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1  Introduction
In mobile edge computing (MEC), a number of edge servers with computation and stor-
age capabilities are deployed to construct a network, termed as the mobile edge network 
(MEN) [1, 2]. Services can be provided within close proximity of service subscribers for 
satisfying the high-workload and low-latency requirements through MEN. Application 
developers and content providers are able to deploy services on edge servers according 
to context information and mobile edge network information [3]. However, due to the 
increasingly growing popularity of mobile devices, a large number of mobile services 
have been developed for mobile devices. For high service qualities and efficiency, users 
should invoke their desired services through accessing edge servers rather than core net-
work or the Internet [4, 5]. It is critical to recommend proper mobile services to users, 
taking both quality of services (QoS) and network optimizations into consideration.
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Undoubtedly, user mobility has a detrimental impact on the QoS-based service rec-
ommendation [6]. On one hand, a user requests a cloud service by his/her mobile 
terminal device continuously, the service will be provided by different edge servers 
during physical location changes. On the other hand, QoS data of one edge server 
may prominently volatile due to user mobility, as the service has to switch among dif-
ferent edge servers frequently, resulting in higher network overhead. Although some 
approaches [7, 8] on service recommendation have already been proposed in MEC, 
these approaches directly overlook user mobility, or merely consider user mobil-
ity with unrealistic models, yielding inappropriate service recommendations. User 
mobility brings two main problems,which are not fully taken into account as follows,

•	 Frequent handoff among edge servers The handoff among different edge serv-
ers occur frequently caused by user mobility [9]. In such a case, a user request 
the desired service, which will be provided by different edge server at different 
moments, because of his dynamical location changes [10]. Each edge server is 
only able to provide the service for a moment due to the high QoS performance in 
a small area.The network load and server load can be increased by data transmis-
sion among servers. Besides, the QoS may be changed or even absent on servers. 
Therefore, user mobility leads to frequent handoff among edge servers and signifi-
cantly degrade service performance [11].

•	 Volatility of QoS data In the light of extensive network changes, the QoS data are 
unstable. One active user invokes the service many times, and QoS data is differ-
ent each time. Different users who invoke the same service are provided by differ-
ent QoS data at the same time. This phenomenon is common in real life. Especially 
in MEC, the QoS data is different each time, because of different performance, 
surroundings and the number of users using services at that time. So the QoS data 
is highly volatile, it is more complicated when recommending better services for 
users.

To address these questions, a mobility-aware personalized service recommendation 
approach is proposed in this paper, it fully considers user mobility when recommend-
ing services, makes personalized service recommendations according to different 
users’ location change, to improve the experience of users and reduce network load. 
Specifically, user trajectories are predicted through mobility patterns leveraging a 
hybrid long short-term memory (LSTM) network firstly, which helps to obtain candi-
date edge servers candidate servers. Next, we predict QoS data on candidate servers 
based on the trajectory by reducing the influence of the above two factors. Then, QoS 
predictions are carried out based on a location-based collaborative filtering approach, 
the service with the best QoS data will be recommended to the user. The major con-
tributions of this paper are summarized as follows:

•	 A hybrid LSTM-based mobility prediction model(LSTMM) is proposed to predict 
user trajectories from long-range and sparse position data, in which server infor-
mation as well as user characteristics and distances information are considered to 
improve the prediction efficiency.
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•	 We put forward a mobility-aware personalized service recommendation approach, 
focusing on predicting the QoS data of servers along trajectories. Information of 
users similar to a specific user is applied to reduce the volatility of QoS data, which 
will improve prediction accuracy. Servers around predicted places on the trajectory 
will provide global optimal QoS values and reduce the network overload.

The rest of this paper is organized as follows: Sect. 2 summarizes the related work. Sec-
tion  3 introduces a motivation scenario. Section  4presents our mobility-aware service 
recommendation approach based on trajectory prediction and edge server similarity. 
Section 5 describes the implementation of our experiments and performance compari-
sons. Section 6 draws a conclusion.

2 � Related work
Many literature over the past decade focused on developing service recommendation 
systems. Most of these works focus on collaborative filtering based recommendation [7, 
12, 13], content-based recommendation [14, 15] and model-based recommendation [16, 
17].

Shao et  al. [18] proposed a user-based collaborative filtering method for predicting 
the web service QoS value and conducted experiments on 20 web services. Zheng et al. 
developed a web service recommendation system called WSRec [19–21] for collecting a 
large-scale real-world web service QoS information through a user-collaborative mech-
anism. They proposed a hybrid collaborative filtering approach to predict web service 
QoS value by combining the user-based Pearson correlation coefficient(PCC) approach 
and the item-based PCC approach [20]. Sun et al. [12] presented a normal recovery col-
laborative filtering approach to solve the personalized web service recommendation 
problem. They proposed a new similarity measure for web service similarity computa-
tion and proposed a novel collaborative filtering approach. Better prediction accuracy 
is achieved through fusing the information of similar users and similar web services. 
Wang et al. [7] performed the prediction via a set of multi-dimensional QoS measures 
through exploiting the structural relationships among multi-dimensional QoS data. 
They proposed an integrated QoS prediction approach to recommend efficient Web ser-
vice for mobile clients. These approaches made a lot of effort on improving the accuracy 
of service recommendation and achieved great success in the traditional Web service 
recommendation. Due to users’ mobility and QoS volatility, these approaches will lead to 
large deviations and inappropriate results when recommending services in mobile edge 
computing.

To address these problems, many studies have been studied on the location-based rec-
ommendation [22–24]. Zheng et  al. [25] presented a user-centered collaborative loca-
tion and activity filtering approach to cluster many users data, applied the collaborative 
filtering to find like-minded users and like-patterned activities at different locations. 
They modeled the user location-activity relations with a tensor representation and pro-
posed a regularized tensor and matrix decomposition solution to address the sparse data 
problem in mobile circumstances. This approach only considered the users locations, 
not service locations. Chen et  al. [26] proposed a location-aware Web service recom-
mend system, which employed both location information and QoS values to cluster 
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users and services. They made personalized QoS prediction for users on the clustering 
results according to user locations and QoS values. Location-Aware and personalized 
collaborative filtering approach [27] leveraged locations of both users and Web services 
when selecting similar neighbors for the target user or service. The method presented 
an enhanced similarity measurement for both users and Web services, by taking into 
account the personalized influence of them. Wang et al. [7] indicated that user mobil-
ity often makes service QoS prediction values deviate from actual values in mobile edge 
computing networks. They proposed a service recommendation approach based on 
collaborative filtering considering user mobility. They divided service invocation into 
two cases and calculated user or edge server similarity separately. But the frequency of 
mobility did not take into consideration, which may bring immigration among different 
edge servers frequently.

Although the location is vital to service recommendation at the current time, it cannot 
explain movement trends, and it is not sufficient to predict QoS data only considering 
the next location. Therefore, these approaches will bring inaccurate even bad results in 
MEC. To address these problems, we propose an approach that both consider the user 
trajectory and the data volatility to provide high quality services.

3 � Scenario and problem formulation
3.1 � Scenario

A mobile edge network consists of multiple mobile edge servers (MESs), which provide 
network access services for mobile users anytime in a certain range,such as airports,large 
shopping malls, museums, etc. Suppose that a mobile user named Jenny often uses ser-
vices to obtain surrounding information in an airport, such as AR/VR, location, dis-
count, etc.

Considering Jenny is invoking service s by accessing the nearby mobile edge server 
MES1. As Fig. 1 depicts, she uses service s continuously on her traveling from A to B 
along the trajectory as the black dotted line is shown. In this situation, how to predict 
the next accessing edge server and the corresponding QoS value of the service becomes 
an important issue. If service s is always provided by the nearest edge server, that is to 
say, the green-line option: MES1→MES2→MES5→MES3→... will provide the service 
successively. However, service s in MES2 may have bad quality (e.g., the response time 
is 100ms) for accessing by many people at that time. After that, Jenny will access MES5 
with the response time is 95ms for the shortest distance. Meanwhile, the response time 
of service s is 95ms when accessing MES4 during the entire moving process. Therefore, 
the red-line option: MES1→MES4→MES6→... will obtain the best experience globally, 
which has the same path direction as Jenny’s trajectory. Therefore, the users experience 
can be improved and network delays can be reduced compared to the case where only 
the nearest edge server is recommended. In the above scenario, the trajectory defines 
user mobility more accurately than the current location.

3.2 � Problem formulation

In this section, we first define the mobility prediction model, then the mobility-aware 
personalized service recommendation problem is formalized. Trajectory data are 
the foundation of the mobility prediction, which characterize locations and times of 
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moving objects. A trajectory is a chronologically ordered sequence of spatio points. 
A spatio point qi is defined as a tuple of its coordinate < xi, yi > . A sequence sq is 
a set of spatio point qi , i.e. sq=q1q2...qn,(n ∈ D) . A subsequence of sq is defined as 
sub(sqr)l=qr−l ...qr−1qr , where r-l is the start position on the subsequence, and l is the 
number of spatiotemporal points.

Formally, given a sequence set SQ and an active user u,the trajectory set of user u is a 
chronologically ordered subsequence. Tr(u)=sub(sqr)l contains all the trajectories gen-
erated by user u with the sequence length l. A trajectory of user u which is recorded at 
the t time window can be defined as Tr(u)t=sub(sqt)l=qt−l ...qt−1qt ⊆ Tr(u).

If the current time window is t, then the trajectory history can be denoted as 
Tr(u)1,Tr(u)2, · · ·Tr(u)t−1 . For the convenience of calculation, we discretize continuous 
time interval t to hour of day and day of week.

The mobility prediction problem can be formalized as:
Problem 1 Given a user’s history trajectory set Tr(u) and the current trajectory Tr(u)t , 

the mobility prediction is to predict the user’s trajectory T̂r(u)t+1 at the next time 
interval, the prediction length l=len(Tr(u)t+1 ), that is, construct the predicting model 
f (Tr(u),Tr(u)t)  → T̂r(u)t+1.

Analysis results [28] show that people’s trajectory with high probability, which con-
firms the existence of mobility patterns for users. If the mobility pattern can be obtained 
through the history trajectory, then the Problem 1 will be solved according to the related 
mobility pattern information.

Definition (Mobility pattern) Given a trajectory set Tr of users U, the user mobility 
pattern mp is a set of typical trajectories that can indicate the characteristics of users 
movement and its uniqueness.

Cloud/Core 
Networks

MES2

MES1

MES4
MES5

MES3

MES6

A

B
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Mobile 

Services

the nearest strategy

mobility and Qos strategy
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Fig. 1  Scenario of service recommendation in MEC
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Apparently, QoS properties, including response time, throughput, failure-probability, 
etc., are heavily dependent on network environments and users location [26]. As a result, 
in service recommendations, the QoS properties of MEC servers along trajectories 
should be considered rather than only selecting the nearest ones. Therefore, our moti-
vating problem is to make more accurate QoS estimations based on the trajectory for 
personalized service recommendations in MEC to improve user experience and reduce 
the overload of networks. Therefore, the user mobility-aware personalized service rec-
ommendation problem in MEC can be formulated as follows:

Problem 2 Let U be a set of users, S be a set of services, MES be a set of MEC serv-
ers, an active user u ∈ U  is using a service s ∈ S providing by mes ∈ MES when roam-
ing at m , then u leaves the service area of mes or the QoS of s gets worse gradually, the 
mesi ∈ MES around the predicted trajectory T̂r(u)t+1 will be recommended to provide 
service s for user u for better QoS. The problem is predicting the QoS data of service s on 
MES along the predicted trajectory T̂r(u)t+1 , then the server mesj ∈ MES with the best 
QoS data will recommend to u.

To reach this goal, several challenges must be addressed, including: (1) How to dis-
cover the user mobility pattern and predict the trajectory. (2) How to redefine the col-
laborative filtering algorithm to predict QoS data and perform service recommendation 
when considering edge servers information.

4 � Mobility‑aware personalized service recommendation in MEC
In this section, we propose a two-stage mobility-aware personalized service recom-
mendation approach. Firstly, a LSTM-based mobility prediction model(LSTMM) is 
presented to predict the user trajectory by combining the user information, historical 
trajectory information and distances between servers. Then a personalized server rec-
ommendation approach is presented to predict the QoS data on the mobile edge servers 
around the trajectory by weakening the volatility of QoS data.

As shown in Fig. 2, our proposed approach consists of three steps as follows: 

1.	 Trajectory prediction. In this stage, user mobility patterns can be discovered by the 
historical trajectories and user information, then a fully connected classifier is built 
to predict the future trajectory by combining mobility patterns and the current posi-
tion. The servers along the trajectory consist of candidate servers set CS, which con-
sidering the frequency mobility of users in the recommendation process.

Fig. 2  Framework of mobility-aware personalized service recommendation approach
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2.	 QoS prediction: The QoS data provided by the candidate server set CS will be pre-
dicted in this stage. We propose a personalized service recommendation approach, 
that considers the similarity of both users and servers to weaken the volatility of QoS 
data. QoS data on each edge server is personalized, which calculates on the basis of 
similar users and similar servers.

3.	 Service recommendation: According to predicted QoS data along the trajectory, we 
make service recommendations to meet user’s personalized needs.

4.1 � A hybrid LSTM‑based mobility prediction model

In this section, textcolorredLSTMM is presented to discovery user mobility patterns and 
predict the user trajectory, then the edge servers around the trajectory will be the candidate 
servers recommended.

1.	 User mobility patterns discovery

Each trajectory has different spatio points and variable temporal distances. To process these 
long-term variable length trajectories, we employ LSTM network to discover user mobil-
ity patterns. LSTM is a particular implementation of recurrent neural network, which can 
learn long-term dependency information and avoid the problem of gradient disappearance. 
It is generally considered much suitable for time series. The network architecture of the 
LSTM predictor is schematically presented in Fig. 3.

Specially, we take the user information and the historical trajectories as the input to 
model the characteristic of mobility patterns. Before training the model, the spare represen-
tation of user and location information are converted into a dense vector. Position vector 
posi is embedded to pi by

where Vp is an trainable embedding matrix for all positions, and posi is an one-hot vector 
of a spatio point. User information vector uj is embedded to uj by

(1)pi = Vp · posi,

Fig. 3  Network architecture of the LSTM predictor
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where Vu is an trainable embedding matrix for all positions, and usj is an one-hot vector 
of a user.

For the trajectory vector Tr(uj)t = {ps,ps+1, ...,pt} , let ht and ht+1 denote the previous 
and current embedding state respectively. The basic LSTM model, which takes pi and ht as 
inputs, the implementation is as follows:

where ft+1 , it+1 , ot+1 are the forget gate, input gate and output gate respectively, σ stands 
for the standard sigmoid function, W are different gate parameters, and b is the bias. The 
memory cell ct+1 is updated by partially replacing the existing memory unit ct with a 
new cell as:

The embedding of the trajectory Tr(uj)t+1 which expresses the mobility pattern infor-
mation is then output by,

2.	 Users trajectory Prediction

To predict the following trajectory of an active user, a fully connected encoder takes the 
encoded uj and Tr(uj)t as input and predicts the probability Prt+l of user uj belonging to 
each place Pi in the future t+l time by

where fct+l is the output of feature data after fully connection operation in the lth 
branch, σ stands for the standard ReLU function [29]. Then, a softmax layer is used to 
normalizes the output value fct+l whose formula is given as,

Besides, due to the limitation of users movement, the distance among the current 
server and the future servers is also an important factor during the trajectory predic-
tion. dist

(
posi

)
= [d1, d2, · · · dj , · · · , d|p|] is defined as a |P|th vector represents the 

distance between the current server position posi and the positions of other edge serv-
ers. A typical geographic distance algorithm [30] is adopted to calculate the distance 
dj(1 ≤ j ≤ |P|) , which means the distance between posi and posj , where posi and posj 
specified by the coordinates < xi, yi > and < xj , yj >,

(2)uj = Vu · usj ,

(3)
ft+1 = σ(Wf [ht , pt+1] + bf )

it+1 = σ(Wi[ht , pt+1] + bi)

ot+1 = σ(Wo[ht , pt+1] + bo),

(4)ct+1 = ft+1ct + it+1σ(Wc[ht , pt+1] + bc).

(5)ht+1 = ot+1 tanh (ct+1).

(6)Prt+l = softmax(f ct+l),

(7)f ct+l = Wi2σ(Wi1[uj , trj] + bi1)+ bi2, 1 ≤ i ≤ seq

(8)dist(posi)j = 2R arctan(

√
hav(θ)

1−
√
hav(θ)

),
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with hav(θ)= sin 2(
y1−y2

2 )+ cos y1 cos y2 sin 2(
x1−x2

2 ) , where θ is a central angle between 
the two edge servers and R is the radius of the Earth, which we assume to be 6371 km.

Considering the distance effect on the future position result, a parameter 
α(0 ≤ α ≤ 1) is employed to adjust the final results. The probability of position on 
t + l time can be formula by,

3.	 Implementation

The model is trained by maximizing the likelihood of the true position being gener-
ated from the predicted value. Hence, we jointly learn all the parameters by minimiz-
ing the negative cross entropy loss L=−

∑m
l=1 yl log(Pl |W,b) for the future trajectory. 

An important aspect of the training phase is all parameters should be learned jointly, 
since the hybrid LSTM layers of the encoder and decoder units are trained in an end 
to end fashion. Thus, an adaptive gradient descent algorithm is used to backpropagate 
the loss for each trajectory at every time slot t. The pseudo-code of the trajectory pre-
diction is shown as Algorithm 1. 

Algorithm 1 Mobility Prediction
Input: The trajectory set Tr; The user set U ; The trajectory length lag; The prediction trajectory

length seq;
Output: Trained model
1: // Stage 1. Data preprocessing.
2: Obtain all spatio points in Tr, calculate the distance matrix D between each points, and construct

an empty train set TS;
3: Construct train set TS:
4: for each u ∈ U do
5: Extract the sub-trajectory St(u) of length is (lag+seq) from Tr(u)
6: Split St(u) into tr=(p1, ..., plag), tp=(pre1, ..., preseq)
7: Get distance vector distp between the current location plag and all locations from the distance

matrix D
8: Add (u, tr, tp, distp) to TS
9: end for
10: // Stage 2. Model parameter training.
11: Initialize model parameters
12: repeat
13: for each ts ∈ TS do
14: Get (u, tr, tp, distp) from ts
15: embu=emb(u) //According to Eq.(1)
16: emb(pi)=emb(pi), pi ∈ tr //According to Eq.(2)
17: Get trajectory vector representation vtr of the trajectory tr by enter emb(pi) to LSTM
18: join = concat(embu, vtr)
19: for each 1 ≤ l ≤ seq do
20: Calculate predict probability Prt+l by Formula (6)
21: Calculate per time probability of belonging to each known location Pl by Formula (9)
22: Calculate lossEntropy(Pl, onehot(prel))
23: end for
24: Update model parameters by adaptive gradient descent
25: end for
26: until convergence

Algorithm  1 takes the trajectory set Tr, the user set U, trajectory length lag and 
prediction length seq as input, and output is a trajectory predicted model with sta-
ble parameters. Line 1-9 is the data pre-processing stage, where an empty training 
set is constructed in line 2, and the distance matrix D between each spatio point is 

(9)Pt+l = softmax((1-α) · Prt+l + α · dist(posi)).
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calculated in Line 5-7. Lines 5 and 6 indicate that the sub-sequence St(u) of length 
(lag + seq) is extracted from the user trajectory Tr(u), then the front lag locations of 
each sub-sequence are used as training data, and the seq locations are used as training 
labels, and line 7 get the distance distp between the current location plag and all loca-
tions from the distance matrix D. Line 10-26 is the stage of model training, line 11 
initializes all trainable parameters of the model. The line 15 and 16 convert the sparse 
representation of the user and the location into a dense vector embu and emb(pi) 
through the trainable embedding matrix, and line 17 inputs the sequence location 
vector into the LSTM-cell to obtain the vector representation encoder vtr of the tra-
jectory. Vector join is to connect the user’s representation and the trajectory repre-
sentation as a user trajectory pattern vector and as an input to the location prediction 
classifier in line 18. The line 20 and 21 calculate the output of the location prediction 
classifier and output the final prediction probability Pt+l in conjunction with the loca-
tion distance according to the Formula (6) and (9). Line 22 calculates the training loss 
and line 24 update all trainable parameters by adaptive gradient descent.

4.2 � Mobility‑aware personalized service recommendation

The number of QoS data on MEC servers is not large in MEC, because of the user mobility 
and the service quantity. When services are provided, it can be described by a user-service-
server matrix, the majority of empty data in the matrix donates that the service has never 
been invoked by any user on the server before, which leads to the matrix density. Besides, 
the QoS data vary greatly on different servers, due to the variety of edge servers. The tra-
ditional similarity calculation methods [31] do not properly handle the QoS data in differ-
ent vector spaces. To overcome these shortcomings, a location-based collaborative filtering 
(LCF) method is proposed to recommend services.

1.	 Normalized similarity calculation

In our approach, we first measure the similarity between servers and users to predict QoS 
data on certain servers. The user-service-server matrix is decomposed into user-service 
matrix US and server-service matrix SS firstly. Then we normalized each row of the original 
US and SS to eliminate data variety.

Assume the server s and t co-provide services J, sdist(s, t) calculates the Euclidean dis-
tance between s and t in the |J|-dimensional vector space, while sdismax calculates the 
maximal Euclidean distance in the |J|-dimensional vector space. Therefore the formula to 
measure the similarity between two servers s and t is as follows:

where J = Js ∩ Jt is the set of services co-provided by servers s and t; rs,t is the value of 
service j provided by server u in the server-service matrix SS; rsmin and rsmax denote the 
lowest and the highest values from server s in SS, respectively; rtmin and rtmax denote the 

(10)

Sim(s, t) = 1− sdis(s, t)

sdismax

= 1−

√
∑

j∈J (
rs,j−rsmin

rsmax−rsmin
− rt,j−rtmin

rtmax−rtmin
)
2

√
|J | ,
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lowest and the highest values from server t in SS, respectively. Sim(s, t) = 0 represents 
that two servers are dissimilar and Sim(s, t) = 1 indicates that two servers are the same.

To calculate the similarity between users, similarly, relying on normalizing service 
QoS data, the original user-service matrix US is also mapped into the row-normal user-
service matrix where each row is in the range of [0,1]. The formula to measure the simi-
larity between two users u and v is as follows:

where I = Iu ∩ Iv is the set of services co-invoked by users u and v; |I | is the number of I; 
ru,i is the QoS value of service i from user u in the user-service matrix P; rumin and rumax 
denote the lowest and the highest values from user u in US, respectively;rvmin and rvmax 
denote the lowest and the highest values from user v in US, respectively. Sim(u, v) = 0 
represents that two users are dissimilar and Sim(u, v) = 1 indicates that two users are 
the same.

2.	 Location-based Collaborative Filtering

Based on the normalized similarity measurement approach, we propose a Location-
based Personalized QoS Prediction method. In our approach, the prediction value is cal-
culated by the value of similar users and similar servers.

When predicting the unknown QoS value r̂u,i of user u on service i, our approach 
recover the original scale of user u or service i. In the user-based QoS value prediction, 
we define our user-based CF as follows:

where U denotes the set of similar users to user u, who have invoked service i; nru′,i is 
the value of service i from user u′ in the row-normal matrix USnu ; rumin and rumax are the 
lowest and the highest values from user u in the original matrix US, respectively; and 
Sim(u,u′) can be computed by formula (11).

In the server-based value prediction, we first cluster servers using K-means [32] to 
reduce the influence of the servers sparsity. Then we create server-based CF to predict 
the unknown QoS value r̂s,i of server s when provides service i, whose formula is given 
as:

where S denotes the set of similar servers to server s, who have provided service j; nrs′,j is 
the value of service j provided by server s′ in the row-normal matrix SSnu ; rsmin and rsmax 
are the lowest and the highest values from server s in the original matrix SS, respectively; 
and Sim(u,u′) can be computed by formula (10).

To make use of the information from both similar users and similar servers, a 
parameter �(0 ≤ � ≤ 1) is employed to determine how much does the prediction rely 

(11)Sim(u, v) = 1−

√∑
i∈I (

ru,i−rumin

rumax−rumin
− rv,i−rvmin

rumax−rumin
)
2

√
|I | ,

(12)r̂u,i = rumin + (rumax − rumin)

∑
u′∈U Sim(u,u′) ∗ nru′,i∑

u′∈U Sim(u,u′)
,

(13)r̂s,i = rsmin + (rsmax − rsmin)

∑
s′∈S Sim(s, s′) ∗ nrs′,i∑

s′∈S Sim(s, s′)
,
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on user-based CF or server-based CF. Our approach makes prediction by employing 
the following equation:

when � = 1 , the approach only uses information of similar users to make prediction. 
When � = 0 , it uses information of similar server for predicting the QoS data. When 
0 < � < 1 , it systematically combines the user-based CF approach and the item-based 
CF approach to fully utilize the information of both similar users and similar servers.

3.	 Service Recommendation

After predicting an active user trajectory, the mobile computing platform will 
choose servers around the trajectory and predict the QoS data on these servers. We 
assume that the best position is the center of the predicted trajectory which is the 
best distance to provide services for the user. servers around the best (within bkm 
radius) will be considered to provide good QoS data for the active user. The mobile 
edge computing platform will calculate the QoS data of the service on these servers 
based on LCF, and recommend the active user to use that on the new edge server 
with the best QoS data or still use the service provided by the current edge server. In 
this way, personalized service recommendations can be achieved without conduct-
ing the expensive and time-consuming real-world service invocations on the edge 
server. The process of mobility-aware personalized service recommendation(MPSR) 
for an active user is shown in Algorithm 2. 

Algorithm 2 MPSR Algorithm
Input: an active user u ∈ U ; History trajectories htr of u; The service s invoked by u; Trajectory

length lag; Prediction Trajectory seq; Neighbor’s search radius r
Output: Server with the best QoS
1: p servers = MobilityPrediction(u, htr, lag, seq)//Using the trained predicted locations model

to obtain a prediction sequence of length seq
2: center p = get center(p servers) // find servers center.
3: nb servers = get neighbors(center p, r) // Find neighbors near the center point within radius r.
4: QoS = dictionary() //Initialize a candidate set and save the QoS of each server.
5: for each s ∈ nb servers do
6: QoS[s] = Get QoS(u, b, s)//According to Eq.(14)
7: end for
8: best server = get best server(QoS) // find the best QoS server
9: return best server

5 � Results and discussion
In this section, we present experiments to verify the performance of our approach 
and compare the results with other recommendation methods. Our experiments are 
intended to (1) validate the rationality of our proposed approach; (2) compare our 
approach with other trajectory prediction methods; (3) compare our approach with 
other recommendation methods without considering the mobility; and (4) analyze 
parameters of our approach to achieve optimum performance.

(14)r̂s,u,i = �× r̂u,i + (1− �)× r̂s,i,
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5.1 � Dataset description

In our experiments, we merge two real-world datasets on data fusion [33]: the WSDream 
dataset [20] and the Shanghai Telecom base station dataset [7]. The WSDream dataset 
contains the real-world QoS evaluation obtains from 142 users on 4500 web services in 
64-time intervals, QoS evaluations contain response time, throughput, etc. The Shang-
hai Telecom dataset contains the information about 6357 users invoked on 3233 base 
station, it is regarded as user historical trajectories. The base stations are considered as 
edge servers in our experiment. A hybrid dataset is constructed according to the previ-
ous work [7], which contains both QoS data, edge server locations, and user trajectories.

5.2 � Evaluation metric

Since our approach tries to predict top-K candidate positions for each user trajectory, 
we adopt the accuracy of top-K(ACC@K) [34] to evaluate the performance. ACC@K is 
the percentage of accurate predictions, i.e., correctly predicts the following positions for 
users, which is calculated as:

To evaluate the QoS value prediction accuracy, we adopt the commonly used Mean 
Absolute Error(MAE) [35] and Root Mean Squared Error(RMSE) [35] as the accuracy 
metrics. MAE is defined as follows:

where ru,i is the actual QoS value of user u using service i, r̂u,i is the corresponding pre-
dicted QoS value, N is the total number of test samples. The RMSE is defined as follows:

the meaning of the ru,i , r̂u,i and N are the same as the formula (16). For the position sam-
ples, the smaller the values of RMSE are, the more accurate the prediction.

5.3 � Performance comparison on QoS prediction

For the sake of demonstrating the performance and effectiveness of our location-based 
collaborative filtering recommendation approach(LCF). We compare the MAE and 
RMSE with other approaches. The other approaches are as follows:

•	 User-Based Collaborative Filtering Recommendation Approach (UCF): This 
approach is to predict QoS values by user-based prediction algorithm using Pearson 
correlation coefficient, employs similar users for service recommendation;

•	 Service-Based Collaborative Filtering Recommendation Approach(SCF): This 
approach is to predict QoS values by item-based prediction algorithm using Pearson 
correlation coefficient, employs similar web services for service recommendation;

(15)ACC@K = |y in top-K|
N

,

(16)MAE =
∑

u,i

∣∣ru,i − r̂u,i
∣∣

N
,

(17)RMSE =

√∑
u,i

(
ru,i − r̂u,i

)2

N
,
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•	 Hybrid Collaborative Filtering Recommendation Approach (HCF): This approach 
is to predict QoS values by combining the user-based and service-based prediction 
approach for service recommendation;

We make service recommendations in terms of qualities of service(response time and 
throughput) for randomly active users and compare our approach with others. The 
experimental results are shown in Table 1.

The results show that the MAE and RMSE values of our approach are all smaller than 
other approaches under different matrix density. We set the matrix density from 10% to 
90%. The MAE and RMSE values increase gradually when the matrix density is set as 
10% to 70%, which shows that prediction accuracy decreases. Because prediction results 
are in deviation when less information on similar users and services. The MAE and 
RMSE values increase dramatically when the matrix density increases 90%, because sim-
ilar users and servers are rare. The MAE and RMSE values of our approach are smaller 
than other approaches, indicating that the prediction accuracy can be improved by our 
approach because we consider the volatility and the mobility. We take the similarities of 
both users and servers into consideration. In MEC environment, QoS data provided by 
different edge servers and various conditions, the QoS prediction provided by similar 
servers will eliminate volatility effectively. Besides, we normalize QoS data before calcu-
lating similarities.

5.4 � Performance comparison on trajectory prediction

For the sake of demonstrating the trajectory prediction accuracy of LSTMM. We com-
pare the ACC@K with persistent(benchmark), Seq2Seq [36] and CNNM [37].we ran-
domly select 20% data from our dataset to verify the trajectory prediction accuracy and 
compare our approach with other methods.

The length of the predicted trajectory is not long in terms of the prediction accuracy. 
The literature [10] shows that with the length of the predicted trajectory increases, the 
prediction accuracy will gradually decrease. In this experiment, we only predict the tra-
jectory of the next (T + 3)th time. Figure  4 shows the ACC@1 and ACC@5 values in 
different prediction trajectory length. The row labels T + 1 , T + 2 , and T + 3 express 
positions on the (T + l)th time in the predicted trajectory. The difference between pre-
diction accuracy in each position is small because they are predicted at the same time. 
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When the ACC@5 chooses the top 5 candidate position as the correct position, its value 
is much better than ACC@1, which only chooses the most likely position. Compared 
with other approaches, the ACC@1 and ACC@5 values of our approach are greater 
slightly. Compared with the Seq2Seq model only uses LSTM coding, the ACC@1 value 
of our approach increases by about 4% on average due to considering user characteris-
tics and distances among servers. CNNM also results in poor prediction performance, 
because it is depend on the convolutional network, which is unsuitable to solve the long-
term dependence problem. Therefore, our approach takes advantage of long-term and 
short-term dependence and considers more information, which lead to more accurate 
results than other approaches.

5.5 � Impact of recommendation strategies

Trajectory prediction plays an important role in service recommendation. We analysis 
the impact from two aspects, first we compare the recommended QoS data with our 
approaches to other recommending strategies:

•	 Random Location Service Recommendation(RLSR): Randomly select a server 
around the current server, it will be the candidate server providing the service at the 
next time.

•	 Nearest Location Service Recommendation(NLSR): Select the nearest server to the 
current server as the candidate server providing the service at the next time.

The experimental results are shown in Fig. 5. We set the prediction length of the tra-
jectory to be next T + 1 , T + 2 , and T + 3 times. With the trajectory prediction times 
increasing, QoS data changes slightly in our approach, which shows that our approach 
can provide a consistent quality during the movement of users. The QoS changes imper-
manence in RLSR and NLSR, because of recommending services randomly. It also 
illustrates that the nearest server may not always provide the best QoS. Besides, our 
approach reduces the number of handoffs among servers. In our approach, we choose 
the server with the best QoS which around the center of predicted trajectory as the rec-
ommendation, therefore, we only handoff the service one time during prediction. Com-
paratively, the service has to transfer once when a user moves each time in RLSR and 
NLSR, which will increase the loading and decrease the performance of the network. 
The limitation of our approach is the prediction length cannot be too long, which will 
decrease the QoS with the expanding area.
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5.6 � Impact of MES distribution

Figure  6 shows the distribution of historical trajectory points for three typical active 
users randomly selected from the dataset. The distribution of each active user histori-
cal trajectory point and edge servers are very different. For user 58, the distribution 
of both trajectory points and the edge servers are well-proportioned. The distribution 
of trajectory points is well-proportioned, and the distribution of edge servers are dis-
proportioned for user 68. Both of the historical trajectory points of users 83 and the 
surrounding servers are distributed dis-proportioned. Then, we analysis the recommen-
dation results for the three active users shown in Fig. 7. The results show that the greater 
the QoS data provided, the greater the range of distances. There are also some slight 

Fig. 6  Historical track point distribution and neighbor distribution for different users

Fig. 7  The influence of the choice of neighbor radius on the user level

Table 1  Impact of data sparsity on prediction accuracy

The significance of “bold and italic values" is used to highlight the data in LCF is better than other methods

Methods 10% 30% 50% 70% 90%

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Response time

 UCF 3.9938 1.8100 4.0156 1.8179 4.0232 1.8260 4.0387 1.8337 4.0610 1.8665

 SCF 3.4903 1.7540 3.5075 1.6987 3.5328 1.6317 3.5789 1.5558 3.6934 1.5177

 TCF 3.6131 1.4923 3.6648 1.4838 3.7054 1.4795 3.7644 1.4994 3.8547 1.5740

 LCF 2.5627 1.2895 3.0548 1.4132 3.2744 1.4561 3.2966 1.4820 3.4647 1.7172
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fluctuations, which are caused by the dis-proportioned distribution of edge servers. The 
throughput increases obviously when the range of distance is more than 1 km, and the 
response time reduces when the range of distance is between 0.8 km to 2 km. On the 
whole, the QoS data changes are less obvious with radius increases after 2 km. Hence, 
we predict QoS data in the range between 0.8 km and 2 km for active users to examine 
which distance ranges provided the most accurate service recommendations.

5.7 � Impact of parameter �

Different geographical areas may have different data correlation characteristics. The 
parameter � makes our prediction method more feasible and adaptable to different data 
sets. We fuse information from both similar users and similar servers to predict the 
missing value for active users. To study the impact of the parameter � to our hybrid col-
laborative filtering method, we vary the value of � from 0 to 1 with a step value of 0.1. 
If � = 1 , we only consider information from similar users, and if � = 0 , we only con-
sider information from similar servers. MAE and RMSE are compared to study the effect 
of the � for the prediction accuracy. The experimental results are shown in the Table 2, 
which shows that MAE gains the best performance when � = 0.8 (corresponding to the 
bold and italic value in column MAE in Table 2) and RMSE gains the best performance 
when � = 0.7 (corresponding to the bold and italic value in column RMSE in Table 2). 
It means that user-based collaborative filtering has a greater influence on the predic-
tion results on our dataset. Because in our experimental data, the number of servers is 
larger than the number of users, the average number of samples per user is much larger 
than the number of samples corresponding to each server, which results in the sparsity 
of the server-service matrix. Therefore, � will prefer to set 0.7 as the fusion factor in the 
experiment.

6 � Conclusion
In this paper, we investigate the problem of service recommendation in Mobile Edge 
computing for frequent mobility scenarios. We propose a two-stage approach for pre-
dicting QoS values on mobile edge servers by systematically combining user mobility and 
location-based Collaborative filtering. We first present a hybrid LSTM-based mobility 
prediction approach to obtain an active user trajectory by jointly consider server infor-
mation, user characteristics and distance information. Then a mobility-aware person-
alized service recommendation approach is proposed to acquire the QoS values based 
on the mobility results. We conduct simulation experiments to study the performance 
of the proposed work base on the real dataset. Large-scale real-world experiments are 

Table 2  The effect of lambda taking different values on prediction accuracy

The significance of “bold and italic values" highlights the best value in MAE and RMSE respectively, which is used to choose 
the best �

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Response time

 MAE 1.7542 1.6131 1.5177 1.4550 1.4168 1.3853 1.3620 1.3413 1.3462 1.3501

 RMSE 3.8204 3.5451 3.2867 3.0712 2.9005 2.7829 2.7253 2.7314 2.8009 2.9292
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conducted and the comprehensive experimental results show the effectiveness and feasi-
bility of our approach.

In our future study, we will research on more trajectory prediction method, e.g., 
social GAN and ESN, can be employed to predict the future position of users to further 
improve the QoS values prediction. And other factors should be considered, e.g., the 
impact of time, when the service is recommended in the mobile edge computing.
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