
Next generation earth‑to‑space
telecommand coding and synchronization:
ground system design, optimization
and software implementation
Ricard Abelló1†, Marco Baldi2,6†, Filipe Carvalho3†, Franco Chiaraluce2,6*†  , Ricardo Fernandes3†,
Roberto Garello4,6†, Enrico Paolini5,6† and Ricardo Prata3† 

1  Introduction
Space Telecommand (TC) systems from ground stations to space vehicles have tradi-
tionally been characterized by well-established requirements, which may be summa-
rized as transmission of short messages (mostly for command and emergency), very
high reliability (to prevent the execution of wrong commands), and receiver simplic-
ity (to limit the on-board complexity) [1]. However, the uplink systems of new genera-
tion space missions shall support applications that are far beyond the transmission of

Abstract 

The Consultative Committee for Space Data Systems, followed by all national and inter-
national space agencies, has updated the Telecommand Coding and Synchronization
sublayer to introduce new powerful low-density parity-check (LDPC) codes. Their large
coding gains significantly improve the system performance and allow new Telecom-
mand services and profiles with higher bit rates and volumes. In this paper, we focus
on the Telecommand transmitter implementation in the Ground Station baseband
segment. First, we discuss the most important blocks and we focus on the most critical
one, i.e., the LDPC encoder. We present and analyze two techniques, one based on a
Shift Register Adder Accumulator and the other on Winograd convolution both exploit-
ing the block circulant nature of the LDPC matrix. We show that these techniques
provide a significant complexity reduction with respect to the usual encoder mapping,
thus allowing to obtain high uplink bit rates. We then discuss the choice of a proper
hardware or software platform, and we show that a Central Processing Unit-based soft-
ware solution is able to achieve the high bit rates requested by the new Telecommand
applications. Finally, we present the results of a set of tests on the real-time software
implementation of the new system, comparing the performance achievable with the
different encoding options.

Keywords:  Encoding, Low-density parity-check codes, Space communications,
Telecommand

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Abelló et al. J Wireless Com Network (2021) 2021:203
https://doi.org/10.1186/s13638-021-02078-z

*Correspondence:
f.chiaraluce@univpm.it
†Ricard Abelló, Marco
Baldi, Filipe Carvalho,
Franco Chiaraluce, Ricardo
Fernandes, RobertoGarello,
Enrico Paolini and Ricardo
Prata have contributed
equally to this work
6 Consorzio Nazionale
Interuniversitario per le
Telecomunicazioni (CNIT),
Viale G.P. Usberti 181/A,
43124 Parma, Italy
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-6994-1448
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-02078-z&domain=pdf

Page 2 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

simple commands to the spacecraft on-board computer, leading to the need of updat-
ing the set of requirements [2, 3].

A common feature of these new uplink applications is to be more demanding in
terms of bit rates and data volumes than traditional TCs. A notable example in this
sense is file upload, intended for reprogrammable spacecraft instruments, with bit
rates as high as 1 Mbps and block lengths in the order of 1–4 kbits. Another example
is human support, intended for the emerging need to interact with astronauts orbiting
the Earth or landing on the Moon or on Mars: voice, video, and Internet traffic, with
bit rates as high as 20 Mbps and block lengths larger than 4 kbits. To support new
applications and cope with the corresponding more stringent requirements, more
sophisticated flight controllers and TC systems must be adopted on ground and more
complex implementations must be introduced on-board, thus enabling the adoption
of more powerful transmission techniques.

In response to the progressive rise of new applications and the consequent evo-
lution of TC requirements, the Consultative Committee for Space Data Systems
(CCSDS) [4] has constantly updated, over the years, its TC Synchronization and
Channel Coding Recommendation [5]. For example, a cyclic redundancy check (CRC)
for error detection and an automatic repeat request (ARQ) protocol were introduced
to improve the reliability for larger message sets. Even more important, in 2017, the
CCSDS has added two new powerful error correcting codes as an alternative to the
traditional Bose–Chaudhuri–Hocquenghem (BCH) (63, 56) code, the latter rep-
resenting the only uplink coding option in all previous versions of the CCSDS TC
Recommendation.

More precisely, after a careful selection process involving several coding options,
among which binary and non-binary Low-Density Parity-Check (LDPC) codes [6–8],
two binary LDPC codes with parameters (128, 64) and (512, 256) (following classic nota-
tion, the first and the second number between brackets represent the codeword length
and the information length, respectively) have been added to the Recommendation [5].
The new codes achieve large coding gains, compared with the one exhibited by the BCH
code, heavily improving the TC link budget. This way, the upcoming Near Earth and
Deep Space missions will be able to work at lower signal-to-noise ratio (SNR) values,
increasing the uplink bit rates and data volumes for the same target performance. Obvi-
ously, the new codes require an extra-complexity both at the ground station transmitter
and at the on-board receiver. The results of a study on the design and real-time imple-
mentation of the on-board receiver were presented in [9, 10].

In the current paper, we instead focus on the ground station transmitter base-
band design, optimization and real-time implementation. In particular, once having
checked that the most critical module at the ground station transmitter consists of
the encoding stage, we propose two alternative methods for realizing it, and com-
pare their performance in terms of achievable output bit rate, the latter being a direct
measure of the efficiency of the algorithms: in practice, the higher the bit rate the
faster the encoding procedure and, consequently, the lower the complexity which
allows real-time implementation. More precisely, the first alternative algorithm is
based on a Shift Register Adder Accumulator (SRAA) structure and the second algo-
rithm on the Winograd convolution. Both exploit the block circulant structure of

Page 3 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

the code matrix that characterizes the TC LDPC codes (as specified in Sect. 2.4) and
allow a significant complexity reduction.

In order to implement the encoding algorithms, as well as the other side function-
alities, we have first examined different hardware and software platforms, discussing
the pros and cons related to their adoption. Based on the performance goals that are
currently fixed for this kind of application (e.g., a target output bit rate of 2.048 Mbps)
we have verified that a central processing unit (CPU)-based software solution turns
out to be the most appropriate one to fulfill the increased bit rate requirements and to
facilitate integration with the other blocks of the existing ground stations. So, we have
implemented the encoders on a properly chosen CPU-based platform and we have
evaluated the achievable performance.

The organization of the paper is as follows. In Sect. 2, we describe the TC Synchro-
nization and Channel Coding sublayer and its critical modules including, besides
LDPC encoding, randomization, BCH encoding and Command Link Transmission
Unit (CLTU) generation. In Sect. 3, we focus on efficient LDPC encoding, describing
the structure and rationale of the SRAA and the Winograd convolution. In Sect. 4, we
present hardware and software platforms suited to Ground Station implementation
and show that a CPU-based software solution is compliant with the goals and con-
straints of the study, corresponding to the bit-rate requirements imposed by the new
applications. In Sect. 5, we present the results for the real-time software implementa-
tion of the new TC Synchronization and Channel Coding sublayer and we quantify
the bit rate improvement achieved by the two encoding methods for the two different
LDPC codes. Finally, in Sect. 6, we draw some conclusions.

2 � On‑ground telecommand synchronization and channel coding sublayer
The CCSDS Recommendation [5] provides all elements to implement the Earth-to-
Space TC transmitter. The components of both the Ground and Space elements are
summarized in Fig. 1, with reference to the Open Systems Interconnection (OSI)
reference model. The TC Frames contain the messages to be delivered to the space
vehicles. They are processed in the Channel Coding and Synchronization sublayer to
produce the CLTUs that are actually transmitted over the channel according to the
physical layer.

A Field-Programmable Gate Array (FPGA) implementation of the in-space TC
receiver, working in real time, was presented in [9, 10]. In contrast, in this paper we
address the ground segment transmission chain. The main blocks of the Channel
Coding and Synchronization sublayer are illustrated in Fig. 2 and consist of:

•	 Randomizer, for bit transition generation;
•	 Encoder, performing either BCH or LDPC coding;
•	 CLTU generation, for frame synchronization and final data unit generation.

As shown in Fig. 2, the order of the randomizer and the encoder is different for BCH
and LDPC encoding. In the remainder of the section, we describe the most important
features of the input frames and the layer subsystems.

Page 4 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

2.1 � Transfer Frame

The structure of a TC Transfer Frame (TF) generated by the Data Link Protocol sub-
layer is shown in Fig. 3.

As described in [11], a TF is composed of:

•	 Transfer Frame Primary Header: H = 40 bits. It contains control information like
the Spacecraft Identifier, the Frame length and the Frame Sequence Number.

•	 Transfer Frame Data Field: 8 ≤ D ≤ 8136 bits. It contains the message to be deliv-
ered to the space vehicle.

Fig. 1  Channel Coding and Synchronization sublayer: position in the OSI reference model

Fig. 2  Channel Coding and Synchronization sublayer: constituent blocks for BCH (on the left) and LDPC (on
the right) encoding

Page 5 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

•	 Transfer Frame Error Control Field: P = 16 parity bits generated by a CRC code to
reduce the risk of undetected errors. This field is optional and is obviously absent
when the CRC code is unused. When present, the CRC code accepts in input the
H + D bits of the transfer frame and produces P = 16 bits at its output, which are
appended, as shown in Fig. 3, at the end of the TF. The CRC generator polynomial is:
gCRC(X) = X16

+ X12
+ X5

+ 1.

If the CRC code is used, the total TF length is: F = H + D + P and, therefore, we have
64 ≤ F ≤ 8192 bits. Otherwise, when the CRC is not used, we have 48 ≤ F ≤ 8176 bits.

When the TF length F is not an integer multiple of the encoder input length, a
sequence of alternating ‘0’ and ‘1’ bits, starting with a ‘0’, is appended until an integer
multiple is obtained.

2.2 � Randomizer

The purpose of the randomizer is to increase the randomness of the transmitted binary
sequence. This facilitates on-board synchronization, which requires a sufficient symbol
transition density and no long runs. The randomizer generates a pseudorandom binary
sequence that is ex-ORed with the data block to be transmitted. Data randomization is
optional for BCH coding and mandatory for LDPC coding. As already shown in Fig. 2,
the order of application of randomization and channel coding should differ depend-
ing on the adopted coding scheme. More specifically, the following sequence should be
applied at the transmitter side when using LDPC coding:

•	 TFs → [Fill data if needed] → [LDPC encoding] → [Randomization] → [CLTU gen-
eration] → CLTUs.

On the other hand, the following sequence should be applied at the transmitter side
when using BCH coding and the optional data randomization is employed:

•	 TFs → [Fill data if needed] → [Randomization] → [BCH encoding] → [CLTU gen-
eration] → CLTUs.

The CCSDS TC randomizer is the 8-cell linear-feedback shift register (LFSR) with poly-
nomial description p(D) = 1+ D + D2

+ D3
+ D4

+ D6
+ D8 depicted in Fig. 4, which

generates a maximum length M-sequence with period N = 28 − 1 = 255 bits. All the
LFSR cells are preset to 1 at the beginning of a new block to be randomized. Noting by
L the length of the data unit to be randomized (after LDPC encoding or before BCH

Fig. 3  Transfer Frame structure

Page 6 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

encoding), the first L bits generated by the LFSR are ex-ORed to obtain the L rand-
omized bits.

The real-time implementation of the randomizer can be done by using the logic dia-
gram depicted in Fig. 4. As an alternative, we note that, since the LFSR is always preset
to the all-one state at the beginning of a new block, the sequence generated by the ran-
domizer is always the same. As a consequence, it is also possible to directly store the
255-bit entire M-sequence period in a memory and sum it when requested. Neither
technique is critical for real-time implementation: the first one was used in the pre-
sented implementation.

2.3 � BCH code

Channel codes are used to detect or correct the errors introduced by noise and other
impairments. Given an information frame of k bits, the encoder of a C(n, k) code outputs
an n-bit codeword. Usually the encoder is systematic, i.e., the first k bits of each code-
word coincide with the corresponding information frame, and linear, i.e., the r = n− k
parity bits are obtained as a linear combination of the k information bits.

Before the introduction of LDPC codes, the only channel code available for TC
systems was the BCH(63, 56). This is a cyclic code with generator polynomial
g(X) = X7

+ X6
+ X2

+ 1 . The code may be regarded as an expurgated (63, 57) Ham-
ming code, obtained by allowing even-weight codewords only. Since its minimum dis-
tance is dmin = 4 , it can be used in Single Error Correction (SEC) mode, to correct any
single error and detect any double error (plus all odd errors), or in triple error detection
(TED) mode, to detect any single, double, or triple error (plus all odd errors).

The BCH encoder logic diagram is shown in Fig. 5. The encoder performs systematic
encoding of a block u = (I0, I1, . . . , I55) of 56 bits. At the beginning of the block, all the

Fig. 4  8-Cell LFSR randomizer

Fig. 5  Encoding circuit for the fBCH(64, 56) code

Page 7 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

shift register cells are preset to 1 and the two switches are set to position 1. The 56 infor-
mation bits of u enters the encoder. They are automatically propagated to the output and
processed by the feedback shift register circuit. When all the 56 information bits have
been input, the two switches are set to position 2. In the seven subsequent clock cycles
the complement of the seven BCH parity-check bits p = (P0,P1, . . . ,P6) are output by
the encoder, and concatenated with u . Finally, the switches are set to position 3, and a
filler bit F0 = 0 is appended, in such a way as to have an overall codeword length which
is an integer number of octets. The 64-bit codeword is then

where P′
i = XOR(Pi, 1), i = 0, . . . , 6 , is indeed the complement of bit Pi . For the sake of

convenience, we will denote the whole code made by the BCH(63, 56) code and the filler
bit by the symbol fBCH(64, 56).

As we will show in Sect. 5, the BCH encoder real-time implementation has not been
critical for our study.

2.4 � LDPC codes

LDPC codes are state-of-the-art error correcting codes [12, 13] and appear in several
international communication standards. In 2017, two new LDPC codes were introduced
in the CCSDS TC recommendation [5], with parameters (128, 64) and (512, 256), respec-
tively. These codes were obtained with a protograph construction [14]. Their parity
check matrices are block-circulant, i.e., they are composed by elementary square blocks,
where each row is a cyclic shift of the row above. The matrices of the two CCSDS TC
LDPC codes are described in Fig. 6. The elementary blocks have size Q × Q bits where
Q = k/4 = n/8 ; then, we have Q = 16 for the (128, 64) LDPC code and Q = 64 for the
(512, 256) LDPC code.

The elementary building blocks are the Q × Q IQ and 0Q identity and zero matrices,
respectively, while � is the first right circular shift of IQ . Explicitly, this means that � has
a nonzero entry at row i and column j if and only if j = i + 1 mod Q . Consequently,
�

2 is the second right circular shift of IQ , that is, �2 has a nonzero entry at row i and
column j if and only if j = i + 2 mod Q , and so on. Obviously, �0

= IQ . The operator ⊕
indicates modulo-2 element-wise matrix addition.

(1)c =
(

I0, I1, . . . , I55,P
′
0,P

′
1, . . . ,P

′
6, F0

)

Fig. 6  Parity check matrices of the LDPC codes

Page 8 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

For any code, given the parity check matrix H we can build a generator matrix G by
using the equation GHT

= 0k×r where superscript T denotes transposition, r = n− k
is the number of parity check symbols, and 0k×r is the all-zero matrix with k rows and
r columns. For the CCSDS TC codes, a systematic matrix G can be defined, with the
structure reported in Fig. 7. Again, G is a block-circulant matrix composed by IQ and
0Q identity and null matrices, respectively, plus circulant Q × Q square matrices Wi,j.

Remarkably, even if the initial parity check matrix is sparse, this is not the case for
the generator matrix. To better understand this claim, the scatter chart for the parity
check and the generator matrices of the LDPC(128, 64) code are depicted in Figs. 8
and 9, respectively, where blue dots represent bits equal to 1 while all remaining bits
are 0. We can note that the G right side is dense (about kr/2 elements are equal to
1). As a consequence, in practical implementations the encoder complexity, when

Fig. 7  Generator matrix structure

Fig. 8  Scatter chart for the parity check matrix H of the LDPC(128, 64) code

Fig. 9  Scatter chart for the generator matrix G of the LDPC(128, 64) code

Page 9 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

encoding is realized through matrix G , cannot be neglected and should be carefully
investigated. This will be the subject of Sect. 3.

2.5 � CLTU generation

The CLTU generation block performs codeword concatenation, prepends a start
sequence and (optionally) appends a tail sequence. As discussed above, three coding
options are available: the fBCH(64, 56) code, the short LDPC(128, 64) code and the long
LDPC(512, 256) code. As mentioned, filler bits may be added in order for the TF length
F to be an integer multiple m of the information word length k of the selected error con-
trol code (then, respectively, 56 or 64 or 256 bits for the fBCH or short LDPC or long
LDPC code). After coding, since F = mk , the payload is segmented into m blocks, each
of which composed by n bits (respectively, 64 or 128 or 512 bits for the fBCH or short
LDPC or long LDPC code). The prepended start sequence length depends on the chosen
code, namely:

•	 For BCH coding, the 16-bits start sequence 1110101110010000 must be used.
•	 For LDPC coding, the 64-bits start sequence 0347 76C7 2728 95B0HEX (in hexadeci-

mal form) must be used.

The reason why LDPC codes need longer start sequences is that, thanks to their cod-
ing gain, they are able to work at lower SNR. Then, a longer sequence is used to reliably
acquire CLTU synchronization [9, 10]. The CLTU generation block may also append a
tail sequence for some configurations:

•	 For BCH coding, the mandatory 64-bit tail sequence C5C5 C5C5 C5C5 C579HEX is
used.

•	 For the LDPC(128, 64) code, the following optional 128-bit tail sequence:
5555 5556 AAAA AAAA 5555 5555 5555 5555HEX may be appended. In particular,
this tail sequence is mandatory if we want to apply decoders based on Most Reliable
Basis (MRB) [15] for LDPC complete decoding [9, 10].

•	 For the LDPC(512, 256) code, no tail sequence is appended (in fact, the MRB com-
plexity becomes intractable for this code).

The final CLTU structure for the three coding options is shown in Fig. 10. The CLTU
generation block is quite simple and, as shown in Sect. 5, is not critical for real-time
implementation.

3 � Efficient TC LDPC encoding strategies
Given the information vector u and the generator matrix G we can always obtain the
codeword as c = uG . We will call this method “the uG encoder" . As mentioned in the
previous section, the generator matrix of the two TC LDPC codes is block-circulant,
but not sparse. Since G is dense, the number of elements equal to 1 is approximately
kr/2+ k . Note that, since the two LDPC codes have code-rate equal to 1/2, this is equal
to k2/2+ k ; then, the complexity of LDPC encoding increases quadratically with k. As
such, LDPC encoding complexity is not negligible and the encoder turns to be the most

Page 10 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

critical block for an implementation of the new TC transmitter baseband system capable
to support high data rates. For such a reason, in this section we present and discuss two
efficient alternative encoding solutions. Both of them exploit the block circulant struc-
ture of the generator matrix G.

3.1 � SRAA‑based encoding

The first alternative approach is based on the method described in [16]. Let us con-
sider the structure of the matrix G reported in Fig. 7. As mentioned above, each Wi,j
is a square Q × Q (generally dense) circulant matrix, where any row is obtained as the
right circular shift of the previous row by one position. To exploit the matrix structure,
let us write the information block as u = (u1,u2,u3,u4) , where all ui’s, i = 1, . . . , 4 ,
have length Q bits. Since the encoder is systematic, the codeword has structure
c = (u1,u2,u3,u4,p1,p2,p3,p4) , where each Q-bit parity vector is given by:

Next, let us focus on one of the elementary terms uiWi,j . As mentioned, we can exploit
the fact that all Wi,j matrices are Q × Q circulant blocks. Let us denote by g(l)i,j the l-th
row of Wi,j , for l = 1, . . . ,Q . If we write ui =

(

u(i−1)Q+1,u(i−1)Q+2, . . . ,uiQ
)

 , the elemen-
tary term is given by:

An example, referred to the (128, 64) code, is shown in Fig. 11. We can see that each bit
multiplies a row, but each row is the cyclic shift of the row above. Then we can imple-
ment this basic operation by the circuit depicted in Fig. 12.

According to Fig. 12, the logic diagram of the SRAA is made by a Q-bit shift register,
Q AND gates and Q XOR gates. The first row of Wi,j is pre-loaded in the register. The
Q bits of ui are serially input to the circuit. At each clock cycle of phase i, all elements

(2)pj = u1W1,j + u2W2,j + u3W3,j + u4W4,j .

(3)uiWi,j = u(i−1)Q+1g
(1)
i,j + u(i−1)Q+2g

(2)
i,j + · · · + uiQg

(Q)
i,j .

Fig. 10  CLTU structure for the three coding options (not in scale, total CLTU length depends on the number
of codewords)

Page 11 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

of the shift register are multiplied (logical AND) by the bit u(i−1)Q+t , t = 1, . . . ,Q , and
the result is accumulated (logical XOR) in the corresponding position of the second
Q-bits register. After Q clock cycles we get uiWi,j . The calculation of each pj requires

Fig. 11  Example of uW multiplication

Fig. 12  SRAA logic diagram

Page 12 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

to compute four elementary products uiWi,j ; then, to perform the above computation
four times, one per each i = 1, . . . , 4 , as shown in Fig. 13.

This encoder scheme, specifically tailored to hardware (e.g., FPGA) implementa-
tion, may provide advantages with respect to the classic uG rule even in the frame of a
software implementation, as we will show in Sect. 5.

3.2 � Winograd‑based encoding

In this section, we present a second alternative encoding technique, based on the
Winograd convolution [17]. We consider again the expression of the codeword
c = (u1,u2,u3,u4,p1,p2,p3,p4) , where each Q-bit parity vector is given by (2) and we
focus again on a generic elementary term uiWi,j . The block matrix Wi,j is a circulant
matrix. As it is well known, any circulant matrix is a Toeplitz matrix, meaning that all
elements on any descending diagonal are constant. An example for a 4 × 4 circulant
matrix is as follows (on the right the general case of a Toeplitz matrix; on the left the
particular case of a circulant matrix):

On the other hand, any Q × Q Toeplitz matrix T with even Q can be decomposed
as:

where

•	 0 and I are Q/2× Q/2 null and identity matrices, respectively;
•	 T0,T1,T2,T1 − T0,T2 − T0 are Q/2× Q/2 Toeplitz matrices.

(4)







1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1






=







a b c d
e a b c
f e a b
g f e a






.

(5)T =

�

T0 T1

T2 T0

�

=

�

I 0 I
0 I I

�





T1 − T0 0 0
0 T2 − T0 0
0 0 T0









0 I
I 0
I I



 ,

Fig. 13  SRAA complete encoder

Page 13 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

If we focus on the Q × Q binary Toeplitz matrix W we are considering here, it can
hence be decomposed as:

where W0 , W1 and W2 are Q/2× Q/2 binary Toeplitz matrices and operations over the
binary field have been taken into account (for binary symbols, plus and minus opera-
tions give the same result).

Let us focus again on the computation of the elementary term uiWi,j and let us write
the vector ui as ui = [u0 u1] . By exploiting the form (6) for Wi,j , we have:

In this way, we have transformed the multiplication of a Q-bit vector ui by a Q × Q
matrix Wi,j into three multiplications of Q/2-bit vectors by Q/2× Q/2 Toeplitz matri-
ces, plus some Q/2-bit vector additions. Since the vector-matrix product gives the most
important contribution to the overall complexity and has a quadratic cost in the matrix
size, by exploiting (7) we achieve a considerable complexity reduction. Moreover, the
process can be iterated, as far as we get matrices of even dimension. As shown in Sect. 5,
this approach provides a significant speedup with respect to the classical uG encoding
map and also with respect to SRAA in most operation conditions.

3.3 � Complexity considerations

The generator matrix of the CCSDS LDPC codes is systematic and composed by Q × Q
circulant matrices, then we can focus on one of them and for computing the total com-
plexity we must multiply by the number of circulant matrices in G. For the classical uG
encoder, the memory is proportional to the entire size ( Q × Q bits) and the number of
operations to the entire size, too ( Q × Q ). For the SRAA encoder, the memory is propor-
tional to the first row (Q) and the number of operations to the entire size ( Q × Q ). For
the Winograd encoder, the memory is proportional to 3log2 (Q) and the number of opera-
tions to 3log2 (Q)+1.

4 � Methods/experimental
In this section we consider our real-time implementation of the Ground System Tele-
command. We focus on a target output bit rate of 2.048 Mbps, which is currently con-
sidered realistic by the European Space Agency (ESA) for the new applications described
in Sect. 1. A main issue toward an operational system available at Ground Station is rep-
resented by the selection of the platform where the TC Synchronization and Channel
Coding modules should be implemented, mainly having into account the target output
bit rate as well as portability.

4.1 � Considered digital platforms

This section briefly describes the ESA platforms currently available at the Telemetry
Tracking and Command Processor (TTCP), i.e., the Ground Station. There are three

(6)Wi,j =

�

W0 W1

W2 W0

�

=

�

I 0 I
0 I I

�





W1 +W0 0 0
0 W2 +W0 0
0 0 W0









0 I
I 0
I I



 ,

(7)uiWi,j =
[

u1(W2 +W0)+ (u0 + u1)W0 u0(W1 +W0)+ (u0 + u1)W0

]

.

Page 14 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

kinds of platforms available: CPU, ARM-based FPGA, and FPGA; they are integrated
in two types of units/devices: Data Processing Unit (DPU) and Signal Processing
Modules (SPMs).

TTCP has a DPU that includes an Intel Xeon CPU E5-2637 v4 @ 3.50 GHz per-
forming Man-Machine Interface (MMI) and some level of processing functions with a
low overall CPU load ( < 5% ). Regarding the SPMs, there are several options, and each
one has two FPGAs from Altera/Intel inside: the FPGA Stratix which is a powerful
pure FPGA and a Cyclone SoC FPGA with dual-core ARM-CortexA9.

The Intel Xeon processor E5 v4 is a multi-core enterprise processor built on 14-nm
process technology designed to have low power and high performance. The proces-
sor was designed for a platform consisting of a processor and the Platform Controller
Hub (PCH) supporting up to 46 bits of physical address space and 48 bits of virtual
address space. Table 1 addresses the main features of the CPU platform available at
TTCP.

The Stratix device offers up to 48 integrated transceivers with 14.1 Gbps data rate
capability. These transceivers also support backplane and optical interface applica-
tions. The device features a rich set of high-performance building blocks, including a
redesigned adaptive logic module (ALM), 20 kbit (M20K) embedded memory blocks,
variable precision digital signal processing (DSP) blocks, and fractional phase-locked
loops (PLLs). All these building blocks are interconnected by a multi-track routing
architecture and comprehensive fabric clocking network. The main features of the
FPGA platform are reported in Table 2.

The Cyclone FPGA built on 28-nm Low-Power (28LP) process provides a low cost
and low power system achieving 40 percent lower total power compared with the
previous generation, efficient logic integration capabilities, integrated transceiver
variants and SoC FPGA with an ARM-based hard processor system (HPS). The capa-
bilities and logic integration were improved thanks to an 8-input ALM, with up to 12
MB of memory and variable precision DSP blocks. Cyclone integrates an HPS that
includes processors, peripherals and memory controller with the FPGA fabric using a
high-bandwidth interconnect backbone.

Table 1  CPU platform (Intel Xeon CPU E5-2637 v4 @ 3.50 GHz) specification (from ESA)

Features Values

Threads 16

Threads per core 2

Cores per socket 4

Sockets 2

Model name Intel® Xeon® CPU
E5-2637 v4 @ 3.50
GHz

L1d cache 32K

L1i cache 32K

L2 cache 256K

L3 cache 15360K

NUMA node0 CPU(s) 0−3, 8−11

NUMA node1 CPU(s) 4−7, 12−15

Page 15 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

4.2 � Platform comparison and preliminary Output Bit Rate results

As from the critical modules description (see Sect. 2), it is clear that channel encod-
ing is the most complex module at the platform. Hence, in this subsection all available
platforms are evaluated in terms of bit rate performance with reference to the channel
encoding module. Because of the focus on the encoding operations, the filler bit can
be ignored and, in presenting the results, we simply refer to the BCH(63, 56) code
instead of the fBCH(64, 56) code.

4.2.1 � CPU platform

The Intel Xeon CPU E5-1620 v2 @ 3.70 GHz was used, with similar features to the
one available at TTCP, as shown in Table 3. Moreover, it was required to develop a
preliminary/simple code in C/C++ language where the compiler GCC version 7.3.0
was used and optimization level of “-O3” (maximum performance) was selected.

As observed in Table 3, the CPU used in this evaluation has a clock slightly higher
than the target (3.7 GHz vs. 3.5 GHz); however, it is a Xeon processor from first gen-
eration while the CPU available at TTCP is from second generation. Therefore, con-
sidering these features, we can conclude that a similar performance is expected. This
is confirmed in Fig. 14, which reports the comparison between CPUs performance:
so, we see that the rating of ESA CPU (orange colour) is only slightly better than the
one used in the study (blue colour).

Table 2  FPGA platform (Altera Stratix) specification (from Altera/Intel)

Features Stratix

Logic elements (K) 952

ALMs 359200

Registers (K) 1437

M20K Memory Blocks 2640

M20K Memory (Mbits) 52

MLAB Memory (Mbits) 10.96

Variable Precision DSP blocks (27× 27) 352

Variable Precision Multipliers (18× 18) 704

LVDS channels, 1.4 Gbps (receive/transmit) 210

14.1-Gbps Transceivers 48

Fractional PLLs 28

DDR3 SDRAM ×72 DIMM Interfaces 6

Table 3  Computer used to evaluate the CPU platform

Features Values

Model name Intel® Xeon® CPU
E5-1620 v2 @ 3.70 GHz

Memory RAM 24 GB

Operating System Windows 10 Pro 64-bits

Page 16 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

In this evaluation, the LDPC encoder based on a simple uG product (described in
Sect. 3) was used. Table 4 presents the target performance (particularly as regards the
desired, minimum output coded bit rate) and timings for the CPU platform. Owing
to the high CPU clock, it is observed that the target coded bit rate of 2.048 Mbps
allows 1709 instruction cycles per bit resulting in the maximum allowed spent time
per codeword presented in Table 4.

In order to assess the CPU performance, a preliminary experiment was developed
which consisted in encoding an information word for ten times. The results for both
LDPC codes and for the BCH code (included for completeness and encoded by mimick-
ing the circuit in Fig. 5) are presented in Table 5.

It can be seen that the CPU performance complies with the target coded bit rate for
both LDPC codes and for the BCH code. However, for the first cycle a lower bit rate is

Fig. 14  CPUs comparison (adapted from CPU Benchmark)

Table 4  Target performance considering only the encoder

Target output coded bit rate (Mbps) 2.048

CPU clock (GHz) 3.50

Instruction cycle (ns) 0.29

Number of instructions cycles per bit 1709

Max time for channel encoding ( µs)

LDPC(128, 64) 62.5

LDPC(512, 256) 250.0

BCH(63, 56) 30.8

Table 5  Performance achieved by the CPU platform

Channel encoding Output
bit rate
(Mbps)

LDPC(128, 64) ≥ 22.1

LDPC(512, 256) ≥ 4.8

BCH(63, 56) ≥ 45.0

Page 17 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

achieved, in comparison with the remaining cycles, which can be related with the CPU
automatic resources allocation assignment by the operating system. For instance, some-
times prior to the first execution the CPU clock is about 1.5 GHz instead of 3.5 GHz.

It should be noted that these results hold for the classic uG encoder, hence a higher
output bit rate is expected for the two other encoders described in Sect. 3, namely, the
SRAA-based and the Winograd-based encoders. Furthermore, it should be highlighted
that these results do not include the start and tail sequences, which are easy to add to
the codewords with little processing time required and consequently increasing the bit
rate. More precisely, it is expected to increase the output bit rate by at least 50% for the
LDPC(128, 64) code (the increase is larger when the tail sequence is selected), and by
12.5% for the LDPC(512, 256) code.

4.2.2 � Hardware platforms

In this subsection both hardware platforms available at TTCP are evaluated with refer-
ence to LDPC and BCH encoders. The SRAA-based encoder is known to be particularly
efficient for hardware implementation. Its parallel structure, presented in Sect. 3.1, has
been evaluated for both Cyclone and Stratix FPGA devices and has been chosen with
respect to the iterative architecture due to the few logic operations required to imple-
ment the SRAA circuit and to take advantage of the higher bit rate achievable with the
parallel solution.

In Table 6 the estimated complexity and timing (maximum frequency) achieved
by synthesis and place and route performed with ALTERA QUARTUS® software are
reported for both Cyclone and Stratix devices and all encoding methods.

The estimate regarding the maximum frequency is rough, due the unconstrained syn-
thesis and place and route: the FPGA device contains only the tested encoder without
other subsystems and without any pinout constraints. Considering this preliminary
implementation on FPGA device and the required design margin (a factor of 2.5) to be

Table 6  LDPC and BCH encoders complexity and timing (maximum frequency) estimate

LDPC(128, 64) LDPC(512, 256) BCH(63, 56)

Cyclone Stratix Cyclone Stratix Cyclone Stratix

Area report Use % Use % Use % Use % Use % Use %

Flip Flops 402 ≤ 1 384 ≤ 1 1578 ≤ 3 1565 ≤ 1 18 ≤ 1 19 ≤ 1

Combinato-
rial logic
elements

234 ≤ 1 347 ≤ 1 1117 ≤ 2 1117 ≤ 1 13 ≤ 1 12 ≤ 1

Timing report
Max frequency 341 MHz 717 MHz 264 MHz 627 MHz 36 MHz 717 MHz

Table 7  Output bit rate achieved by hardware platforms

Cyclone Stratix

LDPC encoders ≥ 100 Mbps ≥ 250 Mbps

BCH encoder ≥ 100 Mbps ≥ 250 Mbps

Page 18 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

adopted according to the authors’ experience in this preliminary phase, the minimum bit
rates presented in Table 7 can be considered achievable with no particular problem.

4.2.3 � Selected platform

Considering the platforms available at TTCP and the main points for choosing one,
namely, performance evaluation and future portability toward an operational platform,
it is reasonable to conclude that the CPU platform is the best choice for the proposed
application. It complies with the target output bit rate and, additionally, it guarantees
an easy portability, being a software approach. The start and tail sequences were not
included in the bit rate evaluation which meant that it was expected to increase the per-
formance even more.

Moreover, considering that the classic uG encoder for LDPC codes was used in this
evaluation, the output bit rate is expected to be even better if an encoder more appro-
priate to software is implemented such as the encoder based on Winograd or the SRAA
methods, described in Sect. 3. Indeed, this has been investigated during the output bit
rate tests, whose results are presented in Sect. 5.

As a side remark, we point out that the options considered in this study, agreed with
ESA, were the most important solutions currently available for TTC: CPU, ARM and
FPGA. Nevertheless, other platforms could be taken into account in the future. One
potential solution is represented by hardware platforms relying on a Graphics Process-
ing Unit (GPU), which is a paradigm that is receiving growing interest. To the best of
our knowledge, GPU platforms have not been used yet for space applications, but the
parallel nature of some of the considered decoding techniques may be well suited for
exploiting GPU architectures. The most important feature of GPU-based hardware is in
fact in a large number of relatively slow processors that can work in parallel. This may
be well suited to the application of techniques such as layered decoding, which enable
high degrees of parallelism in the execution of LDPC decoding. The QC structure of the
matrices of the considered codes can in fact be suitable for the application of layered
decoding approaches [18–20], and therefore their decoding could benefit from the use of
GPU-based hardware.

5 � Results and discussion
Taking into account the output target bit rate of 2.048 Mbps at the TC Synchronization
and Channel Coding sublayer, this section describes the achieved results for the three
encoding methods presented in Sect. 3, running on the selected platform.

5.1 � Time measurement and Output Bit Rate computation

In order to evaluate the performance of the encoding schemes and, as concerns the
LDPC codes, to compare the three options presented in Sect. 3, a breadboard was devel-
oped, which allowed measuring two relevant parameters, that is, the processing time and
the output bit rate. The breadboard architecture and, in particular, the processing time
measurement procedure are shown in Fig. 15. For the sake of brevity, we omit details on
the breadboard architecture (further information can be found in [21]) while we focus
on the processing time measurement procedure. In short, the tests are based on the data
saved in the Local Storage module, which stores several useful information including the

Page 19 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

processing time: of the Randomizer (PTRandomizer), of the Encoder (PTEncoder), of the
CLTU Generator (PTCLTUgenerator) and of the whole process (PTcomplete). The latter
is measured by starting the timer when the first critical module starts being used (either
the Randomizer module, when enabled and BCH is selected, or the LDPC encoder mod-
ule, as depicted in Fig. 2) and stopping the timer when the CLTU is completed. The time
required to fill extra bits to the received TF when it is not a multiple of an information
word is also measured and added to the PTcomplete.

We have generated 10000 TFs and computed the average Output Bit Rate (OBR) as the
ratio between the total number of CLTU bits and the overall processing time (that is, the
sum of the PTcomplete values relative to the single transmissions). Numerical results are
shown next.

5.2 � Output Bit Rate performance results

This subsection summarizes the most important results of the analysis using the target
processor and SUSE Linux Enterprise Server 12 Service Pack 1 as operating system. We
remind that the data rates required, on the basis of the current inputs, are comprised
between 7.8125 bps and 2.048 Mbps [22].

Table 8, for the BCH code, and Table 9, for the LDPC codes, show the average OBR
achieved at the breadboard for all identified critical modules, by considering different
TF lengths, where “Mixed” means TFs with length randomly selected within the allowed
range.

Fig. 15  Schematic of the breadboard architecture and measurement of the processing times for the
Breadboard Performance Tests

Page 20 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

We observe that, for all possible different combinations of encoders, encoding meth-
ods (for the LDPC case), with or without randomizer (for the BCH encoder) and with
or without tail sequence (for the LDPC(128, 64) code), the target (maximum) output
bit rate of 2.048 Mbps is achieved. The largest OBR is achieved by using the Winograd
method, while the SRAA is better than the classic uG encoder for the LDPC(512, 256)
code. In absolute terms, as predictable, the minimum OBR is achieved, for all the con-
sidered algorithms, with the long LDPC code remaining, in any case, larger than the
target OBR of 2.048 Mbps. Actually, even with this selected CPU platform, an average
minimum of about 10.2 Mbps is achieved, for the LDPC(512, 256) encoder when the
classic encoder is used. Furthermore, it is observed that for any scenario of BCH(63, 56),
and for LDPC(128, 64) when Winograd-based method is used, an average OBR higher
than 41.1 Mbps is obtained. Moreover, even the worst result, for the LDPC(512, 256)
code, is still about five to eight times better (when classic and Winograd method are
selected, respectively) than the target OBR.

6 � Conclusions
In this paper, the TC Synchronization and Channel Coding sublayer has been analyzed,
in particular with reference to the TC LDPC encoders that were implemented following
the classic approach and with two efficient encoding methods, namely: the SRAA and
Winograd convolution. Both these alternative methods have been tested and we have
verified that the Winograd algorithm is actually able to outperform the classic encoding
method in all the considered scenarios, while SRAA does the same in specific frame-
works, e.g., when using the long LDPC code. Indeed, such a conclusion follows from the

Table 8  Breadboard OBR performance of all critical modules for the BCH(63,56) code

Breadboard average output bit rate [Mbps]

TF length (bytes) W/o Randomizer With randomizer

6 81.335 61.047

7 85.878 64.419

Mixed 92.220 59.510

1022 93.071 59.709

1024 92.580 59.440

Table 9  Breadboard OBR performance of all critical modules for the LDPC codes (C = Classic, S =
SRAA, W = Winograd)

Breadboard average output bit rate (Mbps)

LDPC(128, 64) w/o tail
sequence

LDPC(128, 64) with tail
sequence

LDPC(512, 256)

TF length (bytes) C S W C S W C S W

6 35.049 31.184 42.781 58.066 51.726 70.379 10.608 13.055 16.920

8 36.067 31.932 44.528 59.879 53.103 73.258

32 11.035 13.787 18.057

Mixed 31.325 27.669 41.116 31.749 28.108 41.723 10.258 13.074 17.160

1024 31.338 27.659 41.217 31.534 27.922 41.478 10.279 13.091 17.208

Page 21 of 22Abelló et al. J Wireless Com Network (2021) 2021:203 	

choice to privilege a software implementation, whilst in case of using a hardware imple-
mentation SRAA would show its benefits as well, thanks to the possibility of efficiently
exploiting parallel computation.

Different platforms available at the TTCP have been evaluated, being selected the CPU
platform, since it is compliant with the target output bit rate performance of 2.048 Mbps
and, additionally, it guarantees an easy portability owing to its software approach. Sub-
sequently, the breadboard software including all critical modules was developed in C++
language using the CPU platform.

The three different methods identified for LDPC encoding have been successfully
implemented on the breadbord. A minimum Ouput Bit Rate performance higher than
10 Mbps for all critical modules has been achieved, about five times higher than the
target performance of 2.048 Mbps. These results show the importance of an optimized
implementation of the critical LDPC encoder and the other transmitter blocks for high-
rate real-time implementations.

Abbreviations
ALM: Adaptive Logic Module; ARQ: Automatic Repeat Request; BCH: Bose-Chaudhuri-Hocquenghem; CCSDS: Consulta-
tive Committee for Space Data Systems; CLTU: Command Link Transmission Unit; CPU: Central Processing Unit; CRC​:
Cyclic Redundancy Check; DPU: Data Processing Unit; DSP: Digital Signal Processing; ESA: European Space Agency; FPGA:
Field-Programmable Gate Array; GPU: Graphics Processing Unit; HPS: Hard Processor System; LDPC: Low-Density Parity-
Check; LFSR: Linear Feedback Shift Register; LP: Low Power; MMI: Man-Machine Interface; MRB: Most Reliable Basis; OBR:
Output Bit Rate; OSI: Open Systems Interconnection; PCH: Platform Controller Hub; PLL: Phase-Locked Loop; SEC: Single
Error Correction; SNR: Signal-to-Noise Ratio; SPM: Signal Processing Module; SRAA​: Shift Register Adder Accumulator; TC:
Telecommand; TED: Triple Error Detection; TF: Transfer Frame; TTCP: Telemetry Tracking and Command Processor.

Acknowledgements
This work was supported in part by the European Space Agency under contract 4000124933/18/D/MB.

Authors’ contributions
All the authors participated in writing the article and revising the manuscript. All authors read and approved the final
manuscript.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 European Space Agency/ESOC, Robert‑Bosch‑Straße 5, 64293 Darmstadt, Germany. 2 Dipartimento di Ingegneria
dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy. 3 Deimos Engen-
haria, Avenida Dom João II 41, 1998‑023 Lisbon, Portugal. 4 Dipartimento di Elettronica e Telecomunicazioni, Politec-
nico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy. 5 Dipartimento di Ingegneria dell’Energia Elettrica e
dell’Informazione “Guglielmo Marconi”, Università di Bologna, Via dell’Università 50, 47522 Cesena, Italy. 6 Consorzio
Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Viale G.P. Usberti 181/A, 43124 Parma, Italy.

Received: 1 June 2021 Accepted: 9 December 2021

References
	1.	 Consultative Committee for Space Data Systems (CCSDS), Telecommand, CCSDS 200.0-G-6 Green Book (1987)
	2.	 Consultative Committee for Space Data Systems (CCSDS), Next Generation Uplink, CCSDS 230.2-G-1 Green Book

(2014)
	3.	 G. Kazz, E. Greenberg, C. Scott, Replacing the CCSDS telecommand protocol with the next generation uplink (NGU),

in Proceedings of the 2012 AIAA International Conference Space Operations, Stockholm, Sweden (2012)
	4.	 N. Peccia, A brief story of a success: the CCSDS, in Proceedings of the 2014 AIAA International Conference on Space

Operations, Pasadena, CA, USA (2014)

Page 22 of 22Abelló et al. J Wireless Com Network (2021) 2021:203

	5.	 Consultative Committee for Space Data Systems (CCSDS), TC Synchronization and Channel Coding, CCSDS 231.0-
B-3 Blue Book (2014)

	6.	 G. Liva, E. Paolini, T. De Cola, M. Chiani, Codes on high-order fields for the CCSDS next generation uplink, in Proceed-
ings of the 2012 6th Advanced Satellite Multimedia Systems Conference and 12th Signal Processing for Space Communi-
cation Workshop, Vigo, Spain (2012)

	7.	 K. Andrews, D. Divsalar, J. Hamkins, F. Pollara, Error correcting codes for next generation spacecraft telecommand, in
Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA (2013)

	8.	 Á. Álvarez, V. Fernández, B. Matuz, An efficient NB-LDPC decoder architecture for space telecommand links. IEEE
Trans. Circuits Syst. II Express Briefs 68(4), 1213–1217 (2021)

	9.	 M. Baldi, M. Bertinelli, F. Chiaraluce, P. Closas, P. Dhakal, R. Garello, N. Maturo, M. Navarro, J.M. Palomo, E. Paolini, S.
Pfletschinger, P.F. Silva, L. Simone, J. Vilà-Valls, State-of-the-art space mission telecommand receivers. IEEE Aerosp.
Electron. Syst. Mag. 32(6), 4–15 (2017)

	10.	 M. Baldi, M. Bertinelli, F. Chiaraluce, P. Freire de Silva, R. Garello, N. Maturo, M. Navarro, J.M. Palomo, E. Paolini, R. Prata,
L. Simone, C. Urrutia, Theoretical analysis and implementation of effective receivers for telecommand space links, in
Proceedings of the TTC 2019 International Workshop on Tracking, Telemetry and Command Systems for Space Applica-
tions, Darmstadt, Germany (2019)

	11.	 Consultative Committee for Space Data Systems (CCSDS), TC Space Data Link Protocol, CCSDS 232.0-B-3 Blue Book
(2015)

	12.	 Y. Fang, P. Chen, G. Cai, F.C.M. Lau, S.C. Liew, G. Han, Outage-limit-approaching channel coding for future wireless
communications: root-protograph low-density parity-check codes. IEEE Veh. Technol. Mag. 14(2), 85–93 (2019)

	13.	 L. Dai, Y. Fang, Z. Yang, P. Chen, Y. Li, Protograph LDPC-coded BICM-ID with irregular CSK mapping in visible light
communication systems. IEEE Trans. Veh. Technol. 70(10), 11033–11038 (2021)

	14.	 Y. Fang, G. Bi, Y.L. Guan, F.C.M. Lau, A survey on protograph LDPC codes and their applications. IEEE Commun. Sur-
veys Tuts. 17(4), 1989–2016 (2015)

	15.	 M. Baldi, N. Maturo, E. Paolini, F. Chiaraluce, On the use of ordered statistics decoders for low-density parity-check
codes in space telecommand links. EURASIP J. Wirel. Commun. Netw. 2016, 272 (2016)

	16.	 Z. Li, L. Chen, L. Zeng, S. Lin, W.H. Fong, Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans.
Commun. 54(1), 71–81 (2006)

	17.	 S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF Regional Confernce Series in Mathematics, Book
Code: CB33 (1980)

	18.	 G. Wang, M. Wu, Y. Sun, J.R. Cavallaro, A massively parallel implementation of QC-LDPC decoder on GPU, in Proceed-
ings of the 2011 IEEE 9th Symposium on Application Specific Processors (SASP), pp. 82–85 (2011)

	19.	 Y. Lin, W. Niu, High throughput LDPC decoder on GPU. IEEE Commun. Lett. 18(2), 344–347 (2014)
	20.	 R. Li, X. Zhou, H. Pan, H. Su, Y. Dou, A high-throughput LDPC decoder based on GPUs for 5G new radio, in Proceed-

ings of the IEEE Symposium on Computers and Communications (ISCC) 2020, pp. 1–7 (2020)
	21.	 R. Abelló, M. Baldi, F. Chiaraluce, R. Fernandes, P. Freire da Silva, R. Garello, D. Gelfusa, J.M. Palomo, E. Paolini, R. Prata,

L. Santos Ugarte, L. Simone, NEXTRACK—Next Generation ESTRACK Uplink Services, in Proceedings of the TTC 2019
International Workshop on Tracking, Telemetry and Command Systems for Space Applications, Darmstadt, Germany
(2019)

	22.	 Consultative Committee for Space Data Systems (CCSDS), Radio Frequency and Modulation Systems, CCSDS 401.0-
B-31 Blue Book (2021)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Next generation earth-to-space telecommand coding and synchronization: ground system design, optimization and software implementation
	Abstract
	1 Introduction
	2 On-ground telecommand synchronization and channel coding sublayer
	2.1 Transfer Frame
	2.2 Randomizer
	2.3 BCH code
	2.4 LDPC codes
	2.5 CLTU generation

	3 Efficient TC LDPC encoding strategies
	3.1 SRAA-based encoding
	3.2 Winograd-based encoding
	3.3 Complexity considerations

	4 Methodsexperimental
	4.1 Considered digital platforms
	4.2 Platform comparison and preliminary Output Bit Rate results
	4.2.1 CPU platform
	4.2.2 Hardware platforms
	4.2.3 Selected platform

	5 Results and discussion
	5.1 Time measurement and Output Bit Rate computation
	5.2 Output Bit Rate performance results

	6 Conclusions
	Acknowledgements
	References

