagation decoding, in Conference Record of the Thirty-Sixth Asilomar Confer-

ence on Signals, Systems and Computers, 2002, vol. 1 (IEEE, 2002), pp. 8–15
	29.	 J. Zhang, Y. Wang, M.P. Fossorier, J.S. Yedidia, Iterative decoding with replicas. IEEE Trans. Inf. Theory 53(5), 1644–1663

(2007)
	30.	 Z. Cui, Z. Wang, X. Zhang, Q. Jia. Efficient decoder design for high-throughput LDPC decoding, in APCCAS 2008–2008

IEEE Asia Pacific Conference on Circuits and Systems (IEEE, 2008), pp. 1640–1643
	31.	 Y.-L. Ueng, C.-J. Yang, K.-C. Wang, C.-J. Chen, A multimode shuffled iterative decoder architecture for high-rate RS-

LDPC codes. IEEE Trans. Circuits Syst. I Regul. Pap. 57(10), 2790–2803 (2010)
	32.	 F. Guilloud, E. Boutillon, J. Tousch, J.-L. Danger, Generic description and synthesis of LDPC decoders. IEEE Trans. Com-

mun. 55(11), 2084–2091 (2007)
	33.	 Y.-L. Ueng, B.-J. Yang, C.-J. Yang, H.-C. Lee, J.-D. Yang, An efficient multi-standard LDPC decoder design using

hardware-friendly shuffled decoding. IEEE Trans. Circuits Syst. I Regul. Pap. 60(3), 743–756 (2013)
	34.	 Z. Wang, Z. Cui, Low-complexity high-speed decoder design for quasi-cyclic LDPC codes. IEEE Trans. Very Large

Scale Integr. (VLSI) Syst. 15(1), 104–114 (2007)
	35.	 M.P. Fossorier, Quasicyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf.

Theory 50(8), 1788–1793 (2004)

Page 14 of 14Hasani et al. J Wireless Com Network (2021) 2021:183

	36.	 A. Hasani, L. Lopacinski, S. Büchner, J. Nolte, R. Kraemer. A modified shuffling method to split the critical path delay
in layered decoding of qc-LDPC codes, in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC) (IEEE, 2019), pp. 1–6

	37.	 Z. Li, L. Chen, L. Zeng, S. Lin, W.H. Fong, Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans.
Commun. 54(1), 71–81 (2006)

	38.	 J. Chen, M.P. Fossorier, Near optimum universal belief propagation based decoding of low-density parity check
codes. IEEE Trans. Commun. 50(3), 406–414 (2002)

	39.	 S.-W. Yen, S.-Y. Hung, C.-L. Chen, H.-C. Chang, S.-J. Jou, C.-Y. Lee, A 5.79-gb/s energy-efficient multirate LDPC codec
chip for IEEE 802.15. 3c applications. IEEE J. Solid-State Circuits 47(9), 2246–2257 (2012)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Reduced-complexity decoding implementation of QC-LDPC codes with modified shuffling
	Abstract
	1 Introduction
	2 Related work and contributions
	3 Preliminaries
	3.1 QC-LDPC codes
	3.2 LD schedule

	4 Modified shuffling of QC-LDPC codes
	4.1 Modified shuffling
	4.2 LD implementation

	5 Implementation and experimental results
	6 Conclusion
	Acknowledgements
	References

